Spoken dialog systems as an application of POMDPs

Jason D. Williams

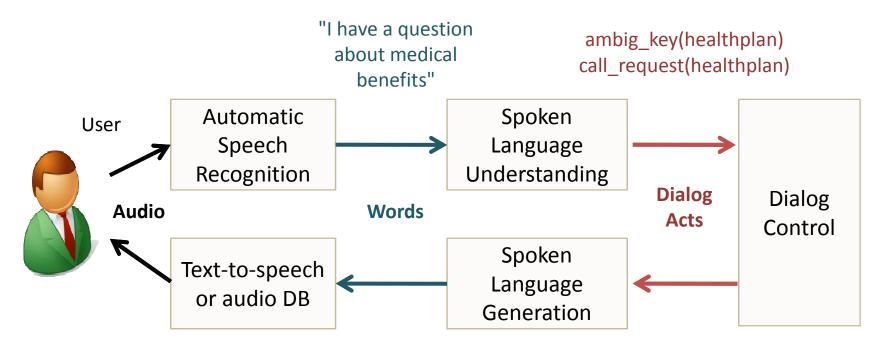
ICAPS Workshop – May 2010

© 2010 AT&T Intellectual Property. All rights reserved.

What is a spoken dialog system?

A spoken dialogue system is a computer agent that interacts with people by understanding spoken language.

Speech recognition and spoken language understanding



"Ok, health plans. Here is a list of choices, when you hear the one you want just say it: AT&T Benefits Center, HMOs, Dental, Vision, Flexible Spending Accounts, Health Savings Account, COBRA or other company Medical Plans."

disambiguate(healthplan)

Spoken dialogue systems come in many flavours

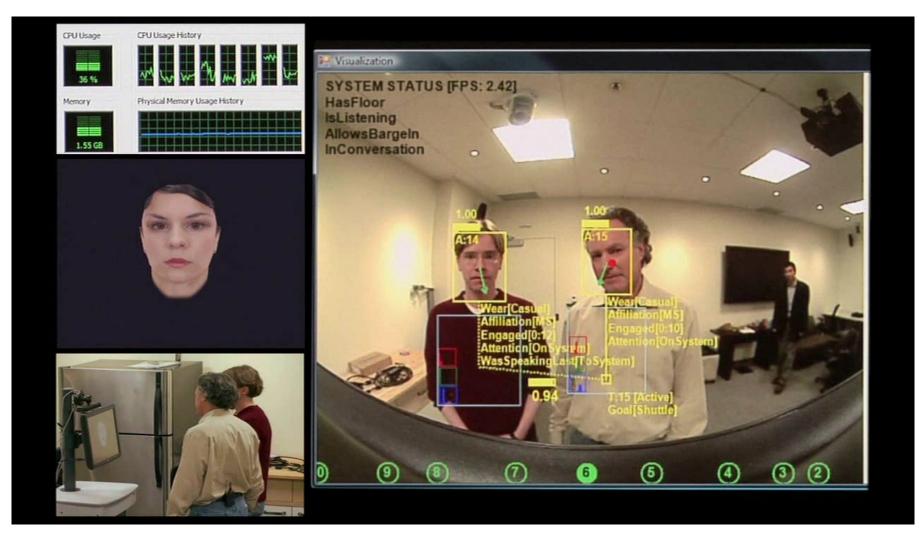
Input	Input Output Example		
Speech	Speech	Telephone technical support [1]	
Speech + ?GUI	Speech + ?GUI	In-car music control, navigation	
Speech + GUI	Speech + GUI	Tutoring	
Speech + GUI	Speech + GUI	Language learning	
Speech + GUI	?Speech + GUI	TV program guide	
Speech + GUI	?Speech + GUI	Mobile search interface	
Speech + vision	Speech + robot/agent	Eldercare	
Speech + vision	eech + vision Speech + robot/agent Automated r		
[4] December of a dec			

[1] Recording of a deployed dialog system, AT&T

In-car spoken dialogue system

Source: IBM

Automated receptionist



Bohus, D., Horvitz, E. (2009). Models for Multiparty Engagement in Open-World Dialog, in Proceedings of SIGdial'09, London, UK

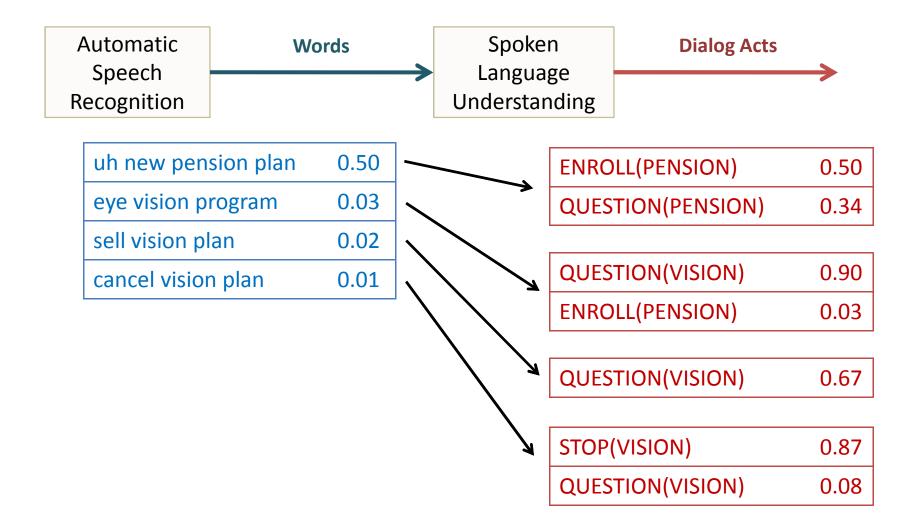
Outline

- Key challenges for building dialogue systems
- How dialogue systems are built today
- Casting a dialogue system as a POMDP
- "Growing up" to real-world systems
- Thoughts about the future

Challenges (among others)

- 1. Channel errors (ASR, SLU, turn-taking)
- 2. Curse of history
- 3. Theory of mind problem

Speech recognition and spoken language understanding

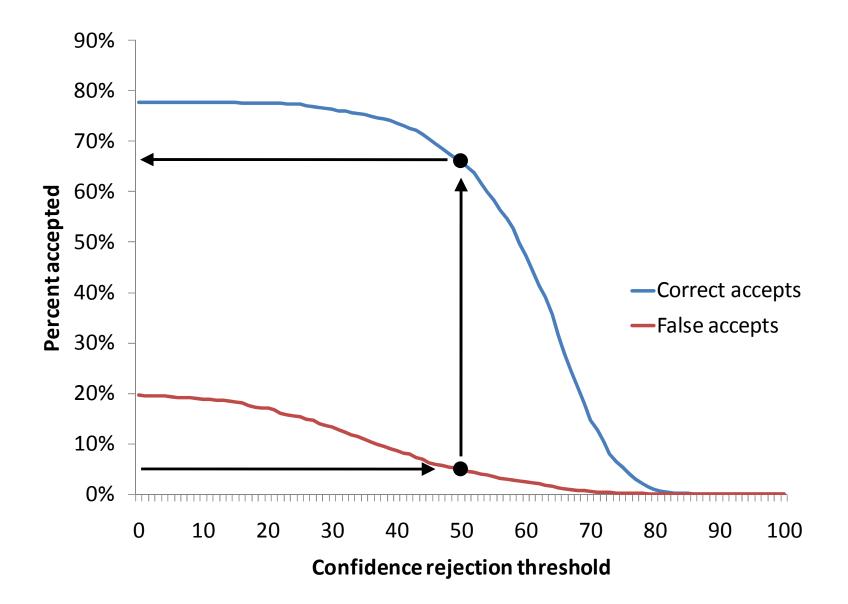


Grammar Yes/no City & state How may I help y	ou?
--	-----

Grammar	Yes/no	City & state	How may I help you?
In-grammar/ in-domain accuracy	99.8%	85.1%	89.5%

Grammar	Yes/no	City & state	How may I help you?
In-grammar/ in-domain accuracy	99.8%	85.1%	89.5%
% in-grammar/ in-domain	92.3%	91.0%	86.8%
Overall accuracy	92.1%	77.6%	77.7%

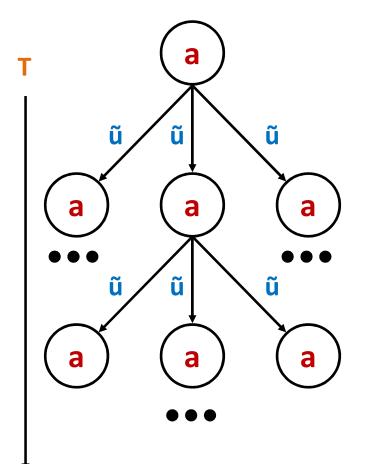
ASR errors are hard to detect



Grammar	Yes/no	City & state	How may I help you?
In-grammar/ in-domain accuracy	99.8%	85.1%	89.5%
% in-grammar/ in-domain	92.3%	91.0%	86.8%
Overall accuracy	92.1%	77.6%	77.7%
Accepted utts (False accepts)	89.6% (1.8%)	60.3% (4.9%)	73.3% (8.3%)

Curse of history

A = {ask(first-name), confirm(last-name=williams), ...} $\tilde{U} = \{YES, JASON, WILLIAMS, ... \}$



~ A^Ũ possible assignments

Typical system:

$$A = 10^{10}$$

$$\tilde{U} = 10^{10}$$

$$T = 10$$

Curse of history

$$\mathsf{F}(\tilde{\mathsf{u}}_0,\mathsf{a}_1,\tilde{\mathsf{u}}_1,\mathsf{a}_2,\tilde{\mathsf{u}}_2,\mathsf{a}_3,\tilde{\mathsf{u}}_3,\ldots,\mathsf{a}_t,\tilde{\mathsf{u}}_t)=\mathsf{a}_{t+1}$$

Often it's more convenient to separate the *tracking* problem from the *action selection* problem:

Dialog state $s_t \approx (\tilde{u}_0, a_1, \tilde{u}_1, a_2, \tilde{u}_2, a_3, \tilde{u}_3, ..., a_t, \tilde{u}_t)$ State tracking $s_{t+1} = G(s_t, a_t, \tilde{u}_n)$ Action selection $F(s_{t+1}) = a_{t+1}$

Now the problem is what to track in the dialog state *s*, and how to make use of it when choosing actions

The "theory of mind" problem

A real human

What can she/he/it understand?

Anything I can explain

How do I know what itI'm used tocan understand?speaking to people

Users must think simultaneously about what language the system can understand, and what the system can do – they must form a "theory of mind" about the dialog system

Responses to "How may I help you?"

- Silences and hesitations while users think
 - Leads to end-pointing problems
 - Leads to users confusing themselves
- "Robot" language (hence examples, "speak naturally")
 - 🀗 Example 1
 - 🀗 Example 2
- Recognition errors confused with competences

 - > "i would like to enroll in a get one" [no parse]
 - I would like to get help with my dental insurance" <HELP>

Source: Live calls, human resources dialog system, AT&T

How dialog systems are built today

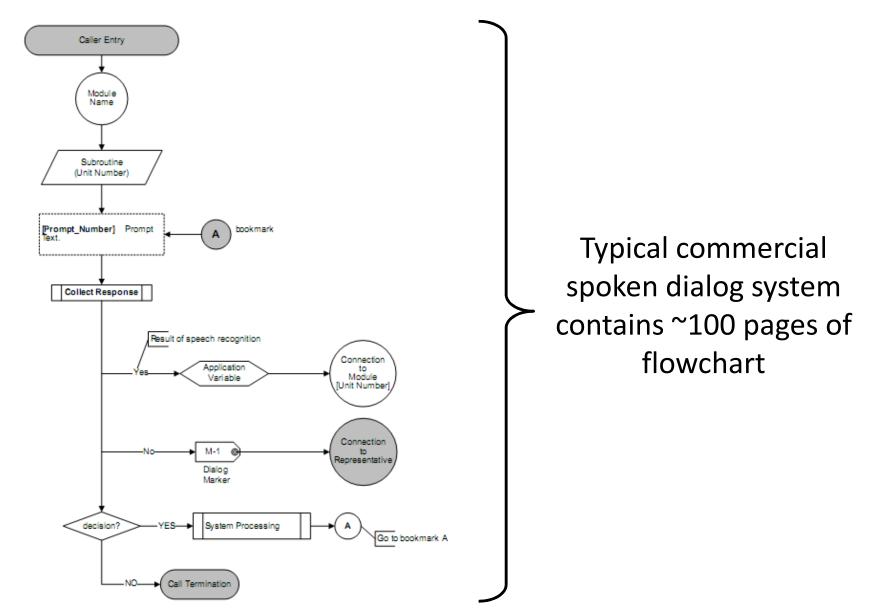
Spoken dialog systems as an application of POMDPs

How dialog systems are built today

reco[1] :	Jason Williams
conf[1]:	0.43
reco[2]:	Jay Wilpon
conf[2]:	0.05
reco[3]:	Jim Wilson
conf[3]:	0.01
name-tries:	2
confirmed-sta	t: No
confirmed-trie	es: 0
confirmed-ID:	{}
match-count[1]: 1
match[1][1]:	jw4796
location[1][1]	: Florham Park
phone-types[2	1]: {office, mobile}
phone-types[2	2]: {office}
phone-types[3	3]: {mobile}
caller-location	: New York
last-call:	Jay Wilpon
\mathbf{V}	

s =

How dialog systems are built today



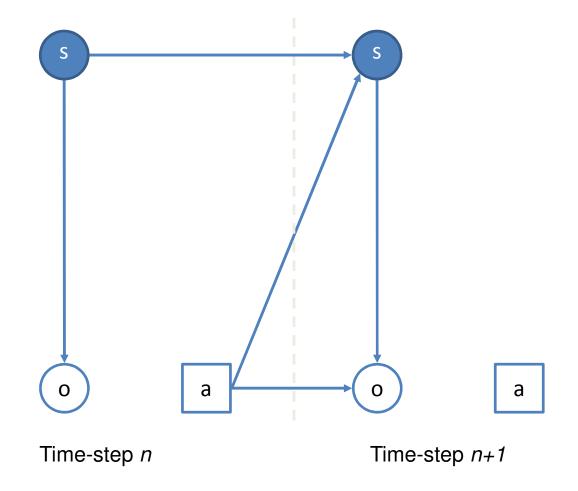
Problems

- 1. No principled way to encode uncertainty in the dialog
- 2. No good way to incorporate models of user behavior and ASR errors
- 3. Actions are chosen locally based on intuition, not globally based on an optimization criteria
- 4. Good information (N-Best list) is discarded
- 5. May interact with millions of users, yet will never learn/improve from that experience

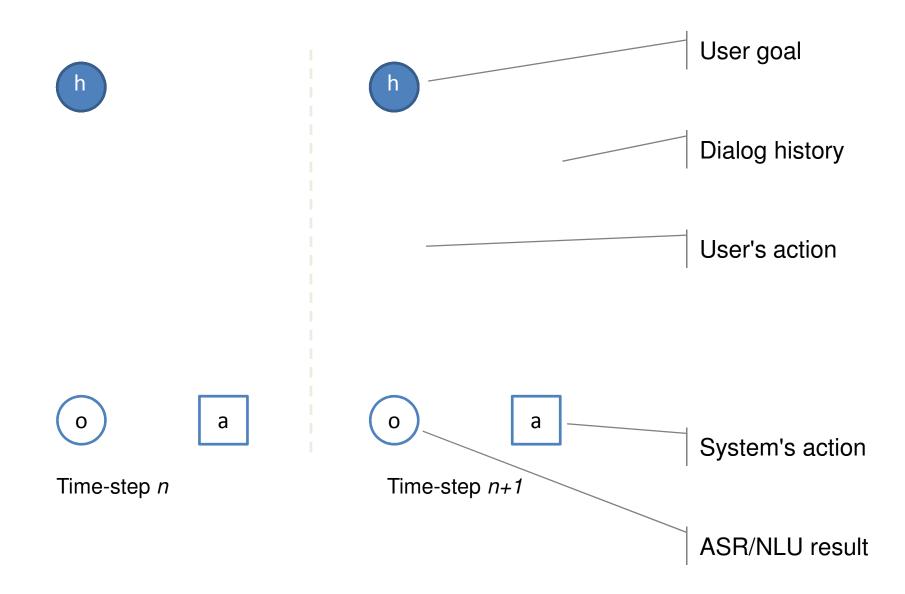
Casting dialog systems as POMDPs

Spoken dialog systems as an application of POMDPs

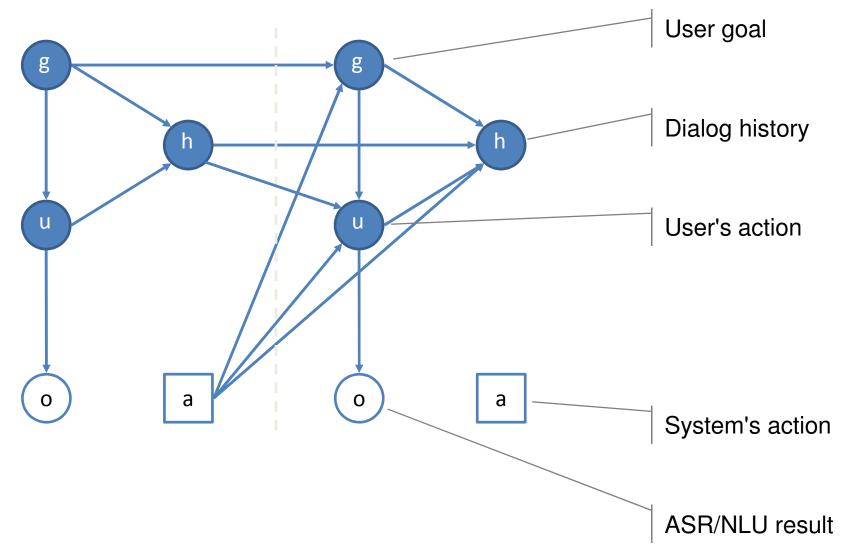
Casting dialog as a POMDP



Casting dialog as a POMDP

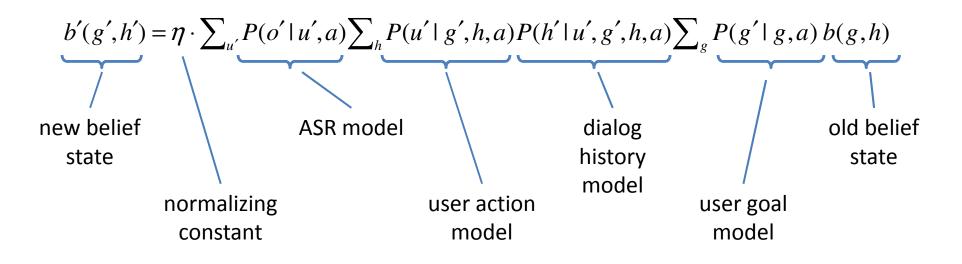


Casting dialog as a POMDP



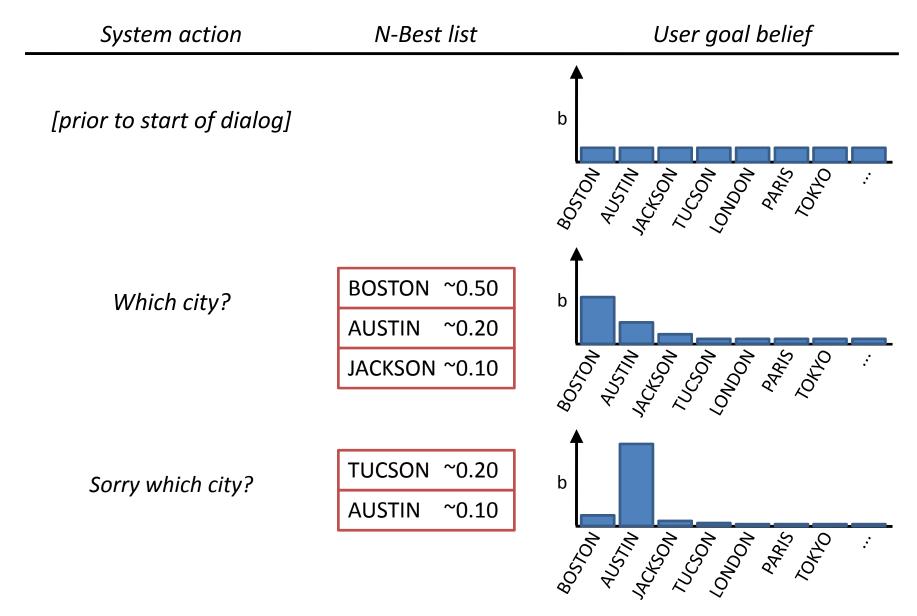
Page 31

SDS-POMDP update equation

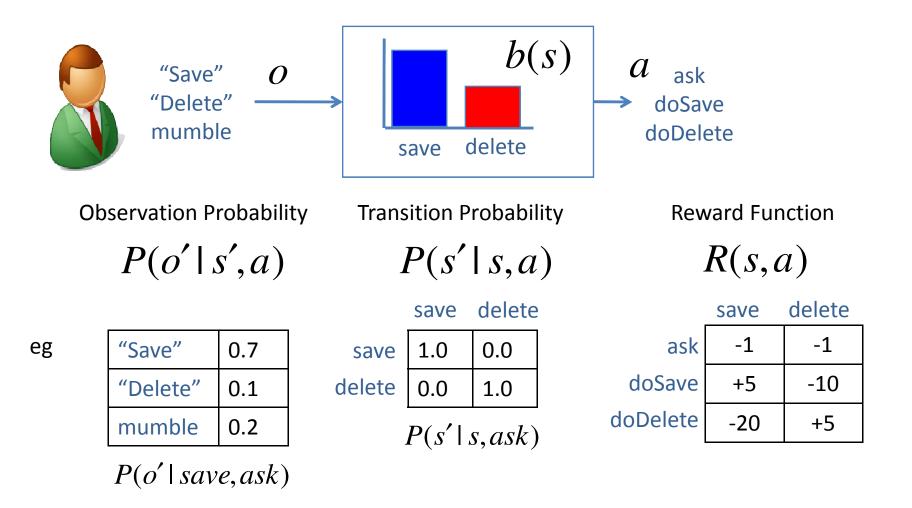


- Assert a reward function R(s,a)
- Choose actions to maximize expected sum of rewards over the whole dialog

Illustration: synthesizing across N-Best lists



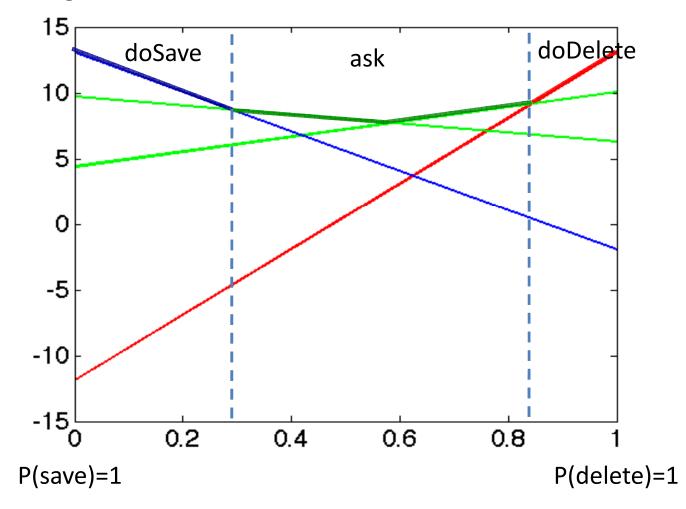
A Simple Two State Example



Williams, Young, and Thomson. Statistical approaches to dialogue systems. Tutorial at INTERSPEECH 2009. Brighton, UK.

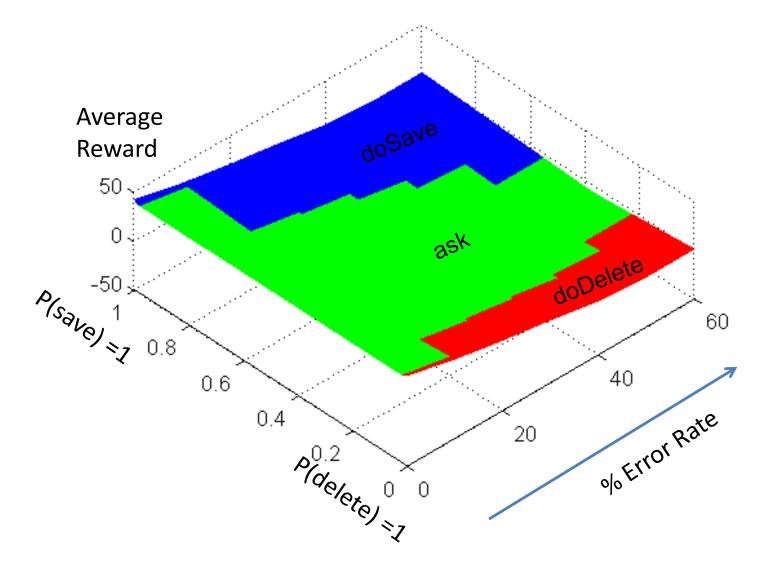
Policy Value Function at 30% Error Rate

Average Return



Williams, Young, and Thomson. Statistical approaches to dialogue systems. Tutorial at INTERSPEECH 2009. Brighton, UK.

Policy Value Function vs Error Rate



Williams, Young, and Thomson. Statistical approaches to dialogue systems. Tutorial at INTERSPEECH 2009. Brighton, UK.

Growing up to real-world systems

Spoken dialog systems as an application of POMDPs

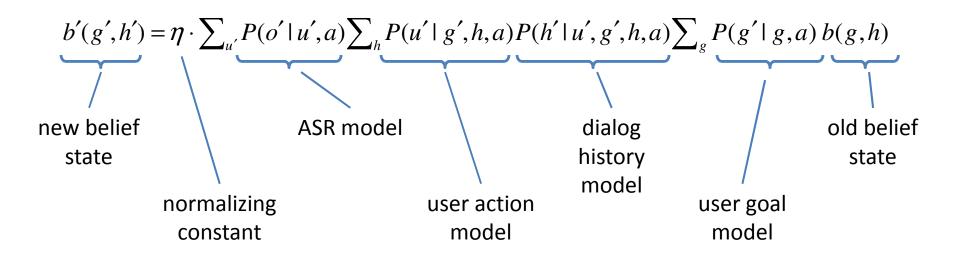
Main issues

Belief update : must run in real-time
 Planning

- Scalability
- More sophisticated simulated users
- Expert knowledge & business rules

Although the dialog problem is well-stated as a POMDP, growing to real-world problems has moved away from traditional POMDP solution algorithms

Problem: Updating belief in real-time



from	1000 values
to	1000 values
time	1000 values
date	1000 values
	Y

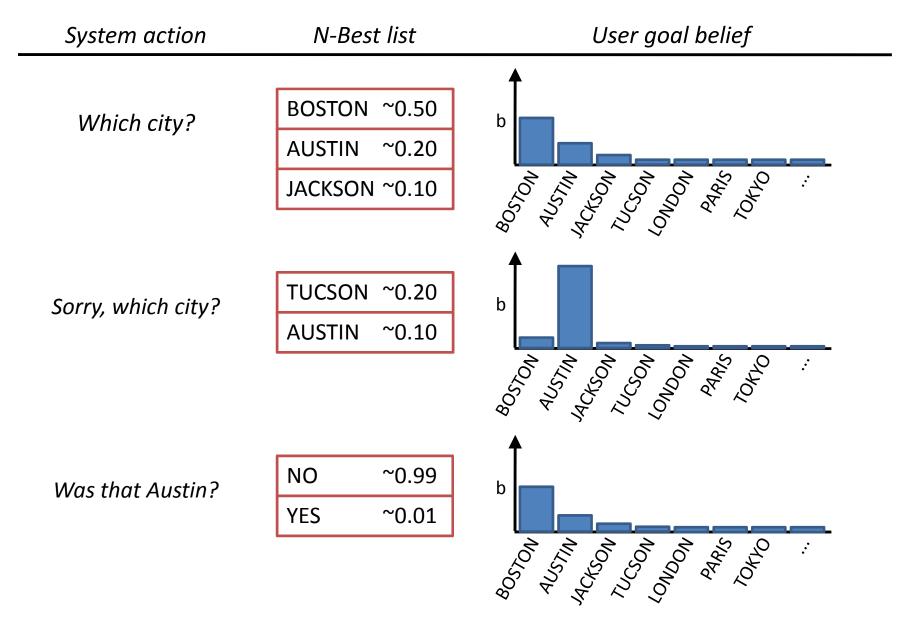
Update is $O(|G|^2) = 10^{24}$ We need a response in < 1 s $O(10^{24})$ impossible in real time !

 $|G| = 1000^4$ = 10¹²

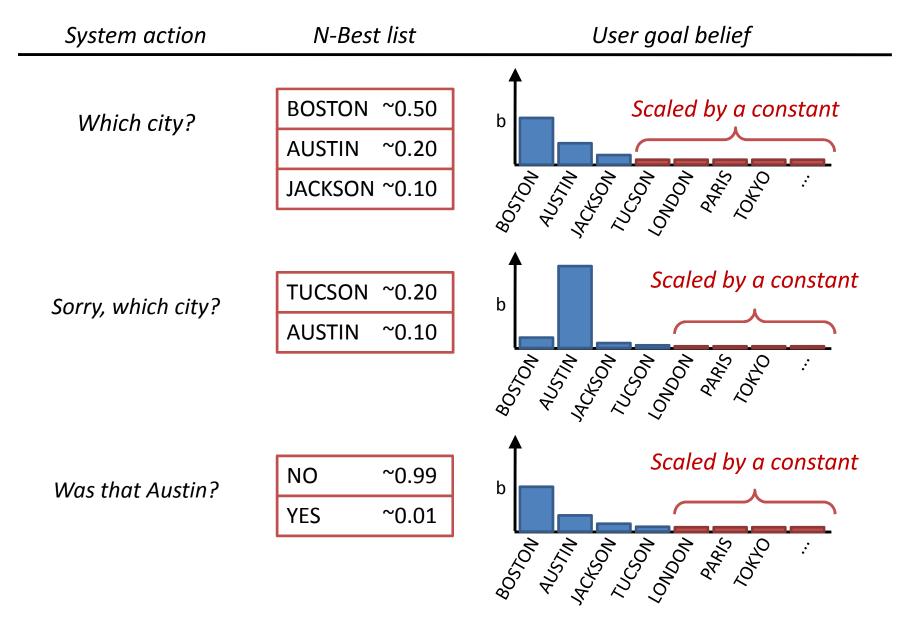
2 methods for efficient belief monitoring

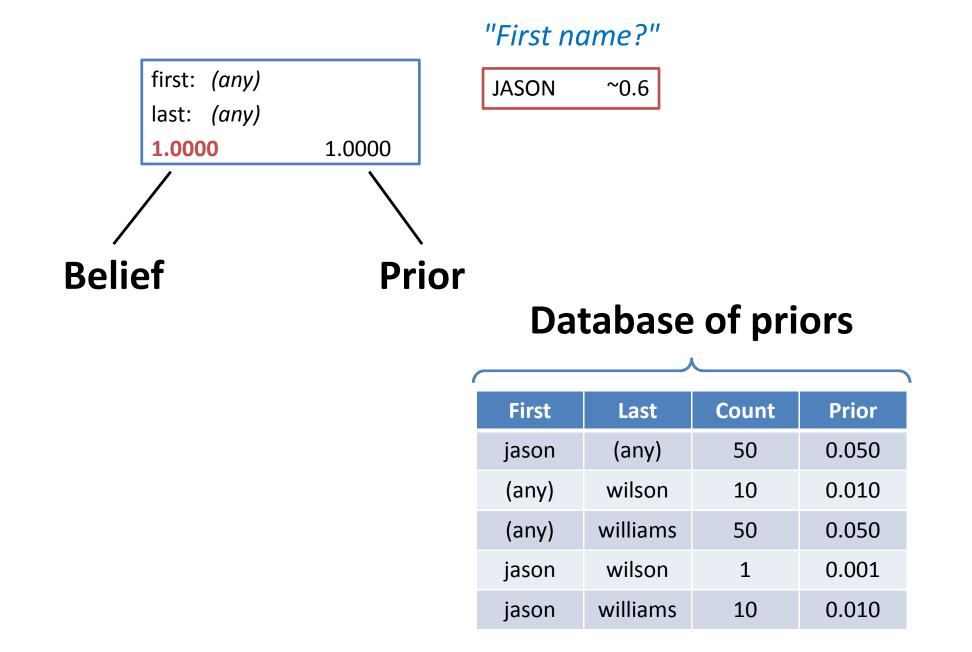
- **1. M-Best**: Constrain aspects of the model such that un-observed goals can be tracked en-masse
- 2. Factorization: Decompose the network as much as possible; apply approximate inference techniques from the Bayesian network literature

M-Best partitions: Intuition

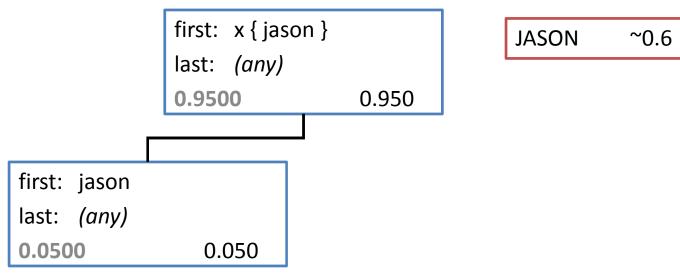


M-Best partitions: Intuition



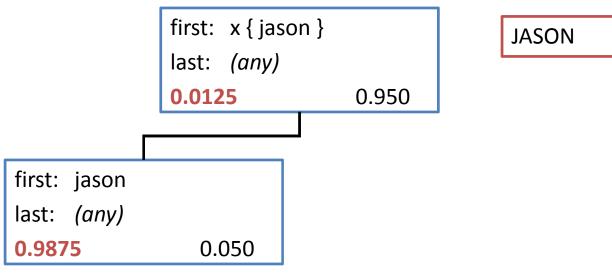


"First name?"

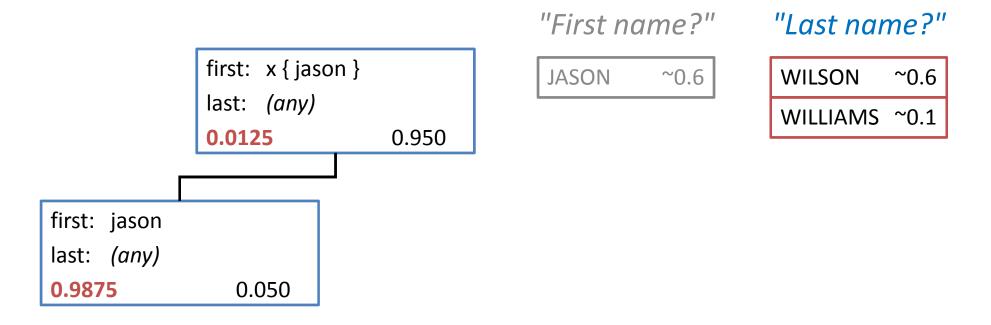


First	Last	Count	Prior
jason	(any)	50	0.050
(any)	wilson	10	0.010
(any)	williams	50	0.050
jason	wilson	1	0.001
jason	williams	10	0.010

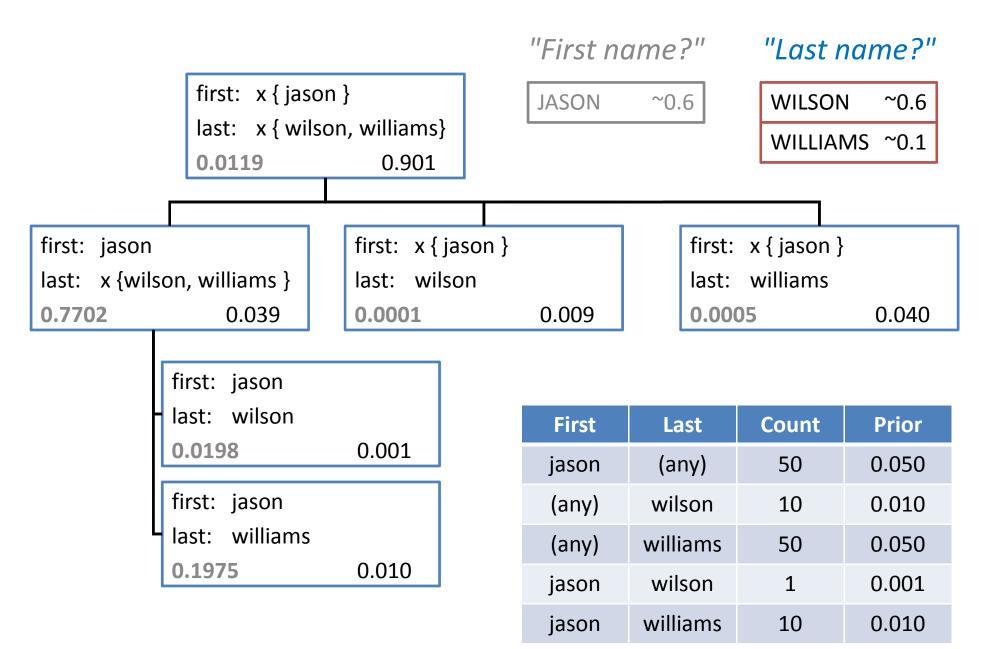
~0.6

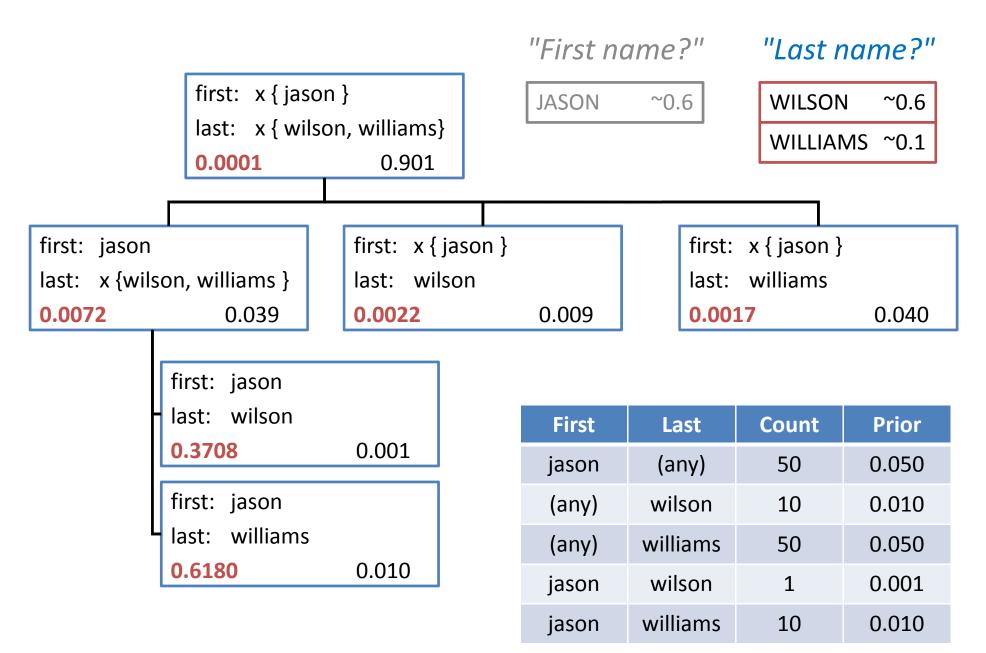


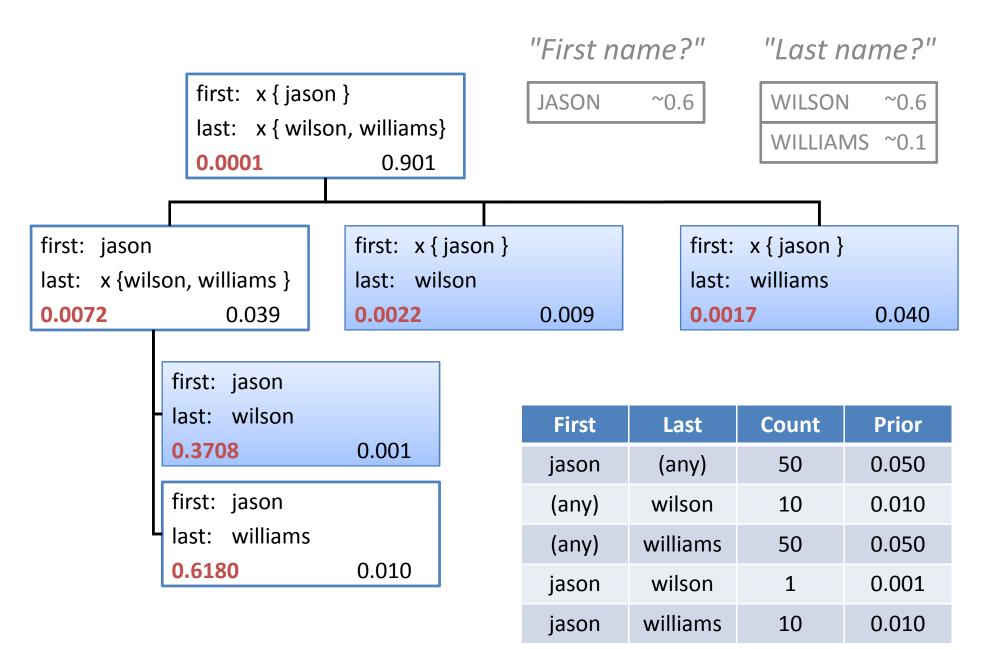
First	Last	Count	Prior
jason	(any)	50	0.050
(any)	wilson	10	0.010
(any)	williams	50	0.050
jason	wilson	1	0.001
jason	williams	10	0.010

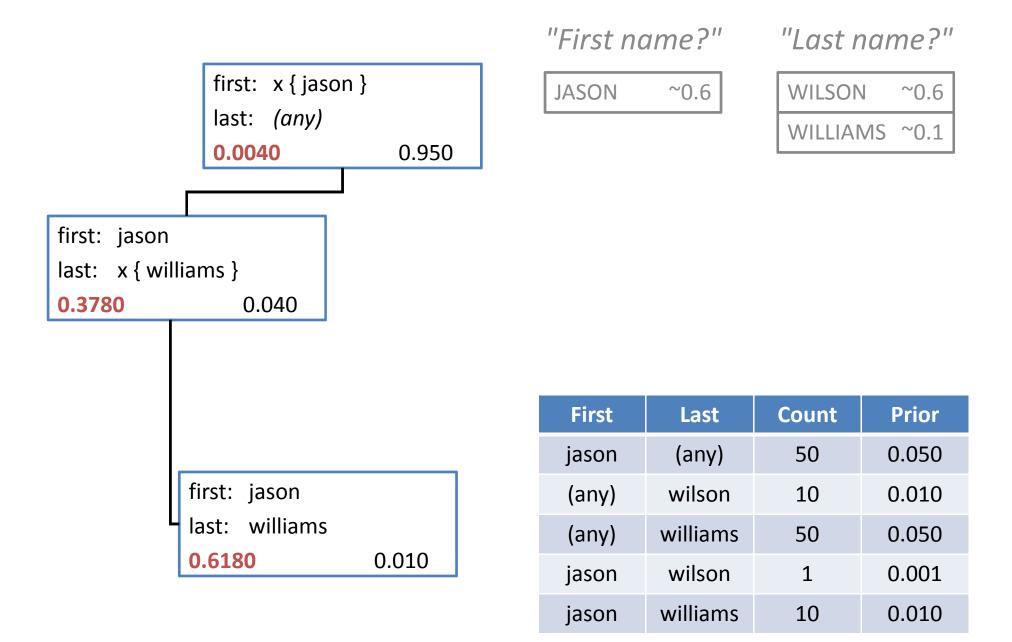


First	Last	Count	Prior
jason	(any)	50	0.050
(any)	wilson	10	0.010
(any)	williams	50	0.050
jason	wilson	1	0.001
jason	williams	10	0.010



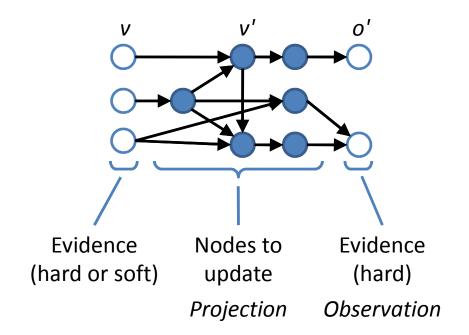






			Output	- • ×	
			Hello, how may I help	you?	
Status Time Score	HMM NAct	Mode			
THIS: Policy=././resources/resolution	Internet in the second				
P/H Belief 1/1 0		Meaning			
1 Hyps, 1 Parts		hello() [Greet]			
aud X	🖳 2 vscap	UCAM_SEMC	4 Hub		 ○○記 10 20 40 16:28

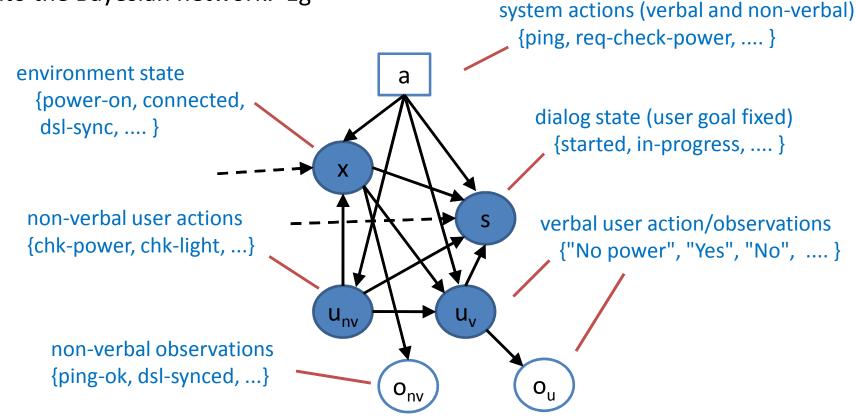
Network-based approaches



Idea: Apply general purpose Bayes Network inference techniques *Approximate* inference can be much faster than exact Examples: loopy belief propagation and particle filters

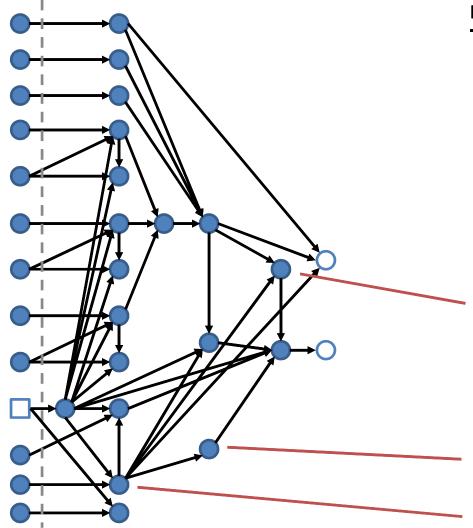
AT&T's Trouble-shooting System

In some applications such as help-lines for DSL modem faults, there are additional sources of uncertainty. These can be easily incorporated into the Bayesian network. Eg



Applying POMDPs to dialog systems in the troubleshooting domain, Williams (Proc W'Shop Bridging the Gap, ACL, 2007)

DSL troubleshooting SDS as a Bayesian network

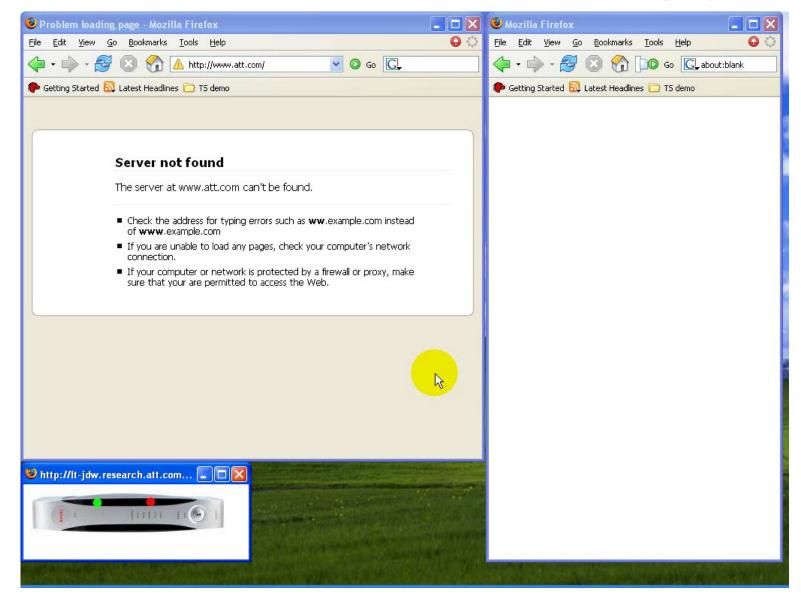


Hidden state components

Service outage Upstream network failure Unknown, unfixable problem Correct username in browser Correct username on modem Correct password in browser Correct password on modem Correct service type in browser State of modem network light Correct service type on modem Config screen visible in browser Modem configuration is correct DSL connection is working State of modem power light User opened a webpage State of DSL modem

Applying POMDPs to dialog systems in the troubleshooting domain, Williams (Proc W'Shop Bridging the Gap, ACL, 2007)

Demonstration of AT&T troubleshooting system



Tracking multiple dialogue states: results

Task completion rates

	Domain	Single state	Multiple states
[1] Higashinaka et al	Room reservation	n 88%	91%
[2] Henderson & Lemon	Tourist info	67%	73%
[3] Young et al	Tourist info	66%	79%
[4] Thomson & Young	Tourist info	65%	84%

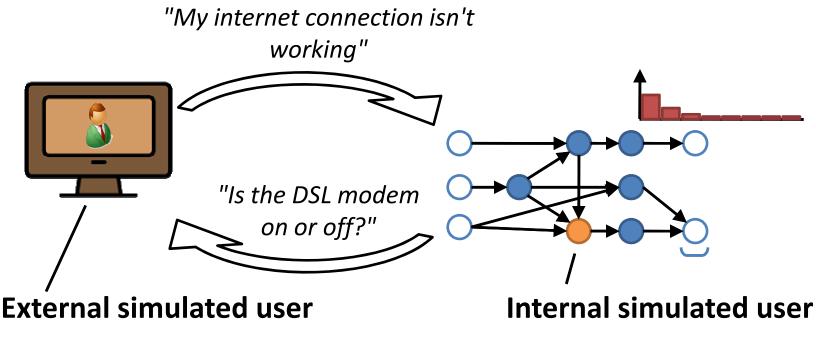
[1] Ryuichiro Higashinaka, Mikio Nakano, Kiyoaki Aikawa, "Corpus-based Discourse Understanding in Spoken Dialogue Systems", ACL, pp240-247, 2003

[2] James Henderson and Oliver Lemon, "Mixture Model POMDPs for Efficient Handling of Uncertainty in Dialogue Management", ACL 2008

[3] S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson and K. Yu (2009). "The Hidden Information State Model: a practical framework for POMDP-based spoken dialogue management." Computer Speech and Language, 24(2): 150-174.

[4] B. Thomson and S. Young (2009). "Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems." Computer Speech and Language, To appear.

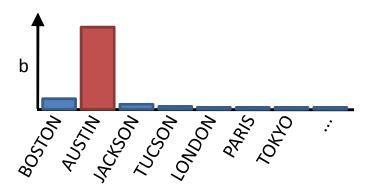
Simulated users – two places



- Generates observations
- High-fidelity
- Programmatic: only generative

- Updates belief state
- Low-fidelity
- Tabular: usable for inference

To take advantage of high-fidelity user simulation, an external simulation needs to be "in the learning loop"



All possible actions:

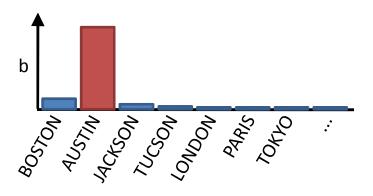
```
ask
```

```
confirm(boston)
confirm(austin)
confirm(jackson)
```

```
...
```

...

read-weather(boston)
read-weather(austin)
read-weather(jackson)



All possible actions:

Useful actions:

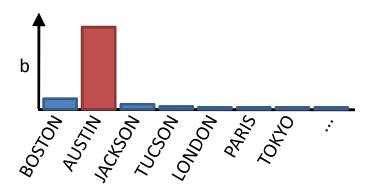
ask confirm(boston) confirm(austin) confirm(jackson)

read-weather(boston) read-weather(austin) read-weather(jackson)

ask confirm(boston) confirm(austin) confirm(jackson) read-weather(boston) read-weather(austin) read-weather(jackson)

•••

...



All possible actions:

ask confirm(boston) confirm(austin) confirm(jackson)

...

...

read-weather(boston) read-weather(austin) read-weather(jackson)

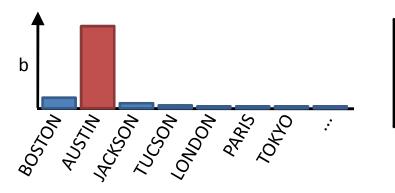
Useful actions:

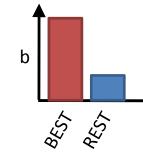
ask confirm(boston) confirm(austin) confirm(jackson)

read-weather(boston)
read-weather(austin)
read-weather(jackson)

Summary actions:

ask confirm(best) read-weather(best)





All possible actions:

ask confirm(boston) confirm(austin) confirm(jackson)

...

...

read-weather(boston) read-weather(austin) read-weather(jackson)

Useful actions:

ask confirm(boston) confirm(austin)

confirm(jackson)

read-weather(boston)
read-weather(austin)
read-weather(jackson)

Summary actions:

ask confirm(best) read-weather(best)

Domain knowledge & business rules

People know how to build good dialog systems

• The problem is that people can't consider all of the possible situations

Some actions are just silly and shouldn't be explored

- Don't begin the conversation with a confirmation.
- Don't say "Welcome" except at the start

• ...

Guarantees about system performance must be made

• Only allow funds transfer after password is entered

POMDP "Tabula rasa" approach to planning seems inappropriate. Need a way of incorporating constraints and expert knowledge.

Current approach : Reinforcement learning

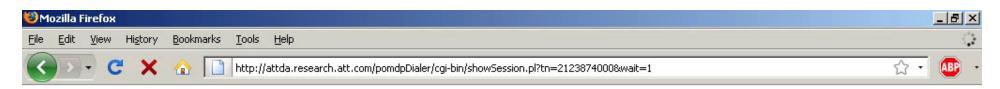
- Create a *partial program* which outputs a *set* of one or more acceptable actions
- Extract *features* from the state of the partial program *and* the belief state
- Use RL to choose among the available actions based on the current features

Algorithm	Reference
Natural actor-critic	B. Thomson and S. Young (2010). "Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems." Computer Speech and Language, To appear.
Monte-Carlo sampling	S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson and K. Yu (2009). "The Hidden Information State Model: a practical framework for POMDP-based spoken dialogue management." Computer Speech and Language, 24(2): 150-174. PDF
LSPI w/ feature selection	Lihong Li, Jason D. Williams, and Suhrid Balakrishnan. (2009). Reinforcement Learning for Dialog Management using Least-Squares Policy Iteration and Fast Feature Selection. Proc Interspeech, Brighton, United Kingdom.
SARSA(λ)	J. Henderson, O.Lemon, K.Georgila. (2008). Hybrid reinforcement/supervised learning of dialogue policies from fixed data sets. Computational Linguistics, 34(4):487-511,.
Grid-based value iteration	Jason D. Williams. (2008). Integrating expert knowledge into POMDP optimization for spoken dialog systems. Proc AAAI Workshop on Advancements in POMDP Solvers, Chicago, USA.
Q-MDP	J. Henderson and O.Lemon. (2008). Mixture model POMDPs for efficient handling of uncertainty in dialogue management. In Proc. 46th Annual Meeting of the Association for Computational Linguistics (ACL'08), Columbus, Ohio.

🕹 Mozilla Firefox	_ & ×
<u>File Edit View History Bookmarks Tools H</u> elp	ं
C X 🟠 http://attda.research.att.com/pomdpDialer/cgi-bin/showSession.pl?tn=2123874000	☆ · 🐠 ·

POMDP Dialer : call from 2123874000

Previous system action	Belief State	State Features		
Sorry, first and last name?	Remaining mass [0 partition(s)]	Best name		
Recognition result	jason williams florham_park, nj (usa)	Best phone type		
50 jason williams florham_park nj jason williams florham_park nj usa	jason fong columbia, md (usa) juan dong	Name confirmed? no Name is ambiguous? no		
	north_sydney, au (iaus) jason downing sacramento, ca (usa)	Name is ambiguous? no		
	jason kan englewood, co (usa) jason hendrix houston, tx (usa) zhesheng huang middletown, nj (usa)	AskName Sorry, first and last name? AskPhoneType jason d williams florham_park new jersey. Say office, cell, or cancel.		
	(1000) (1000) [Action Search		
		Values at point 51 (distance 0.028) 18.511 AskPhoneType 17.806 ConfirmPhoneType 17.546 AskName		
		Output system action		
		jason d williams florham_park new jersey. Say office, cell, or cancel.		



Please call 1-888-298-8206

Waiting for call from 2123874000...

Reinforcement Learning: results		Task completion	
	Domain	Baseline	RL
[1] Singh et al, 2002	Tourist info	20-64%	88%
[2] Lemon et al <i>,</i> 2006	Tourist info	68%	82%
[3] Frampton & Lemon, 2008	Tourist info	82%	91%
[4] Young et al, 2009	Tourist info	64%	79%
[5] Thomson & Young, 2009	Tourist info	84%	75%
[6] Cuayahuitl et al, 2010	Flight booking	94%	95%

[1] S Singh, DJ Litman, M Kearns, and M Walker, "Optimizing dialogue management with reinforcement learning: Experiments with the NJFun system," Journal of Artificial Intelligence Research, 2002.

[2] Oliver Lemon, Kallirroi Georgila, James Henderson, "Evaluating Effectiveness and Portability of Reinforcement Learned Dialogue Strategies with real users: the TALK TownInfo Evaluation", IEEE/ACL Spoken Language Technology, 2006.

[3] Matthew Frampton and Oliver Lemon. 2008. Using dialogue acts to learn better repair strategies. Proc ICASSP 2008.

[4] S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson and K. Yu (2009). "The Hidden Information State Model: a practical framework for POMDP-based spoken dialogue management." Computer Speech and Language, 24(2): 150-174.

[5] B. Thomson and S. Young (2009). "Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems." Computer Speech and Language, To appear.

[6] Heriberto Cuayáhuitl, Steve Renals, Oliver Lemon, Hiroshi Shimodaira, "Evaluation of a hierarchical reinforcement learning spoken dialogue system", Computer Speech and Language, (to appear)

Some thoughts on the future

Spoken dialog systems as an application of POMDPs

What happened to POMDPs?

The problem is definitely a POMDP...

... but current solutions do not apply (what we call) "POMDP algorithms"

Are there useful learnings for developers of POMDP algorithms?

A wish-list for POMDP algorithm developers

- Lifted POMDPs: Can inference and planning be done in a lifted (first-order logic) space?
- **Designer knowledge:** Are there good ways of incorporating designer knowledge into planning?
- **High-fidelity simulations:** Is there a principled way they can be incorporated into optimization?
- **POMDPs and standard programming languages**: Is there a good toolkit based on Python or Java?

If you want to get started...

Some tools are available:

- AT&T Statistical Dialog Toolkit
 Efficiently track multiple dialog states
 www.research.att.com/people/Williams_Jason_D
- AT&T Speech Mash-ups

Speech recognition & synthesis "in the cloud" https://service.research.att.com/smm

Thanks!

Jason D. Williams

Spoken dialog systems as an application of POMDPs

ICAPS Workshop – May 2010