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Abstract 

Most of the previous work on brain-computer interfaces 
(BCIs) using P300 has been focused on feature extraction 
and classification algorithms to achieve high performance 
for the communication between the brain and the computer. 
While significant progress has been made in such lower 
layer of the BCI system, the issues in the higher layer have 
not been addressed sufficiently. Existing P300-based BCI 
systems use a random order of stimulus sequence for elicit-
ing P300 signal for identifying users‟ intentions. This paper 
is about computing an optimal sequence of stimuli in order 
to minimize the number of stimuli, hence improving the per-
formance. To accomplish this objective, we model the prob-
lem as a partially observable Markov decision process 
(POMDP) with observation delays. Through simulation and 
human subject experiments, we show that our approach 
achieves a significant performance improvement in terms of 
the success rate and the bit rate. 

 Introduction  

A brain-computer interface (BCI) aims to provide a com-
munication channel for conveying messages and com-
mands from the brain to the external system by interpreting 
brain activities (Wolpaw et al. 2002). There are a variety of 
devices and methods for BCI, including non-invasive tech-
niques such as encephalography (EEG). The EEG-based 
BCI is perhaps the most popular method to date, because it 
is relatively easy and inexpensive to set up the system 
(Mason et al. 2007). One of the most reliable signal fea-
tures of EEG is the P300 evoked potential (Krusienski et al. 
2008), which is a positive peak in the signal amplitude at 
about 300ms after a stimulus is given to the user‟s attention 
(Farwell and Donchin 1988). 
 A number of BCI systems using P300 have been pro-
posed in the literature, including the P300 speller (Farwell 
and Donchin 1988). In the P300 speller system, the user 
faces a 6££6 matrix of letters and gazes at one of the 36 
letters that one desires to select. The 6 letters in a row or a 
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column are flashed (stimulated) together. If the row or the 
column containing the gazed letter is flashed, P300 is gen-
erated at about 300ms later. We can thus train a classifier 
to detect this P300 to identify the desired letter. Some BCI 
systems with a smaller stimulus matrix may flash one letter 
at a time (Bell et al. 2008). 
 Figure 1 shows a typical setup of P300-based BCIs. 
These conventional systems generate flashes in a random 
order. The P300 speller, for example, generates the same 
number of flashes for every row and column in a random 
order. We note that however, by determining the optimal 
sequence of flashes, we can identify the desired selection 
using a smaller number of flashes. For example, based on 
the history of flashes and the P300 detection results, if the 
probability that the first row contains the desired selection 
is very low compared to other rows, there is no reason to 
flash the first row. In contrast, if the probability is high for 
both the second and the third row, it is desirable to flash 
the second or the third row in order to resolve the uncer-
tainty. Bell et al. (2008) suggest a high-level idea of main-
taining a running sum of P300 classifier output scores and 
using it for identifying the most likely selection during 
flashes for reducing the number of flashes. 
 This paper presents a systematic approach to finding an 
optimal sequence of flashes in order to identify the desired 
selection using the fewest number of flashes in P300-based 
BCIs. Determining the best flash sequence based on the 

Figure 1. Human sitting in front of P300-based BCI 
with a [2x3] stimulus matrix. 



 

 

accumulated results of P300 detection is viewed as a se-
quential decision making problem, and we adopt the par-
tially observable Markov decision process (POMDP) mod-
el (Kaelbling et al. 1998) for the representation of the prob-
lem. The POMDP model provides a rigorous framework 
for representing sequential decision making problems un-
der limited sensory capabilities. It perfectly fits our pur-
pose since we have to deal with P300 classifier errors. Al-
though it is computationally infeasible to find an optimal 
solution from POMDPs, the recent development of fast 
approximate algorithms such as PBVI (Pineau et al. 2006) 
and HSVI (Smith and Simmons 2005) has made the 
POMDP approach practical for a wide variety of real-
world applications such as spoken dialogue management 
(Williams and Young 2007) and assisted daily living 
(Hoey et al. 2009). 
 While most of the previous works on EEG-based BCIs 
have focused on the lower level of the interface such as 
better feature extraction or classification methods for de-
tecting P300 from EEG, our focus is on finding an optimal 
sequence of flashes given a P300 classifier, addressing the 
higher level of the interface, which is an important but cur-
rently missing part for an effective BCI. 

Electroencephalography (EEG) and P300 

In this section, we briefly review some of the knowledge 
on P300 in EEG and the common settings used in BCIs 
using EEG. 
 EEG signals are the electrical signals recoded from the 
scalp and produced by the electrical activity of neurons in 
the brain. The electric potentials reflect the summation of 
the synchronous electrical activity of thousands or millions 
of neurons that are near the electrode for recording the 
EEG signals. 
 Event related potential (ERP) is elicited by an infrequent 
or particularly significant somatosensory stimulus. P300 is 
the positive peak component of ERP at about 300ms after 
the stimulus (Farwell and Dochin 1988, Wolpaw et al. 
2002). P300 is known as one of the most reliable signals 
for composing BCI systems. However, the P300 elicited by 
the stimulus cannot be obtained easily, because EEG cap-
tures the brain activities from numerous sources and the 
P300 may be buried deeply. Fortunately, there exist several 
feature extraction and classification methods for detecting 
the P300 component of ERP. The feature extraction me-
thods include the averaging of EEG signals, the Mexican 
hat wavelet, and the spatial filter algorithm (Fazel-Rezai 
and Peters 2005, Ramanna and Fazel-Rezai 2006, Hoffman 
et al. 2006). Once the relevant features are extracted, clas-
sification methods such as Fisher‟s linear discriminant, 
stepwise linear discriminant analysis (SWLDA), and sup-
port vector machine (SVM) (Krusienski et al. 2006) are 
used to detect the existence or absence of P300 in the EEG. 
 BCI systems based on P300 have a typical architecture 
as shown in Figure 2. There are components for stimulus 
generation, signal acquisition, preprocessing, and transla-
tion. The stimulus generator component gives stimuli to a 

user to elicit P300 on the desired situation. The signal ac-
quisition component records the EEG signal for the given 
stimulus. The preprocessing component carries out feature 
extraction for detecting P300 from the given EEG signal. 
The translation component classifies the existence of P300, 
and sends appropriate commands to the external devices. 

A POMDP Modeling of the P300-Based BCI 

Our problem in hand is to find the target letter as accurate-
ly as possible while using as the smallest number of flashes 
as possible. We model this problem using POMDP assum-
ing NN  letter stimulus matrix with single letter flashing 
scheme, rather than flashing rows or columns. Conceptual-
ly, this problem can be considered as an extension of the 
tiger problem in the POMDP literature (Kaelbling et al. 
1998), where the number of doors matches the number of 
letters in the stimulus matrix.  
 A POMDP is defined as 8-tuple hS; A; Z; b0; T; O; R; °ihS; A; Z; b0; T; O; R; °i 
where SS  is the set of environment states; AA  is the set of 
actions available to the agent; ZZ  is the set of all possible 
observations; b0b0 is the initial belief where b0(s)b0(s) denotes the 
probability that the environment starts in state ss; TT  is the 
transition probability where T(s;a;s0)T(s;a;s0) denotes the proba-
bility that the environment changes from state ss to state s0s0 
when executing action aa; OO is the observation probability 
where O(s;a;z)O(s;a;z)  denotes the probability that the agent 
makes observation zz  when executing action aa and arriving 
at state ss; RR is the reward function where R(s;a)R(s;a) denotes 
the reward received by the agent when executing action aa 
in state ss; °°  is the discount factor such that 0· ° · 10· ° · 1. 
 The states in the POMDP correspond to the target letters, 
hence a total of NN  states. For each letter in the matrix, we 
can either flash it in the hope of detecting P300 (NN  flash 
actions) or claim that it‟s the target letter (NN  select actions), 
hence a total of 2N2N  actions. The output value from the 
P300 classifier serves as the observation, where the real 
value between 0 and 1 is discretized into intervals of size 
0.1 (e.g., z1z1 for the output value in [0.0, 0.1), z2z2  for the 
output value in [0.1, 0.2), etc.), hence a total of 10 observa-
tions. 
 To make the system identify the target letter as soon as 
possible, we give -1 reward for the flash actions, +10 re-

Figure 2. A typical architecture of the P300-based BCIs. 



 

 

ward for the select actions that make a correct claim of the 
target letter, and -100 rewards for the select actions that 
incorrectly make a claim on a non-target letter.  
 We define the transition probabilities for each flash ac-
tion as identity matrices, assuming that the target does not 
change to some other letter within a test. Hence, we assign 
the transition probability of 1 if the state at the current time 
step is the same as the state at the next time-step, and 0 if 
the state at the current time step is different from the state 
at the next time step. The transition probabilities for each 
select action are defined to be uniform, assuming that the 
target letter will reset with the same probability between 
consecutive tests. 
 The observation probabilities model the errors in the 
P300 classification results. Specifically, we assume that the 
classifier output follows the discretized beta distribution 
when flashing the target letter. The parameters ®® and ¯̄  of 
the beta distribution will be obtained from the training data. 
We also assume that the distribution of output values when 
flashing a non-target letter is symmetric to the case when 
flashing the target letter. Hence, if ®target®target and ¯target¯target are 
the parameter values of the beta distribution for flashing 
the target letter, we set ®non-target = ¯target®non-target = ¯target  and 
¯non-target = ®target¯non-target = ®target for the beta distribution for flashing a 
non-target letter. Since these parameter values are radically 
different among the subjects and POMDP algorithms take 
a significant amount of time to find an optimal policy, we 
prepared a set of 9 (and 11) POMDP models, each with 
observation probabilities from different beta distribution 
parameters for [2x2] (and [2x3]) stimulus matrix. Hence, 
we pre-compute optimal policies for each POMDP models, 
determine the most similar model using a short pilot expe-
riment, and select the associated policy for execution. The 
discount rate is set to 0.99, and the initial belief is set to the 
uniform distribution. 
 We briefly explain the behavior of an optimal policy. 
Each state corresponds to the target letter in the current test, 
of which the BCI system does not have the direct know-
ledge. Hence, the system has to infer the target letter by 
some sequence of flash actions and the corresponding clas-
sification output values. When the system flashes a letter 
and it happens to be the target letter, then the probability is 
high for the classification output value close to 1. If the 
letter happens to be a non-target, then the probability is 
high for the classification output value close to 0. Thus, 
from a flash action and the corresponding classification 
output value (i.e., observation), the system can infer the 
probability distribution on the target letters using the belief 
state of the POMDP. If a letter has a significant probability 
to be the target letter, the system repeatedly flashes the 
letter in an attempt to increase the certainty of the letter 
being the target. If the probability gets higher than some 
threshold, the system selects the letter as the target to max-
imize the expected return. 

Solving the POMDP model 

When we use the POMDP model for P300-based BCI, we 
have to address two constraints that come from the nature 
of the P300, namely the delay in P300 and the repetition 
blindness. We describe how these constraints are handled 
while implementing the POMDP algorithm. 

Delay in P300 

The standard definition of POMDPs assumes that the rele-
vant observations are obtained before the execution of the 
next action. This assumption does not hold in our BCI sys-
tem. As shown in Figure 3, the relevant P300 epoch ends at 
450ms after the flash. Since a small amount of additional 
delay is incurred by the data acquisition system, the pre-
processor and the classifier, the observation is available at 
almost 510ms after the flash. Hence, the relevant observa-
tion is not available throughout the next two actions. 
 We can handle this constraint by using POMDPs with 
delayed observations (Bander and White 1999). Solving the 
model essentially reduces to finding the best action given 
past action sequence of size equal to the delay in time steps 
(in our case, the sequences of length 2) during each dy-
namic programming backup, in contrast to finding the best 
single action in standard POMDPs without delayed obser-
vations. 

Repetition blindness 

The repetition blindness refers to the situation where P300 
may not be elicited when two flashes on the target letter 
are given within 500ms (Fazel-Rezai 2007, Kanwisher 
1987). For example, when the target letter “A” is flashed 
and the “A” is flashed again within 500ms, the EEG signal 
corresponding to the second flash may not contain P300. A 
simple way to avoid this phenomenon is to make sure that 
the flash is not given on the same letter within the 500ms 
interval. Since our flash scheme makes two flashes in 
500ms, the flash at the current time-step should be differ-
ent from the previous two flashes. In terms of our POMDP 
model, the action at the current time step should be differ-
ent from the previous two actions. 
 This constraint can be handled by modifying the stan-
dard dynamic programming backup operation in POMDP 
algorithms: when we compute the best action that yields 
the best value, we only consider the actions that were not 
executed in the previous two time steps. 

Figure 3. Time course of flash events and the correspond-
ing epochs in EEG signals. 



 

 

POMDP algorithm for BCI 

We now present our implementation of POMDP algorithm 
that addresses the P300 delay and the repetition blindness. 
Basically our implementation is a modified version of the 
PBVI algorithm (Pineau et al. 2006), which we refer to as 
BCI-PBVI. Figure 4 shows the main loop of the algorithm. 
As in PBVI, this algorithm requires the set BB of randomly 
sampled belief states (i.e., belief set) for constraining the 
dynamic programming backup to those belief states (i.e., 
point-based backup). Whereas the standard PBVI main-
tains the best ®®-vector and the corresponding best action 
for each sampled belief, the BCI-PBVI maintains ®®-vector 
for all action sequences of length-DD for each sampled be-
lief state. It is similar computing the action-value function 
rather than the state-value function. This maintenance is 

necessary in order to prevent the same action being ex-
ecuted within KK  time steps to handle repetition blindness. 
 For every possible action sequence of length-DD, we up-
date the corresponding set of ®®-vectors using the point-
based backup procedure. Figure 5 shows the pseudocode of 
the procedure, and it is the central part of our algorithm. 
Assuming that the current time step is TT , we first compute 
the set AallowAallow of actions that are allowed to execute at time 
step T +DT +D, i.e., the set of actions except those appearing 
in the last KK  steps in the sequence. Among the set of ®®-
vectors that are computed in the previous iteration, only 
those with action sequences ending with allowed actions 
are valid ®®-vectors for the backup. The first loop in the 
pseudocode carries out this task. The second loop performs 
the actual point-based backup on the belief set BB. Given a 
belief state bb , we choose ®b®b among ®1; : : : ;®D®1; : : : ;®D such that P

s b(s)®b(s)
P

s b(s)®b(s) is the maximum expected value gathered 
after DD-steps in the future, if, starting from the current 
belief state bb , we execute the action sequence a1a1,…,aDaD . 
Cautious readers may question that ®b®b should also consider 
the rewards gathered within DD-steps in the future, but as 
we will see shortly, it is not necessary to do so. 
Belief update. Assume that, at time-step tt , we have ex-
ecuted an action sequence at¡Dat¡D ,…,at¡1at¡1 , and deciding 
which action atat to execute. Since ®®-vectors in BCI-PBVI 
do not reflect the rewards gathered during the last DD-steps, 
we cannot use the current belief state btbt. Instead, we need 
the belief state bt¡Dbt¡D of DD-steps in the past, and this is the 
belief state we maintain while executing the policy. 
 Once we execute atat and observe ztzt, the belief state bt¡Dbt¡D 
is updated by 

bt¡D+1(s
0) =

O(s0; at¡D; zt)
P

s T (s; at¡D; s0)bt¡D(s)

P (ztjbt¡D; at¡D)
bt¡D+1(s

0) =
O(s0; at¡D; zt)

P
s T (s; at¡D; s0)bt¡D(s)

P (ztjbt¡D; at¡D)
 

Figure 4. Top-level pseudocode of BCI-PBVI. 

Algorithm BCI-PBVI(B, K, D, ²)

INPUTS: belief set B; repetition blindness length

K; observation delay D; required precision ²

for all action sequence ha1; : : : ; aDi of length D do

Initialize ¡a1;:::;aD
= f~0g

end for
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for all action sequence ha1; : : : ; aDi of length D do

¡0
a1;:::;aD
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until ± < ²
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Figure 5. The point-based backup operator for BCI-PBVI. 



 

 

where P(ztjbt¡D;at¡D)P(ztjbt¡D;at¡D)  is the normalizing constant. 
Hence, in order to perform appropriate belief update, we 
need to remember the past belief state bt¡Dbt¡D as well as the 
action sequence at¡Dat¡D,…,at¡1at¡1. 
Optimal action selection. At this point, selecting the op-
timal action for execution is quite straightforward. Assume 
once again that, at time-step tt , we have executed an action 
sequence at¡Dat¡D,…,at¡1at¡1, and deciding on which action atat to 
execute. Since we have the belief state bt¡Dbt¡D at hand, we 
compute 

P
s bt¡D(s)®(s)

P
s bt¡D(s)®(s) for 8® 2 ¡at¡D;:::;at¡1

8® 2 ¡at¡D;:::;at¡1
, and ex-

ecute the best action associated with the ®® -vector that 
yields the best value. 

Experiments 

We conducted experiments comparing the performances of 
the conventional BCI with random flash sequence and the 
proposed BCI with optimal flash sequence. In this section, 
we describe the experimental setup, the metrics for per-
formance measurement, and the results from both simula-
tions and human subjects. 

Methods 

Baseline. The baseline method follows a flash sequence 
decided by random order and hence it is equivalent to the 
method used in traditional BCI systems including Bell et al. 
(2008): the flash sequence is randomized uniformly among 
the letters that are not flashed within the current trial, 
where the trial refers to a subsequence of length equal to 
the letters in the matrix, hence each letter is flashed once 
per trial. However, our baseline method additionally takes 
repetition blindness into account: if a letter was flashed 
within 500ms, it will not be considered as a candidate for 
the current flash. The decision is made by the total score 
from the classifier: the output value of the classifier is re-
garded as the posterior probability, and the letter with the 
largest sum throughout trials is selected as the target letter. 
Hence, the method can be stopped at the end of any trial 
during a test, and determine the most likely target letter. 
The total score of a letter can be regarded as the posterior 
probability of being the target letter given the history of 
flashes and classifier output values. Note that the baseline 
method has no explicit “stop and select” decision making 
mechanism. 
POMDP with select actions (PWSA). The PWSA method 
uses the optimal flash policy computed from POMDP. The 
select actions represent the explicit decision making me-
chanism. 
POMDP without select actions (PWOSA). The PWOSA 
method uses the same set of actions as PWSA except the 
select actions. When stopped, we determine the target letter 
with the highest belief state probability. We prepared this 
method for the sake of performance comparison with the 
baseline method when the same number of flashes is used. 
Ideally, this method will be more efficient than the baseline 
method in terms of the number of flashes because the flash 
sequence is determined by the POMDP policy, rather than 

by some random distribution. Conceptually, this method 
can be considered as an optimal policy from a POMDP 
model with negative infinite rewards for selecting an incor-
rect target letter. 

Measurements 

Success rate. The success rate is defined by the percentage 
of tests in the simulation with correct identification of the 
target letters. We stopped the methods at the end of each 
trial (4 flashes for [2x2] and 6 flashes for [2x3]), and 
measured the success rate. Note that the PWSA method 
can terminate before the specified number of flashes. In 
this case, we extended the results until the end of tests. For 
example, if the PWSA method terminated during the 5th 
trial with an incorrect target letter, the method is regarded 
as selecting an incorrect target letter for all subsequent 
trials, and vice versa. For all three methods, if the method 
has the same total score or the same maximum belief value 
for KK  letters, we gave a partial success of 1=K1=K. 
Bit rate. The bit rate represents the quantity of transferred 
information per unit time during communication (Serby et 
al. 2005, Wolpaw et al. 2000). The bit rate is defined as 
B ¢DB ¢D, where BB is the number of bits per decision and DD is 
the number of decisions per unit time. Let NN  be the total 
number of letters in the matrix and PP  be the success rate. 
Then we have 

 B = log2 N + P log2 P + (1¡P) log2

1¡P

N ¡ 1
B = log2 N + P log2 P + (1¡P) log2

1¡P

N ¡ 1
. 

In order to measure DD, we used the following scheme: For 
the baseline method, since the decision has to be delayed 
(260ms) until the result of the last flash is available, we 
add the delay to the time spent on flashes. For example, if 
we have flashed 40 times, then the total time spent for the 
decision is calculated as 250ms * 40 flashes + 260ms. For 
the PWSA and PWOSA methods, since it takes an addi-
tional 115ms delay for updating the belief state, we add a 
delay of 375ms to the time spent on flashes. For example, 
if we have flashed 40 times, the total time for the decision 
is 250ms * 40 flashes + 375ms. DD is calculated as the reci-
procal of the total time. 
 Since the bit rate changes depending on the success rate, 
we calculated the bit rates for different success rates. The 
tradeoff here is that we can improve the success rate by 
increasing the number of flashes, but more time is accor-
dingly spent per decision. For the PWSA method, since it 
has its own explicit termination mechanism, we will report 
only one value for the bit rate measurement. 

Simulation Experiments 

We performed 20 simulations on [2x2] and [2x3] matrices, 
each simulation consisting of 10000 tests. Output values 
from the classifier (i.e. observations) are sampled from the 
beta distribution with parameters ®target®target  = ¯non-target¯non-target  = 
1.228 and ¯target¯target  = ®non-target®non-target  = 0.625, which were ob-
tained from the pilot experiment involving one of the hu-
man subjects. 



 

 

 Each test consists of 40 flashes for the [2x2] matrix and 
60 for the [2x3] matrix. For the baseline method, these 
numbers correspond to 10 observations for each letter in 
the matrix, whereas the PWSA and PWOSA methods may 
have different number of observations for each letter. Note 
also that the baseline and PWOSA methods run until the 
test ends, whereas the PWSA method can terminate early 
when the final select action is executed. 
 Figure 6 shows the success rate results for the three me-
thods. The performance gap between the baseline method 
and the POMDP methods is larger in the [2x3] matrix than 
in the [2x2] matrix. We conjecture that the performance 
gap will become even larger when we experiment on larger 
stimulus matrices. The baseline and the PWOSA methods 
will converge to a 100% success rate as the number of 
flashes goes to infinity. In contrast, the success rate of the 
PWSA method doesn‟t due to the bias inherent in the re-
ward function. However, having an infinite number of 
flashes is not a practical assumption, and this kind of bias 
is necessary if we ever want the method to have some ex-
plicit termination mechanism. In our experiments, the 
PWSA method converges to a success rate close to 100% 
very quickly when forced not to terminate before the speci-
fied number of flashes, which is sufficient to demonstrate 
the validity of our approach.  
 Figure 7 shows the bit rate results. The PWOSA method 
is always significantly better than the base line method. 
The PWSA method yields the success rates of 0.980 for 
[2x2] and 0.977 for [2x3], which correspond to 23.840 
bits/min and 23.080 bits/min respectively. Table 1 summa-
rizes the bit rate results of the three methods. Comparing 
the bit rates at the best achievable success rates, the PWSA 
method improves the bit rates by 220%~249%. Comparing 

to the best bit rates achievable by the baseline method1, the 
PWSA method achieves improvements of 126% to 158%. 

Human Subject Experiments 

We compared the performances of the baseline and PWSA 
methods on the [2x2] and [2x3] matrices for the human 
subjects. Each test randomly assigned a target letter, while 
making sure that each letter was selected as the target letter 
exactly 10 times for the [2x2] matrix and 5 times for the 
[2x3] matrix. Hence, we performed a total of 40 tests for 
the [2x2] matrix and 30 tests for the [2x3] matrix. As in the 
simulation experiments, each test consisted of 40 flashes 
for the [2x2] matrix and 60 for the [2x3] matrix. 

                                                
1 The baseline and PWOSA methods can achieve higher bit rates 

by lowering the success rate, but we set the minimum to 75% 

since we also want a sufficiently high success rate. 

 [2x2] Matrix [2x3] Matrix 

Baseline† 18.879 (75.0%) 14.612 (75.0%) 

Baseline‡ 10.867 (98.4%) 9.257 (98.4%) 

PWSA 23.840 (98.0%) 23.080 (97.7%) 

PWOSA† 25.830 (75.0%) 22.859 (77.5%) 

PWOSA‡ 11.102 (99.2%) 9.820 (99.2%) 

Table 1. Bit rate results of simulation experiment for each 
system. „†‟ denotes for maximum bit rate and „‡‟ denotes 
the bit rate on maximum success rate. The percentage in 
parenthesis is the corresponding success rate. 

Figure 6. The success rate results of the simulation expe-
riments. The top graph shows the result on [2x2] matrix 
and the bottom graph shows the result on [2x3] matrix. 

Figure 7. The bit rate results of the simulation experi-
ments. The top graph shows the results on [2x2] matrix 
and the bottom graph shows the results on [2x3] matrix. 



 

 

 We first prepared a number of different POMDP models 
with varying observation probabilities, since the classifier 
showed different error rates depending on the human sub-
ject. By varying the parameters of the beta distribution, we 
obtained 9 different models of the [2x2] matrix, and 11 for 
the [2x3] matrix. We pre-computed the optimal policy for 
each model, since our implementation of the POMDP algo-
rithm currently takes hours to finish. This is due to the fact 
that the point-based backup requires enumerating all possi-
ble action sequences of length DD. Further optimization via 
pruning useless action sequences is left as a future work. 
We used 1028 randomly selected belief states for the [2x2] 
matrix, and 1030 for the [2x3] matrix. 

At the onset of the experiment for each subject, we car-
ried out a short pilot experiment where we gathered the 
training data for the preprocessor and the classifier. Once 
they were trained, we performed cross-validation evalua-
tion, chose the POMDP model with the minimum KL-
divergence, and used the corresponding optimal POMDP 
policy. 
 We originally involved 9 human subjects, but 2 of them 
had beta distributions very far from any of the pre-
computed models. Hence we use the data from 7 human 
subjects. 
 Figure 8 shows the success rate results of the human 
experiments. The success rate for the PWSA method is 
higher than the baseline method on any number of availa-
ble flashes and the performance gap becomes larger as the 
matrix gets larger, which is consistent with the results from 
the simulation experiments. 
 Figure 9 shows the bit rate results. The PWSA method 
yielded an average success rate of 98.2% for the [2x2] ma-

trix and 97.6% for the [2x3] matrix. The corresponding bit 
rate is 24.368 bits/min for the [2x2] matrix, and 21.367 
bits/min for the [2x3] matrix. In the case of the baseline 
method, we can control the success rate by changing the 
number of flashes, and the maximum average success rates 
are 96.4% for the [2x2] matrix and 92.9% for the [2x3] 
matrix. Regardless of how we set the success rate for the 
baseline method, the PWSA yielded higher bit rates. The 
summary of the bit rate results is shown in Table 2. Com-
pared to the bit rates at the best achievable success rates, 
the PWSA method improves the bit rates by 242% to 265%. 
Compared to the best bit rates achievable by the baseline 
method, the PWSA method achieves improvements of 
135%~151%. These results are consistent to those from the 
simulation experiments. 

Discussion 

In this paper, we have presented a P300 BCI system that 
uses POMDP for calculating the optimal flash sequence. In 
contrast to the previous body of research that concentrate 
on obtaining better feature extraction and classification 
algorithm from the raw EEG signals, our work provides a 
unified framework for building the BCI system. Bell et al. 
(2008) have roughly suggested the idea of using the confi-
dence values from the P300 classifier for optimizing the 

Figure 9. The bit rate results from the human subject expe-
riments. The top graph shows the result on [2x2], and the 
bottom graph shows the result on [2x3]. 

 [2x2] Matrix [2x3] Matrix 

Baseline† 17.951 (75.0%) 14.070 (75.0%) 

Baseline‡ 10.065 (96.4%) 8.052 (92.9%) 

PWSA 24.368 (98.2%) 21.367 (97.6%) 

Table 2. Bit rate results on human experiment for each sys-
tem. „†‟ denotes for maximum bit rate and „‡‟ denotes the bit 
rate on maximum success rate. The percentage in parenthesis 
is the corresponding success rate. 

Figure 8. The success rates from the human subject expe-
riments. The top graph shows the result on [2x2] matrix, 
and the bottom graph shows the result on [2x3] matrix. 



 

 

flash sequence, but to the best of our knowledge, our work 
is the first to address the problem in a principled way. 
 The contributions of this paper are as follows: First, we 
provided a formal decision-making model for P300-based 
BCI. Specifically, we showed how the POMDP model with 
observation delays can be adapted to BCI. Although we 
explained in the context of P300-based BCI systems, we 
believe that our approach is general enough to be applied 
to other BCI paradigms. Second, we presented a novel 
point-based algorithm for solving POMDPs with observa-
tion delays. The algorithm extends the standard point-
based backup operator to handle observation delays. Third, 
we report experimental results using simulation as well as 
human subjects. Our POMDP-based system achieves sig-
nificant performance improvement over the baseline me-
thod currently used in other BCI systems. 
 Currently, we are working on improving the speed of the 
algorithm for POMDPs with observation delays. One of 
the most time-consuming aspects of our algorithm is in the 
enumeration of all possible action sequence of length equal 
to the delay. Since some action sequences may be inferior 
to others, a combination of forward search and dynamic 
programming may yield substantial improvement in the 
speed. We are also working on applying the technique to 
P300 speller, where the user intentions exhibit more regu-
larity. We strongly believe that we can achieve a magni-
tude of order improvement in performance (bit rate) if we 
embed the bigram/trigram model of alphabets into the in-
tention-level transition probability of the POMDP. Finally, 
we are investigating into the methods (Doshi et al. 2008) 
that enable the adaption of model to individual subjects 
without explicit pilot trial experiments or pre-computing 
optimal policies by enumerating candidate models. 
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