

A POMDP Approach to P300 Brain-Computer Interfaces*

 Jaeyoung Park, Kee-Eung Kim, and Sungho Jo
Department of Computer Science

Korea Advanced Institute of Science and Technology

Daejeon, Korea

jypark@ai.kaist.ac.kr, kekim@cs.kaist.ac.kr, shjo@cs.kaist.ac.kr

Abstract

Most of the previous work on brain-computer interfaces
(BCIs) using P300 has been focused on feature extraction
and classification algorithms to achieve high performance
for the communication between the brain and the computer.
While significant progress has been made in such lower
layer of the BCI system, the issues in the higher layer have
not been addressed sufficiently. Existing P300-based BCI
systems use a random order of stimulus sequence for elicit-
ing P300 signal for identifying users‟ intentions. This paper
is about computing an optimal sequence of stimuli in order
to minimize the number of stimuli, hence improving the per-
formance. To accomplish this objective, we model the prob-
lem as a partially observable Markov decision process
(POMDP) with observation delays. Through simulation and
human subject experiments, we show that our approach
achieves a significant performance improvement in terms of
the success rate and the bit rate.

 Introduction

A brain-computer interface (BCI) aims to provide a com-
munication channel for conveying messages and com-
mands from the brain to the external system by interpreting
brain activities (Wolpaw et al. 2002). There are a variety of
devices and methods for BCI, including non-invasive tech-
niques such as encephalography (EEG). The EEG-based
BCI is perhaps the most popular method to date, because it
is relatively easy and inexpensive to set up the system
(Mason et al. 2007). One of the most reliable signal fea-
tures of EEG is the P300 evoked potential (Krusienski et al.
2008), which is a positive peak in the signal amplitude at
about 300ms after a stimulus is given to the user‟s attention
(Farwell and Donchin 1988).
 A number of BCI systems using P300 have been pro-
posed in the literature, including the P300 speller (Farwell
and Donchin 1988). In the P300 speller system, the user
faces a 6££6 matrix of letters and gazes at one of the 36
letters that one desires to select. The 6 letters in a row or a

* This paper has appeared in the Proceedings of ACM International Con-

ference on Intelligent User Interfaces (IUI), 2010.
ICAPS 2010 POMDP Practitioners Workshop, May 12, 2010, Toronto,

Canada.

column are flashed (stimulated) together. If the row or the
column containing the gazed letter is flashed, P300 is gen-
erated at about 300ms later. We can thus train a classifier
to detect this P300 to identify the desired letter. Some BCI
systems with a smaller stimulus matrix may flash one letter
at a time (Bell et al. 2008).
 Figure 1 shows a typical setup of P300-based BCIs.
These conventional systems generate flashes in a random
order. The P300 speller, for example, generates the same
number of flashes for every row and column in a random
order. We note that however, by determining the optimal
sequence of flashes, we can identify the desired selection
using a smaller number of flashes. For example, based on
the history of flashes and the P300 detection results, if the
probability that the first row contains the desired selection
is very low compared to other rows, there is no reason to
flash the first row. In contrast, if the probability is high for
both the second and the third row, it is desirable to flash
the second or the third row in order to resolve the uncer-
tainty. Bell et al. (2008) suggest a high-level idea of main-
taining a running sum of P300 classifier output scores and
using it for identifying the most likely selection during
flashes for reducing the number of flashes.
 This paper presents a systematic approach to finding an
optimal sequence of flashes in order to identify the desired
selection using the fewest number of flashes in P300-based
BCIs. Determining the best flash sequence based on the

Figure 1. Human sitting in front of P300-based BCI
with a [2x3] stimulus matrix.

accumulated results of P300 detection is viewed as a se-
quential decision making problem, and we adopt the par-
tially observable Markov decision process (POMDP) mod-
el (Kaelbling et al. 1998) for the representation of the prob-
lem. The POMDP model provides a rigorous framework
for representing sequential decision making problems un-
der limited sensory capabilities. It perfectly fits our pur-
pose since we have to deal with P300 classifier errors. Al-
though it is computationally infeasible to find an optimal
solution from POMDPs, the recent development of fast
approximate algorithms such as PBVI (Pineau et al. 2006)
and HSVI (Smith and Simmons 2005) has made the
POMDP approach practical for a wide variety of real-
world applications such as spoken dialogue management
(Williams and Young 2007) and assisted daily living
(Hoey et al. 2009).
 While most of the previous works on EEG-based BCIs
have focused on the lower level of the interface such as
better feature extraction or classification methods for de-
tecting P300 from EEG, our focus is on finding an optimal
sequence of flashes given a P300 classifier, addressing the
higher level of the interface, which is an important but cur-
rently missing part for an effective BCI.

Electroencephalography (EEG) and P300

In this section, we briefly review some of the knowledge
on P300 in EEG and the common settings used in BCIs
using EEG.
 EEG signals are the electrical signals recoded from the
scalp and produced by the electrical activity of neurons in
the brain. The electric potentials reflect the summation of
the synchronous electrical activity of thousands or millions
of neurons that are near the electrode for recording the
EEG signals.
 Event related potential (ERP) is elicited by an infrequent
or particularly significant somatosensory stimulus. P300 is
the positive peak component of ERP at about 300ms after
the stimulus (Farwell and Dochin 1988, Wolpaw et al.
2002). P300 is known as one of the most reliable signals
for composing BCI systems. However, the P300 elicited by
the stimulus cannot be obtained easily, because EEG cap-
tures the brain activities from numerous sources and the
P300 may be buried deeply. Fortunately, there exist several
feature extraction and classification methods for detecting
the P300 component of ERP. The feature extraction me-
thods include the averaging of EEG signals, the Mexican
hat wavelet, and the spatial filter algorithm (Fazel-Rezai
and Peters 2005, Ramanna and Fazel-Rezai 2006, Hoffman
et al. 2006). Once the relevant features are extracted, clas-
sification methods such as Fisher‟s linear discriminant,
stepwise linear discriminant analysis (SWLDA), and sup-
port vector machine (SVM) (Krusienski et al. 2006) are
used to detect the existence or absence of P300 in the EEG.
 BCI systems based on P300 have a typical architecture
as shown in Figure 2. There are components for stimulus
generation, signal acquisition, preprocessing, and transla-
tion. The stimulus generator component gives stimuli to a

user to elicit P300 on the desired situation. The signal ac-
quisition component records the EEG signal for the given
stimulus. The preprocessing component carries out feature
extraction for detecting P300 from the given EEG signal.
The translation component classifies the existence of P300,
and sends appropriate commands to the external devices.

A POMDP Modeling of the P300-Based BCI

Our problem in hand is to find the target letter as accurate-
ly as possible while using as the smallest number of flashes
as possible. We model this problem using POMDP assum-
ing NN letter stimulus matrix with single letter flashing
scheme, rather than flashing rows or columns. Conceptual-
ly, this problem can be considered as an extension of the
tiger problem in the POMDP literature (Kaelbling et al.
1998), where the number of doors matches the number of
letters in the stimulus matrix.
 A POMDP is defined as 8-tuple hS; A; Z; b0; T; O; R; °ihS; A; Z; b0; T; O; R; °i
where SS is the set of environment states; AA is the set of
actions available to the agent; ZZ is the set of all possible
observations; b0b0 is the initial belief where b0(s)b0(s) denotes the
probability that the environment starts in state ss; TT is the
transition probability where T(s;a;s0)T(s;a;s0) denotes the proba-
bility that the environment changes from state ss to state s0s0
when executing action aa; OO is the observation probability
where O(s;a;z)O(s;a;z) denotes the probability that the agent
makes observation zz when executing action aa and arriving
at state ss; RR is the reward function where R(s;a)R(s;a) denotes
the reward received by the agent when executing action aa
in state ss; °° is the discount factor such that 0· ° · 10· ° · 1.
 The states in the POMDP correspond to the target letters,
hence a total of NN states. For each letter in the matrix, we
can either flash it in the hope of detecting P300 (NN flash
actions) or claim that it‟s the target letter (NN select actions),
hence a total of 2N2N actions. The output value from the
P300 classifier serves as the observation, where the real
value between 0 and 1 is discretized into intervals of size
0.1 (e.g., z1z1 for the output value in [0.0, 0.1), z2z2 for the
output value in [0.1, 0.2), etc.), hence a total of 10 observa-
tions.
 To make the system identify the target letter as soon as
possible, we give -1 reward for the flash actions, +10 re-

Figure 2. A typical architecture of the P300-based BCIs.

ward for the select actions that make a correct claim of the
target letter, and -100 rewards for the select actions that
incorrectly make a claim on a non-target letter.
 We define the transition probabilities for each flash ac-
tion as identity matrices, assuming that the target does not
change to some other letter within a test. Hence, we assign
the transition probability of 1 if the state at the current time
step is the same as the state at the next time-step, and 0 if
the state at the current time step is different from the state
at the next time step. The transition probabilities for each
select action are defined to be uniform, assuming that the
target letter will reset with the same probability between
consecutive tests.
 The observation probabilities model the errors in the
P300 classification results. Specifically, we assume that the
classifier output follows the discretized beta distribution
when flashing the target letter. The parameters ®® and ¯̄ of
the beta distribution will be obtained from the training data.
We also assume that the distribution of output values when
flashing a non-target letter is symmetric to the case when
flashing the target letter. Hence, if ®target®target and ¯target¯target are
the parameter values of the beta distribution for flashing
the target letter, we set ®non-target = ¯target®non-target = ¯target and
¯non-target = ®target¯non-target = ®target for the beta distribution for flashing a
non-target letter. Since these parameter values are radically
different among the subjects and POMDP algorithms take
a significant amount of time to find an optimal policy, we
prepared a set of 9 (and 11) POMDP models, each with
observation probabilities from different beta distribution
parameters for [2x2] (and [2x3]) stimulus matrix. Hence,
we pre-compute optimal policies for each POMDP models,
determine the most similar model using a short pilot expe-
riment, and select the associated policy for execution. The
discount rate is set to 0.99, and the initial belief is set to the
uniform distribution.
 We briefly explain the behavior of an optimal policy.
Each state corresponds to the target letter in the current test,
of which the BCI system does not have the direct know-
ledge. Hence, the system has to infer the target letter by
some sequence of flash actions and the corresponding clas-
sification output values. When the system flashes a letter
and it happens to be the target letter, then the probability is
high for the classification output value close to 1. If the
letter happens to be a non-target, then the probability is
high for the classification output value close to 0. Thus,
from a flash action and the corresponding classification
output value (i.e., observation), the system can infer the
probability distribution on the target letters using the belief
state of the POMDP. If a letter has a significant probability
to be the target letter, the system repeatedly flashes the
letter in an attempt to increase the certainty of the letter
being the target. If the probability gets higher than some
threshold, the system selects the letter as the target to max-
imize the expected return.

Solving the POMDP model

When we use the POMDP model for P300-based BCI, we
have to address two constraints that come from the nature
of the P300, namely the delay in P300 and the repetition
blindness. We describe how these constraints are handled
while implementing the POMDP algorithm.

Delay in P300

The standard definition of POMDPs assumes that the rele-
vant observations are obtained before the execution of the
next action. This assumption does not hold in our BCI sys-
tem. As shown in Figure 3, the relevant P300 epoch ends at
450ms after the flash. Since a small amount of additional
delay is incurred by the data acquisition system, the pre-
processor and the classifier, the observation is available at
almost 510ms after the flash. Hence, the relevant observa-
tion is not available throughout the next two actions.
 We can handle this constraint by using POMDPs with
delayed observations (Bander and White 1999). Solving the
model essentially reduces to finding the best action given
past action sequence of size equal to the delay in time steps
(in our case, the sequences of length 2) during each dy-
namic programming backup, in contrast to finding the best
single action in standard POMDPs without delayed obser-
vations.

Repetition blindness

The repetition blindness refers to the situation where P300
may not be elicited when two flashes on the target letter
are given within 500ms (Fazel-Rezai 2007, Kanwisher
1987). For example, when the target letter “A” is flashed
and the “A” is flashed again within 500ms, the EEG signal
corresponding to the second flash may not contain P300. A
simple way to avoid this phenomenon is to make sure that
the flash is not given on the same letter within the 500ms
interval. Since our flash scheme makes two flashes in
500ms, the flash at the current time-step should be differ-
ent from the previous two flashes. In terms of our POMDP
model, the action at the current time step should be differ-
ent from the previous two actions.
 This constraint can be handled by modifying the stan-
dard dynamic programming backup operation in POMDP
algorithms: when we compute the best action that yields
the best value, we only consider the actions that were not
executed in the previous two time steps.

Figure 3. Time course of flash events and the correspond-
ing epochs in EEG signals.

POMDP algorithm for BCI

We now present our implementation of POMDP algorithm
that addresses the P300 delay and the repetition blindness.
Basically our implementation is a modified version of the
PBVI algorithm (Pineau et al. 2006), which we refer to as
BCI-PBVI. Figure 4 shows the main loop of the algorithm.
As in PBVI, this algorithm requires the set BB of randomly
sampled belief states (i.e., belief set) for constraining the
dynamic programming backup to those belief states (i.e.,
point-based backup). Whereas the standard PBVI main-
tains the best ®®-vector and the corresponding best action
for each sampled belief, the BCI-PBVI maintains ®®-vector
for all action sequences of length-DD for each sampled be-
lief state. It is similar computing the action-value function
rather than the state-value function. This maintenance is

necessary in order to prevent the same action being ex-
ecuted within KK time steps to handle repetition blindness.
 For every possible action sequence of length-DD, we up-
date the corresponding set of ®®-vectors using the point-
based backup procedure. Figure 5 shows the pseudocode of
the procedure, and it is the central part of our algorithm.
Assuming that the current time step is TT , we first compute
the set AallowAallow of actions that are allowed to execute at time
step T +DT +D, i.e., the set of actions except those appearing
in the last KK steps in the sequence. Among the set of ®®-
vectors that are computed in the previous iteration, only
those with action sequences ending with allowed actions
are valid ®®-vectors for the backup. The first loop in the
pseudocode carries out this task. The second loop performs
the actual point-based backup on the belief set BB. Given a
belief state bb , we choose ®b®b among ®1; : : : ;®D®1; : : : ;®D such that P

s b(s)®b(s)
P

s b(s)®b(s) is the maximum expected value gathered
after DD-steps in the future, if, starting from the current
belief state bb , we execute the action sequence a1a1,…,aDaD .
Cautious readers may question that ®b®b should also consider
the rewards gathered within DD-steps in the future, but as
we will see shortly, it is not necessary to do so.
Belief update. Assume that, at time-step tt , we have ex-
ecuted an action sequence at¡Dat¡D ,…,at¡1at¡1 , and deciding
which action atat to execute. Since ®®-vectors in BCI-PBVI
do not reflect the rewards gathered during the last DD-steps,
we cannot use the current belief state btbt. Instead, we need
the belief state bt¡Dbt¡D of DD-steps in the past, and this is the
belief state we maintain while executing the policy.
 Once we execute atat and observe ztzt, the belief state bt¡Dbt¡D
is updated by

bt¡D+1(s
0) =

O(s0; at¡D; zt)
P

s T (s; at¡D; s0)bt¡D(s)

P (ztjbt¡D; at¡D)
bt¡D+1(s

0) =
O(s0; at¡D; zt)

P
s T (s; at¡D; s0)bt¡D(s)

P (ztjbt¡D; at¡D)

Figure 4. Top-level pseudocode of BCI-PBVI.

Algorithm BCI-PBVI(B, K, D, ²)

INPUTS: belief set B; repetition blindness length

K; observation delay D; required precision ²

for all action sequence ha1; : : : ; aDi of length D do

Initialize ¡a1;:::;aD
= f~0g

end for

repeat

for all action sequence ha1; : : : ; aDi of length D do

¡0
a1;:::;aD

= backup(B;K; D;¡; a1; : : : ; aD)

end for

± = di®erence(B;¡;¡0)

¡ = ¡0

until ± < ²

return ¡

Algorithm BCI-PBVI(B, K, D, ²)

INPUTS: belief set B; repetition blindness length

K; observation delay D; required precision ²

for all action sequence ha1; : : : ; aDi of length D do

Initialize ¡a1;:::;aD
= f~0g

end for

repeat

for all action sequence ha1; : : : ; aDi of length D do

¡0
a1;:::;aD

= backup(B;K; D;¡; a1; : : : ; aD)

end for

± = di®erence(B;¡;¡0)

¡ = ¡0

until ± < ²

return ¡

Algorithm backup(B; K;D;¡t¡1; a1; : : : ; aD)

INPUTS: belief set B; repetition blindness length K; observation delay D; set of ®-vectors for (t-1)-step value

function ¡t¡1; the action sequence of interest ha1; : : : ; aDi

Aallow = A¡ faD¡K+1; : : : ; aDg

for all action a 2 Aallow do

for all observation zD 2 Z do

for all ®-vector ®i 2 ¡t¡1
a2;:::;aD;a do

a
a;zD

i (s) = °
P

s0 T (s; a1; s
0)O(s0; a1; zD)®i(s

0); 8s 2 S

end for

¡t;a;zD
a1;:::;aD

=
S

if®
a;zD

i g

end for

end for

for all belief state b 2 B do

for all action a 2 Aallow do

®a
b =

P
z2Z argmax®2¡t;a;z

a1;:::;aD

P
s02S b(s0)®(s0)

®a
b (s) = ®a

b (s) +
P

s12S;:::;sD2S T (s; a1; s1)T (s1; a2; s2) ¢ ¢ ¢T (sD¡1; aD; sD)R(sD; a);8s

end for

®b = argmax®a
b
;a2Aallow

P
s2S b(s)®a

b (s)

¡t
a1;:::;aD

= ¡t
a1;:::;aD

[f®bg

end for

return ¡t
a1;:::;aD

Algorithm backup(B; K;D;¡t¡1; a1; : : : ; aD)

INPUTS: belief set B; repetition blindness length K; observation delay D; set of ®-vectors for (t-1)-step value

function ¡t¡1; the action sequence of interest ha1; : : : ; aDi

Aallow = A¡ faD¡K+1; : : : ; aDg

for all action a 2 Aallow do

for all observation zD 2 Z do

for all ®-vector ®i 2 ¡t¡1
a2;:::;aD;a do

a
a;zD

i (s) = °
P

s0 T (s; a1; s
0)O(s0; a1; zD)®i(s

0); 8s 2 S

end for

¡t;a;zD
a1;:::;aD

=
S

if®
a;zD

i g

end for

end for

for all belief state b 2 B do

for all action a 2 Aallow do

®a
b =

P
z2Z argmax®2¡t;a;z

a1;:::;aD

P
s02S b(s0)®(s0)

®a
b (s) = ®a

b (s) +
P

s12S;:::;sD2S T (s; a1; s1)T (s1; a2; s2) ¢ ¢ ¢T (sD¡1; aD; sD)R(sD; a);8s

end for

®b = argmax®a
b
;a2Aallow

P
s2S b(s)®a

b (s)

¡t
a1;:::;aD

= ¡t
a1;:::;aD

[f®bg

end for

return ¡t
a1;:::;aD

Figure 5. The point-based backup operator for BCI-PBVI.

where P(ztjbt¡D;at¡D)P(ztjbt¡D;at¡D) is the normalizing constant.
Hence, in order to perform appropriate belief update, we
need to remember the past belief state bt¡Dbt¡D as well as the
action sequence at¡Dat¡D,…,at¡1at¡1.
Optimal action selection. At this point, selecting the op-
timal action for execution is quite straightforward. Assume
once again that, at time-step tt , we have executed an action
sequence at¡Dat¡D,…,at¡1at¡1, and deciding on which action atat to
execute. Since we have the belief state bt¡Dbt¡D at hand, we
compute

P
s bt¡D(s)®(s)

P
s bt¡D(s)®(s) for 8® 2 ¡at¡D;:::;at¡1

8® 2 ¡at¡D;:::;at¡1
, and ex-

ecute the best action associated with the ®® -vector that
yields the best value.

Experiments

We conducted experiments comparing the performances of
the conventional BCI with random flash sequence and the
proposed BCI with optimal flash sequence. In this section,
we describe the experimental setup, the metrics for per-
formance measurement, and the results from both simula-
tions and human subjects.

Methods

Baseline. The baseline method follows a flash sequence
decided by random order and hence it is equivalent to the
method used in traditional BCI systems including Bell et al.
(2008): the flash sequence is randomized uniformly among
the letters that are not flashed within the current trial,
where the trial refers to a subsequence of length equal to
the letters in the matrix, hence each letter is flashed once
per trial. However, our baseline method additionally takes
repetition blindness into account: if a letter was flashed
within 500ms, it will not be considered as a candidate for
the current flash. The decision is made by the total score
from the classifier: the output value of the classifier is re-
garded as the posterior probability, and the letter with the
largest sum throughout trials is selected as the target letter.
Hence, the method can be stopped at the end of any trial
during a test, and determine the most likely target letter.
The total score of a letter can be regarded as the posterior
probability of being the target letter given the history of
flashes and classifier output values. Note that the baseline
method has no explicit “stop and select” decision making
mechanism.
POMDP with select actions (PWSA). The PWSA method
uses the optimal flash policy computed from POMDP. The
select actions represent the explicit decision making me-
chanism.
POMDP without select actions (PWOSA). The PWOSA
method uses the same set of actions as PWSA except the
select actions. When stopped, we determine the target letter
with the highest belief state probability. We prepared this
method for the sake of performance comparison with the
baseline method when the same number of flashes is used.
Ideally, this method will be more efficient than the baseline
method in terms of the number of flashes because the flash
sequence is determined by the POMDP policy, rather than

by some random distribution. Conceptually, this method
can be considered as an optimal policy from a POMDP
model with negative infinite rewards for selecting an incor-
rect target letter.

Measurements

Success rate. The success rate is defined by the percentage
of tests in the simulation with correct identification of the
target letters. We stopped the methods at the end of each
trial (4 flashes for [2x2] and 6 flashes for [2x3]), and
measured the success rate. Note that the PWSA method
can terminate before the specified number of flashes. In
this case, we extended the results until the end of tests. For
example, if the PWSA method terminated during the 5th
trial with an incorrect target letter, the method is regarded
as selecting an incorrect target letter for all subsequent
trials, and vice versa. For all three methods, if the method
has the same total score or the same maximum belief value
for KK letters, we gave a partial success of 1=K1=K.
Bit rate. The bit rate represents the quantity of transferred
information per unit time during communication (Serby et
al. 2005, Wolpaw et al. 2000). The bit rate is defined as
B ¢DB ¢D, where BB is the number of bits per decision and DD is
the number of decisions per unit time. Let NN be the total
number of letters in the matrix and PP be the success rate.
Then we have

 B = log2 N + P log2 P + (1¡P) log2

1¡P

N ¡ 1
B = log2 N + P log2 P + (1¡P) log2

1¡P

N ¡ 1
.

In order to measure DD, we used the following scheme: For
the baseline method, since the decision has to be delayed
(260ms) until the result of the last flash is available, we
add the delay to the time spent on flashes. For example, if
we have flashed 40 times, then the total time spent for the
decision is calculated as 250ms * 40 flashes + 260ms. For
the PWSA and PWOSA methods, since it takes an addi-
tional 115ms delay for updating the belief state, we add a
delay of 375ms to the time spent on flashes. For example,
if we have flashed 40 times, the total time for the decision
is 250ms * 40 flashes + 375ms. DD is calculated as the reci-
procal of the total time.
 Since the bit rate changes depending on the success rate,
we calculated the bit rates for different success rates. The
tradeoff here is that we can improve the success rate by
increasing the number of flashes, but more time is accor-
dingly spent per decision. For the PWSA method, since it
has its own explicit termination mechanism, we will report
only one value for the bit rate measurement.

Simulation Experiments

We performed 20 simulations on [2x2] and [2x3] matrices,
each simulation consisting of 10000 tests. Output values
from the classifier (i.e. observations) are sampled from the
beta distribution with parameters ®target®target = ¯non-target¯non-target =
1.228 and ¯target¯target = ®non-target®non-target = 0.625, which were ob-
tained from the pilot experiment involving one of the hu-
man subjects.

 Each test consists of 40 flashes for the [2x2] matrix and
60 for the [2x3] matrix. For the baseline method, these
numbers correspond to 10 observations for each letter in
the matrix, whereas the PWSA and PWOSA methods may
have different number of observations for each letter. Note
also that the baseline and PWOSA methods run until the
test ends, whereas the PWSA method can terminate early
when the final select action is executed.
 Figure 6 shows the success rate results for the three me-
thods. The performance gap between the baseline method
and the POMDP methods is larger in the [2x3] matrix than
in the [2x2] matrix. We conjecture that the performance
gap will become even larger when we experiment on larger
stimulus matrices. The baseline and the PWOSA methods
will converge to a 100% success rate as the number of
flashes goes to infinity. In contrast, the success rate of the
PWSA method doesn‟t due to the bias inherent in the re-
ward function. However, having an infinite number of
flashes is not a practical assumption, and this kind of bias
is necessary if we ever want the method to have some ex-
plicit termination mechanism. In our experiments, the
PWSA method converges to a success rate close to 100%
very quickly when forced not to terminate before the speci-
fied number of flashes, which is sufficient to demonstrate
the validity of our approach.
 Figure 7 shows the bit rate results. The PWOSA method
is always significantly better than the base line method.
The PWSA method yields the success rates of 0.980 for
[2x2] and 0.977 for [2x3], which correspond to 23.840
bits/min and 23.080 bits/min respectively. Table 1 summa-
rizes the bit rate results of the three methods. Comparing
the bit rates at the best achievable success rates, the PWSA
method improves the bit rates by 220%~249%. Comparing

to the best bit rates achievable by the baseline method1, the
PWSA method achieves improvements of 126% to 158%.

Human Subject Experiments

We compared the performances of the baseline and PWSA
methods on the [2x2] and [2x3] matrices for the human
subjects. Each test randomly assigned a target letter, while
making sure that each letter was selected as the target letter
exactly 10 times for the [2x2] matrix and 5 times for the
[2x3] matrix. Hence, we performed a total of 40 tests for
the [2x2] matrix and 30 tests for the [2x3] matrix. As in the
simulation experiments, each test consisted of 40 flashes
for the [2x2] matrix and 60 for the [2x3] matrix.

1 The baseline and PWOSA methods can achieve higher bit rates

by lowering the success rate, but we set the minimum to 75%

since we also want a sufficiently high success rate.

 [2x2] Matrix [2x3] Matrix

Baseline† 18.879 (75.0%) 14.612 (75.0%)

Baseline‡ 10.867 (98.4%) 9.257 (98.4%)

PWSA 23.840 (98.0%) 23.080 (97.7%)

PWOSA† 25.830 (75.0%) 22.859 (77.5%)

PWOSA‡ 11.102 (99.2%) 9.820 (99.2%)

Table 1. Bit rate results of simulation experiment for each
system. „†‟ denotes for maximum bit rate and „‡‟ denotes
the bit rate on maximum success rate. The percentage in
parenthesis is the corresponding success rate.

Figure 6. The success rate results of the simulation expe-
riments. The top graph shows the result on [2x2] matrix
and the bottom graph shows the result on [2x3] matrix.

Figure 7. The bit rate results of the simulation experi-
ments. The top graph shows the results on [2x2] matrix
and the bottom graph shows the results on [2x3] matrix.

 We first prepared a number of different POMDP models
with varying observation probabilities, since the classifier
showed different error rates depending on the human sub-
ject. By varying the parameters of the beta distribution, we
obtained 9 different models of the [2x2] matrix, and 11 for
the [2x3] matrix. We pre-computed the optimal policy for
each model, since our implementation of the POMDP algo-
rithm currently takes hours to finish. This is due to the fact
that the point-based backup requires enumerating all possi-
ble action sequences of length DD. Further optimization via
pruning useless action sequences is left as a future work.
We used 1028 randomly selected belief states for the [2x2]
matrix, and 1030 for the [2x3] matrix.

At the onset of the experiment for each subject, we car-
ried out a short pilot experiment where we gathered the
training data for the preprocessor and the classifier. Once
they were trained, we performed cross-validation evalua-
tion, chose the POMDP model with the minimum KL-
divergence, and used the corresponding optimal POMDP
policy.
 We originally involved 9 human subjects, but 2 of them
had beta distributions very far from any of the pre-
computed models. Hence we use the data from 7 human
subjects.
 Figure 8 shows the success rate results of the human
experiments. The success rate for the PWSA method is
higher than the baseline method on any number of availa-
ble flashes and the performance gap becomes larger as the
matrix gets larger, which is consistent with the results from
the simulation experiments.
 Figure 9 shows the bit rate results. The PWSA method
yielded an average success rate of 98.2% for the [2x2] ma-

trix and 97.6% for the [2x3] matrix. The corresponding bit
rate is 24.368 bits/min for the [2x2] matrix, and 21.367
bits/min for the [2x3] matrix. In the case of the baseline
method, we can control the success rate by changing the
number of flashes, and the maximum average success rates
are 96.4% for the [2x2] matrix and 92.9% for the [2x3]
matrix. Regardless of how we set the success rate for the
baseline method, the PWSA yielded higher bit rates. The
summary of the bit rate results is shown in Table 2. Com-
pared to the bit rates at the best achievable success rates,
the PWSA method improves the bit rates by 242% to 265%.
Compared to the best bit rates achievable by the baseline
method, the PWSA method achieves improvements of
135%~151%. These results are consistent to those from the
simulation experiments.

Discussion

In this paper, we have presented a P300 BCI system that
uses POMDP for calculating the optimal flash sequence. In
contrast to the previous body of research that concentrate
on obtaining better feature extraction and classification
algorithm from the raw EEG signals, our work provides a
unified framework for building the BCI system. Bell et al.
(2008) have roughly suggested the idea of using the confi-
dence values from the P300 classifier for optimizing the

Figure 9. The bit rate results from the human subject expe-
riments. The top graph shows the result on [2x2], and the
bottom graph shows the result on [2x3].

 [2x2] Matrix [2x3] Matrix

Baseline† 17.951 (75.0%) 14.070 (75.0%)

Baseline‡ 10.065 (96.4%) 8.052 (92.9%)

PWSA 24.368 (98.2%) 21.367 (97.6%)

Table 2. Bit rate results on human experiment for each sys-
tem. „†‟ denotes for maximum bit rate and „‡‟ denotes the bit
rate on maximum success rate. The percentage in parenthesis
is the corresponding success rate.

Figure 8. The success rates from the human subject expe-
riments. The top graph shows the result on [2x2] matrix,
and the bottom graph shows the result on [2x3] matrix.

flash sequence, but to the best of our knowledge, our work
is the first to address the problem in a principled way.
 The contributions of this paper are as follows: First, we
provided a formal decision-making model for P300-based
BCI. Specifically, we showed how the POMDP model with
observation delays can be adapted to BCI. Although we
explained in the context of P300-based BCI systems, we
believe that our approach is general enough to be applied
to other BCI paradigms. Second, we presented a novel
point-based algorithm for solving POMDPs with observa-
tion delays. The algorithm extends the standard point-
based backup operator to handle observation delays. Third,
we report experimental results using simulation as well as
human subjects. Our POMDP-based system achieves sig-
nificant performance improvement over the baseline me-
thod currently used in other BCI systems.
 Currently, we are working on improving the speed of the
algorithm for POMDPs with observation delays. One of
the most time-consuming aspects of our algorithm is in the
enumeration of all possible action sequence of length equal
to the delay. Since some action sequences may be inferior
to others, a combination of forward search and dynamic
programming may yield substantial improvement in the
speed. We are also working on applying the technique to
P300 speller, where the user intentions exhibit more regu-
larity. We strongly believe that we can achieve a magni-
tude of order improvement in performance (bit rate) if we
embed the bigram/trigram model of alphabets into the in-
tention-level transition probability of the POMDP. Finally,
we are investigating into the methods (Doshi et al. 2008)
that enable the adaption of model to individual subjects
without explicit pilot trial experiments or pre-computing
optimal policies by enumerating candidate models.

References

Bander, J.L., and White Ⅲ, C.C. 1999. Markov decision
processes with noise-corrupted and delayed state observa-
tions. J. Operational Research Society 50.

Bell, C.J.; Shenoy, P.; Chalodhorn, R.; and Rao, R.P.N.
2008. Control of a humanoid robot by a non-invasive
brain-computer interface in humans. J. Neural Eng. 5.

Doshi, F.; Pineau, J.; and Roy, N. 2008. Reinforcement
learning with limited reinforcement: Using Bayes risk for
active learning in POMDPs. Int. Conf. on Machine Learn-
ing.

Farwell, L. A., and Donchin, E. 1988. Talking off the top
of your head: toward a mental prosthesis utilizing event-
related brain potentials. Electroencephalogr. Clin. Neuro-
physiol 70.

Fazel-Rezai, R. 2007. Human error in P300 speller para-
digm for brain-computer interface. Proc. 29th Annual Int.
Conf. of the IEEE EMBS.

Fazel-Rezai, R., and Peters, J. F. 2005. P300 wave feature
extraction: preliminary results. Proc. 18th Annual Canadian
Conf. on Electrical and Computer Eng.

Hoey J.; Poupart, P.; von Bertoldi, A.; Boutilier, C.; and
Mihailidis, A. 2009. Automated handwashing assistance
for persons with dementia using video and a partially ob-
servable Markov decision process. Computer Vision and
Image Understanding.

Hoffmann, U.; Vesin, J. M.; and Ebrahimi, T. 2006. Spatial
filters for the classification of event-related potentials.
Proc. 14th ESANN.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1998. Planning and acting in partially observable stochastic
domains. Artificial Intelligence 101.

Kanwisher N. G. 1987. Repetition blindness: Type recog-
nition without token individuation. Cognition 27.

Krusienski, D. J.; Sellers, E. W.; Cabestaing, F.; Bayoudh,
S.; McFaland, D. J.; Vaughan, T. M. and Wolpaw, J. R.
2006. A comparison of classification techniques for the
P300 Speller. J. Neural Eng. 3.

Krusienski, D. J.; Sellers, E. W.; McFaland, D. J.; Vaughan,
T. M.; and Wolpaw, J. R. 2008. Toward enhanced P300
speller performance. J. of Neuroscience Methods 167.

Mason, S. G.; Bashashati, A.; Fatourechi, M.; Navarro, K.
F.; and Birch, G. E. 2007. A comprehensive survey of
brain interface technology designs. Annals of Biomedical
Engineering 35, 2.

Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime point-
based approximations for large POMDPs. J. Artificial In-
telligence Research 27.

Ramanna, S., and Fazel-Rezai, R. 2006. P300 wave detec-
tion based on rough sets. Lecture Notes in Computer
Science 4100, Springer.

Serby, H.; Yom-Tov, E.; and Inbar, G. F. 2005. An im-
proved P300-based brain-computer interface. IEEE Trans.
Neural. Syst. Rehabil. Eng. 13.

Smith, T., and Simmons, R. 2005. Point-based POMDP
algorithms: Improved analysis and implementations. Proc.
21st Conf. on Uncertainty in Artificial Intelligence.

Williams, J. D., and Young, S. 2007. Partially observable
Markov decision processes for spoken dialog systems. J.
Computer Speech and Language 21.

Wolpaw, J. R.; Birbaumer, N.; Heetderks, W. J.; McFar-
land, D. J.; Peckham, P. H.; Schalk, G.; Donchin E.; Qua-
trano, L. A.; Robinson C. J.; and Vaughan, T. M. 2000.
Brain-computer interface technology: A review of the first
international meeting, IEEE Trans. Rehabil. Eng. 8.

Wolpaw, J. R.; Birbaumer, N.; McFarland, D. J.; Pfurt-
scheller, G.; and Vaughan, T. M. 2002. Brain-computer
interfaces for communication and control. Clin. Neurophy-
siol. 113.

