
Navigation in Partially Observed Dynamic Roadmaps

Bhaskara Marthi
Willow Garage, Inc.

Menlo Park, CA
bhaskara@willowgarage.com

Abstract

We consider robot navigation in environments consisting of
a known static map, but where dynamic obstacles of vary-
ing and unknown lifespans appear and disappear over time.
We describe a roadmap-based formulation of the problem
that takes the sensing and transition uncertainty into account,
and an efficient online planner for this problem. The planner
naturally displays behaviors such as persistence and obstacle
timeouts, and is able to make inferences about obstacle types
even with impoverished sensors.

1. Introduction
Robot navigation is a well-studied problem, and efficient al-
gorithms exist for known static maps. An autonomous robot
in an unconstrained real-world environment such as an office
must, however, also deal with various sorts of changes to the
map. A person might be standing in a doorway, blocking it.
A couch may have temporarily been moved into a corridor,
rendering it impassable. And so on. Many such changes can
be viewed as adding new obstacles to the world. Navigation
algorithms should behave efficiently and sensibly given that
such dynamic obstacles appear (and disappear) over time.

The standard approach is to maintain a map, that is up-
dated in some manner given obstacles. Getting this to work
robustly is surprisingly tricky, however. Consider a proto-
typical example. In figure 1, the shortest way to the goal
is to go down the narrow hallway. The next best alterna-
tive is to go around the building, which takes ten times as
long. Now suppose a set of obstacle points appear in the
hallway at position A, making it impossible to traverse. Cer-
tainly, we don’t want the robot to stand and wait forever.
The map must therefore be updated with this obstacle, caus-
ing the robot to eventually choose the long path. Also, the
robot must not suddenly change its mind when it is, say,
at position B, and turn back around. This requires either
making obstacles fairly long-lived, or hardcoding “persis-
tence” of some sort into the navigation planner. In the first
case, there needs to be some scheme for eventually timing
out obstacles, to avoid the possibility, e.g., of a corridor be-
ing considered permanently out of bounds due to seeing a
person blocking it once. Finally, the algorithm should deal

ICAPS 2010 POMDP Practitioners Workshop, May 12, 2010,
Toronto, Canada.

S G
AA

B

Figure 1: An example navigation problem. The goal is to
get to G from S.

intelligently with different types of obstacles. It might, for
example, make sense to wait for a person to move, but not
for a couch. Ideally, perception would give us this informa-
tion. But even if, as is currently the norm, perception is fairly
impoverished/noisy, there is still the possibility of a kind of
implicit sensing: in the example, it might make sense to just
wait for a few seconds. If the obstacle disappears, we can
take the short path after all. If it stays where it is, it is likely
to be static and we should take the long route.

Thus, while a reactive approach that ignores the possibil-
ity of dynamic obstacles is certainly possible, it requires go-
ing beyond simple navigation planning. Essentially, there
needs to be a mini-“executive” sitting above the planner,
with various hand-coded procedures to avoid infinite loops
and dead-ends and to appear intelligent and goal-directed.
An alternative is to explicitly model and plan for the uncer-
tainty in the world. This reduces the need for procedurally
specified behaviors; instead, the free parameters are part of

a declarative model of the domain that can potentially be
learnt from observation. There are many ways to formulate
the problem, some of which we discuss in Section 3. One
possibility is to model the transition uncertainty with costs or
probabilities, while still pretending that the state is fully ob-
servable. These approaches are systematically suboptimal,
though, as they will not take information-gathering actions.
Alternatively, we can explicitly model the sensing uncer-
tainty, using a partially observable Markov decision process
(POMDP). POMDPs are notoriously difficult to solve, how-
ever, and the POMDP in our case has a state space of size
exponential in the number of possible obstacle locations.

In this paper, we present a formulation of the problem as
a POMDP, and an algorithm for solving it efficiently enough
to run online on a mobile robot. The formulation is based
on a topological roadmap over the static map, where nodes
represent particular locations and edges are local paths that
can become blocked and unblocked over time. Obstacles
may belong to different classes, with varying lifetimes. As
we will show, the various behaviors discussed above, such
as persistence, patience, and implicit sensing, all happen au-
tomatically in optimal policies for this POMDP. Our plan-
ning algorithm takes advantage of the structure of the prob-
lem, specifically that 1) the (topological) position is fully
observed 2) observations are spatially local 3) new obstacles
appear fairly rarely.

The specific technical contributions are:
• In Section 3, we describe our POMDP formulation of the

problem, and show how it leads to reasonable behavior.
• In Section 5, we describe an efficient forward-search plan-

ning algorithm for our problem.
• In Section 4, we show how to do efficient state estimation

for our model.
• Also in Section 4, we describe a trick for speeding up

POMDP forward search algorithms in problems where
belief update is expensive.

2. Background
2.1 Continuous Time Markov Chains
We’ll model the state of each edge in a roadmap using a (ho-
mogeneous) continuous time Markov chain (Norris 1999).
A continuous time Markov chain is like a discrete time one,
except that the transitions occur at random times, with expo-
nentially distributed gaps. Such a chain is described by an
intensity matrix: −q1 q12 . . . q1n

q21 −q2 . . . q2n
.
qn1 qn2 . . . −qn

Given that we’re in state i at time t, the next transition

happens at time s where s − t is exponentially distributed
with parameter qi, and the next state is j with probability
proportional to qij . The main fact we will use is that condi-
tional on the history upto time t ending at state i, the proba-
bility of being in state j at time t+ s is:

P (Xt+s = j) = (esQ)ij (1)

2.2 MDPs
An undiscounted Markov decision process (Puterman 2005),
or MDP, consists of a state space S, action set A, transition
model P (s′|s, a), reward function R(s, a, s′), and terminal
states T ⊂ S. A stationary policy is a function π : S → A.
A policy induces a distribution over state-action trajectories
that continue until reaching a terminal state. The value func-
tion of a policy V π(s) is the expected total reward for fol-
lowing π starting at s, and the Q-functionQπ(s, a) is the ex-
pected total reward for doing a in s, then following π. The
optimal policy π∗ maximizes the value at all states, and we
write V and Q for its value and Q-functions. In our exam-
ples, the set of actions varies depending on the state, but this
can be represented by making nonapplicable actions have
reward −∞.

2.3 POMDPs
A partially observable Markov decision process (Kaelbling,
Littman, and Cassandra 1998), or POMDP, is like an MDP
except that states are not directly observed. Instead, there is
an observation distributionZ(o|s, a, s′) over the observation
that’s received when making the transition from s to s′ via
a.

In the context of POMDPs, we call a distribution over the
state space a belief state. Given a belief state b about the
current state s, if we do an action a, the marginal distribution
over the next state is the result of the projection operator
b′ = P(b, a) where:

b′(s′) =
∑
s

b(s)P (s′|s, a)

Also, given an observation o, the conditional distribution
is b′′ = C(b′, s, a, o) where:

b′′(s′) =
b′(s′)Z(o|s, a, s′)∑
s′ b
′(s′)Z(o|s, a, s′)

The filtering operator F consists of projection followed
by conditioning, and is used to update the distribution over
the current state. A key fact about POMDPs is that the se-
quence of beliefs itself forms an MDP (with the same ac-
tion space). To sample from the transition model of this
MDP given belief b and action a, first sample s from b,
then sample s′ from P (·|s, a) and o from Z(·|s, a, s′), and
set b′ = F(s, a, o) (s′ is discarded). The reward function
is R(b, a, b′) =

∑
s,s′ b(s)P (s′|s, a)R(s, a, s′). The belief

state summarizes the relevant information about the action–
observation history; in particular, any optimal policy for the
belief state MDP is also optimal for the POMDP, assuming
the belief state is maintained exactly.

2.4 Solution algorithms
The literature has tended to focus on the offline planning
problem of finding a full policy π over the belief space. Due
to the constraints of running on a robot in real-time, we con-
sider instead the online planning problem (Ross et al. 2008)
where the agent is repeatedly given an observation and just
returns an action for the current belief state. Most online
algorithms are based on forward search. A forward search

tree for (belief state) MDPs consists of alternating layers of
action nodes and chance nodes. The root of the tree is an
action node labelled with the initial (belief) state. An ac-
tion node has children corresponding to the possible actions.
The chance node corresponding to a state-action has chil-
dren corresponding to the possible successor states, labelled
with the probability of that particular state. A search tree can
be used to estimate the value of taking each action at the root
by repeated backups. The leaf action nodes are given values
according to some heuristic estimate of the value function at
their state. The value of a chance node is the average of the
child values weighted by the probabilities. The value of an
action node is the maximum of the child values.

There are various choices in how to generate search trees.
First, the children of a chance node can be generated ei-
ther exhaustively, based on an explicitly given transition
model of the MDP, or indirectly, by sampling repeatedly
from it, which only requires a simulator. Second, there
is the choice of which nodes to expand, given finite total
computation time. Apart from simple fixed-depth strate-
gies (Kearns, Mansour, and Ng 1999), there are various
more sophisticated methods based on heuristics, branch-
and-bound, and meta-level reasoning (Ross et al. 2008;
Kocsis and Szepesvári 2006; Russell and Wefald 1991). Fi-
nally, the choice of evaluation function at the leaves is of key
importance, especially when the tree depth is much lower
than the expected time to termination.

3. Problem Formulation
We now consider various formulations of the navigation
problem. All of them will be defined with respect to a topo-
logical roadmap over the static map. This is generated as
follows from a known static map: first, waypoints are sam-
pled from the free space. This can be done using simple uni-
form tiling sampling, or more intelligently, e.g., based on the
Voronoi graph of free space (Choset and Burdick 2000). The
main constraint is that for every point in free space, there is
a path of length under some fixed radius thresholdR leading
to a waypoint. Next, given the waypoints, we run standard
path planning offline on pairs of nearby waypoints to gener-
ate edges. If obstacles are not considered, such a graph can
be used for planning by adding the start and goal positions
to the graph, then searching for a path between them. When
the robot is at a waypoint, it does a quick local reachability
check to the neighbors in the graph. This process acts as a
deterministic virtual sensor (Lavalle 2009) that allows us to
know the state of all edges incident to the node of the graph
the robot is currently at.

3.1 Deterministic
A simple scheme for updating the roadmap is to maintain a
list of blocked edges. We add an edge to this list whenever it
is observed blocked and remove it when it is observed free.
An immediate problem is that the robot can eventually get
into a situation where no path exists. To avoid getting stuck,
we unblock all edges that aren’t currently observed blocked
if we are in a situation where a path cannot be found. If a
path still can’t be found, a wait action is chosen.

Gs
A

B

Figure 2:

G

s

Figure 3:

This scheme does not take any account of the likelihood
of an edge being blocked, or of the relative cost of alternative
paths. It therefore makes various kinds of systematic errors.
Example 1. (Block probabilities) In Figure 2, there are two
paths, both blocked, but edge A has been observed blocked
much more recently than edge B. It therefore makes sense to
take the top path.

Example 2. (Prediction) In Figure 3, no edges have been
observed blocked. It nevertheless makes sense to take the
top path, because a single blocked edge on that path can
be circumvented, while a single blocked edge on the bottom
path requires going back to the start.

Example 3. (Patience) In Figure 4, if an obstacle is ob-
served on the edge between S and G, it might make sense
(assuming a dynamic model of obstacles) to wait rather than
taking the long path, since the obstacle could disappear.

In each of these cases, the deterministic algorithm will
choose the wrong action either always or often.

3.2 Deterministic with blocked-edge costs
Rather than viewing blocked edges as completely impass-
able, we could give them an extra cost proportional to their

Gs

Figure 4:

G

s R

Figure 5:

probability of being blocked. In other words, given an edge
such that we last observed it T seconds ago, and it was
blocked, its cost is c(e) + e−aTB. It therefore deals cor-
rectly with Example 1. It still fails on Examples 2 and 3.
While this algorithm takes more account of uncertainty, it
still neglects the fact that actions can add information.

Example 4. (Value of information) In Figure 5, suppose the
robot is at S, and the short path to G has been recently ob-
served blocked. Given the length of the long path, it might
still make sense to check again if the path has become free
before deciding on the long path. It is not possible to achieve
this in general by adjusting the a and B parameter, for that
would prevent the robot from ever considering the long path.

Having costs change over time can also lead to another
problem.

Example 5. (Persistence) In Figure 5, suppose now that
the robot is at R, proceeding down the long path which was
chosen because the short path to G from S had a high ini-
tial probability of being blocked. The probability of being
blocked will decrease exponentially though, so it is possible
that the edge’s blocked cost decreases enough that the robot
will stop in the middle of the path and go back down the
other way, which leads to behavior that, apart from being
suboptimal, looks strange to humans.

3.3 Most likely state
A related method is to maintain a distribution over the true
state of the world, then plan assuming the most likely graph.
As above, this method fails to take sensing actions in Exam-
ple 4.

3.4 MDP
Rather than using costs, we can model the uncertainty using
an MDP. A straightforward way to do this would be to have
each edge’s status be sampled afresh each time the robot
is adjacent to it. The problem this runs into is that, since
the edges have no hidden state, a behavior such as “wait
for 20 seconds, then choose another path if this edge is still
blocked” would never be followed in cases like Example 4
— the robot would either leave immediately or wait forever.

3.5 POMDP
POMDPs model both the transition and sensing uncertainty
in the domain. We use the following POMDP model:

• There is one state variable for the current position in the
topological roadmap and, for each edge a status, which
can either be free or blocked. In the latter case it be-
longs to one of a predefined set of classes. In our ex-
amples, the obstacle classes are temporary, person,
and static.

• The actions at a state are to take one of the outgoing edges
from that node, or to wait for 1 second at the current po-
sition.

• The transition model is that a move succeeds iff the edge
is not blocked (at the start of the move). If so, it has a du-
ration depending on the edge length, and the robot ends up
at the other node incident to the edge. Additionally, each
edge status evolves according to an independent continu-
ous time Markov chain. Note that the despite the action
is considered to take one timestep regardless of the dura-
tion. This does not affect anything because we do not use
discounting.

• The observation model is that we know the current posi-
tion and, for each adjacent edge, we observe whether it’s
free or blocked (but not which class the obstacle belongs
to).

• The cost of an action is the time it takes.
Optimal solutions to this POMDP avoid the problems

listed above. For example, in Figure 5, the belief will in-
clude a distribution on whether the obstacle is static, tempo-
rary, or a person. If the probability of being temporary or a
person is low enough, the optimal plan will be to move to
the blocked edge and wait for some amount of time. If the
path clears, take it. If not, the probability of being static will
eventually increase enough that going the long way becomes
optimal.

4. State Estimation
4.1 Belief Update
A belief update given belief b, action a, and observation o,
consists of a projection through a followed by conditioning
on o. In our case, the transition model over state is:

P (s′|a, s) = I{s′p=fp(s,a)}
∏

(u,v)∈E

P (s′uv|suv, t(s, a))

where:
• fp(s, a) is the deterministic transition function of position

that results in moving to the other incident node of a if
the move is legal, and staying at the current position for
1 second otherwise. Wait actions also result in staying at
the current position.

• t(s, a) is the duration of the action, which is just the edge
length.

• P (s′uv|suv, t) is given by the continuous time Markov
chain transition distribution in (1)
We represent our belief states in factored form, as consist-

ing of a known position bp, and a distribution buv over each
edge’s status. Given such a belief, since the transition model

above factors over terms, each of which depend on one of
the belief variables above, the projected distribution P(b, a)
will also have this factored form. Similarly, the observation
model is deterministic, and can be written:

Z(o|s, a, s′) =
∏

(u,v)∈E

I{ouv=g(s′u,v,sp)}

where the function g returns free or blocked if sp
equals u or v, and unobserved otherwise. Since the po-
sition is known, the update can once again be done in fac-
tored form: for edges adjacent to the current position, if the
edge is observed free the conditional distribution is free
with probability 1, and if it is observed blocked, we make
the probability of it being free 0 and reweight the remaining
statuses to sum to 1.

4.2 Reducing the Number of Belief Updates
Any forward search algorithm based on the belief-state MDP
must perform belief updates. Existing applications have of-
ten been in settings where the state and observation spaces
are small enough that the belief can be represented as a vec-
tor, and belief update is reasonably efficient. As we move
into larger, factored state spaces, the cost of belief update
becomes an issue. In our domain, we made use of condi-
tional independence to speed up belief update. More gen-
erally, Kearns and McAllester (McAllester and Singh 1999)
showed that near-optimal behavior can still be achieved if
we use the approximate BK belief update algorithm (Boyen
and Koller 1998). Nevertheless, given the large number of
node expansions, this step can be a bottleneck. We describe
here a trick, for reducing the update cost of sampling-based
forward search, that we have not previously seen in the lit-
erature.

Consider a chance node in a forward search tree, cor-
responding to doing action a at state s. We generate W
samples from the conditional distribution, and create corre-
sponding child nodes, but if two samples lead to the same
successor state s′, we merge them together and increase
the weight of the parent edge. A straightforward imple-
mentation would be to check, upon generating a sample s′,
whether it equals one of the previously generated states.

In a belief-state MDP, given (belief) state b and action a,
samples b′ are generated by sampling a state s from b, a state
s′ from P (·|s, a), and an observation o from Z(·|s, a, s′),
then letting b′ = F(b, a, o). The standard implementation
would first compute b′ and check for equality with previ-
ously generated belief states. Instead, though, we can use
the fact that F is deterministic: along with each successor
belief state, we store the observation that led to it. To gen-
erate a new sample, we sample s, s′, and o as before, then
check if observation o has already been sampled (possibly
with different s and s′), and only call F if not.

Theorem 1. Given that the top k observations in any belief
state have total probability at least 1− ε, a tree of sampling
width W requiring N belief updates without the above tech-
nique requires on average N(ε + k/w) belief updates with
it.

5. Efficient Planning
The state space of the POMDP model is exponential in the
number of edges, which is beyond the capabilities of current
general-purpose offline planners. Online planners based on
forward search don’t directly depend on the state space size,
but do have exponential dependence (for a fixed bound on
error) on the search horizon, which can be large in our case,
since plan sizes can be on the order of the graph diameter.

5.1 The Abstract Problem
We’ll take advantage of structure in the problem. Suppose
we are at some belief state, i.e., at some known position
with given distributions over the edge statuses. Suppose
in particular, that there are K edges that are potentially
blocked. If we neglect the possibility of new edges becom-
ing blocked, then an optimal conditional plan will consist
of repeatedly visiting (an incident node to) some possibly
blocked edge, observing its status, and eventually moving
to the goal. So we consider a modified problem where the
single edge moves are replaced by macro-actions to move to
these possibly blocked edges and/or to the goal. The edge
costs in the reduced problem are found by solving determin-
istic shortest path problems, which are also used to find the
first edge in the original problem corresponding to an edge
in the reduced problem. In the actual problem new obstacles
can appear, so we replan after every move (in the original
graph) to be able to react to them. Our reduction effectively
separates the problem into observation planning and fully
observed navigation planning.

More precisely, define the abstract graph Ga given a
problem and belief state. First, let B be the set of edges
whose probability of being blocked exceeds some thresh-
old (we use 1+pβ

2 where pβ is the stationary probability of
an unobserved edge being blocked). Let the cut graph be
the original graph with edges in B removed. Given cur-
rent position vs and goal vg , the abstract graph has vertices
Ṽ = VB ∪ {vs, vg} where VB are the incident vertices to
edges in B. For each edge in B, there is a corresponding
edge in Ga with the same length. Also, for every pair of
vertices u, v ∈ Ṽ , if the distance duv between them in the
cut graph is finite, add an edge in Ga between u and v with
length duv . The initial belief b0 of the abstract problem is
the same as b except that edges not in B are not present, and
the newly added abstract edges are included, and are consid-
ered free with probability 1. The abstract problem has the
same unblocking rates as the original problem, but the block
rate is 0.

Given the belief state shown in Figure 6, Figure 7 shows
the abstract graph and belief state. To emphasize, the ab-
stract problem is still nontrivial to solve because we only
observe the incident edges to the current position.

Intuitively, the quality of this approximation depends on
how likely new obstacles are to appear.
Theorem 2. Suppose the edge status Markov chains are
such that in any reachable belief state, the optimal cost to
the goal is finite. Let β be the block rate, i.e., the probabil-
ity of an edge blocking in one second. Suppose we start at
a belief state with optimal expected cost C, and repeatedly

G

s

2 2

Figure 6: Original problem. Dashed edges have length 2
and have block probability above the threshold. All other
edges have length 1, and have block probability below the
threshold.

G

s

2 2

3

3 4

4

Figure 7: Abstracted version of problem in Figure 6. In the
initial belief state, dashed edges are possibly blocked, and
all others are definitely free.

do the action resulting from solving the abstract problem ex-
actly. The expected time to the goal is then C ·O(1

1−β)D for
a constant D.

So when β = 0 the abstraction is exact, and in general the
abstract policy is guaranteed to do well when β is not too
large, which seems like a reasonable assumption in practice.
As β gets large, the algorithm will make systematic mis-
takes in situations like Example 2, where it will fail to take
into account what happens when edges become blocked in
future.

5.2 Solving the Abstract Problem
The reduced POMDP still has a large state space, but a
shorter horizon, making it a good candidate for forward
search. We use simple fixed-depth search with sampling.
Better lookahead schemes could be used, and would likely
improve performance. We evaluate leaves of the search tree
using the following heuristic function. Given a belief state
b, sample some number of graphs (we generate 100 samples
using a variation of the duplicate checking trick from Sec-
tion 4.2); in each graph, compute the minimum of the short-
est path distance to the goal and some threshold (we use the
graph diameter), and average the results. Also, since the po-
sition and statuses of adjacent edges are known at each belief
state, we know for each node in the tree the set of successor
actions, and whether or not we have reached the goal.

6. Experiments
We compare several of the approaches described in Sec-
tion 3. There are two metrics of interest: planning time and
execution time in the world. For the case of robotic naviga-
tion, where moving between successive nodes in a roadmap
typically takes seconds or tens of seconds, the main require-
ment on the planning time is that an action should be re-
turned within this time. We placed a limit of one second of
planning time per action, and compared the following ap-
proaches:
• DA is the deterministic agent from Section 3.1.
• BA1 and BA2 are the block-cost agents from Section 3.2,

using block costs of 10 and 1000.
• ALA1 through ALA3 are abstract POMDP agents from

Section 3.5, using search depths 1 to 3, and a sampling
width of 100.
We used a set of domains with graph sizes ranging from

15 to 1000. The smaller ones were generated by hand
while the larger ones were random (independent edge prob-
abilities, additional edges were added if they weren’t con-
nected). The parameters of the edge status chains were as-
sumed known, though in principle they could be learnt by
passive observation. A block rate of .01 was used, and the
edge lengths were between 1 and 30. Thus, a typical path
would expect to encounter several blocked edges. The plan-
ners were run on a standard dual-core 2.66Ghz machine.

The POMDP-based algorithms are the best by a signifi-
cant margin on each domain. Interestingly, ALA2 occasion-
ally does better than ALA3. This phenomenon is known in
the search literature as a lookahead pathology (Bulitko and

Instance DA ALA1 ALA2 ALA3 BA1 BA2
1 161± 23 186± 36 132± 7 142± 12 272± 57 285± 94
2 758± 207 225± 59 228± 65 149± 38 522± 207 380± 123
3 1203± 64 936± 58 907± 54 1025± 48 1064± 73 1134± 63
4 353± 14 361± 33 191± 22 178± 12 259± 33 286± 40
5 897± 97 853± 122 639± 43 625± 37 914± 103 1321± 91
6 1115± 80 1026± 56 915± 54 924± 51 1079± 88 1226± 76
7 441± 39 493± 58 410± 44 378± 36 408± 37 461± 36
8 732± 101 857± 122 684± 55 621± 51 817± 62 808± 53

Table 1: Results on evaluating different agents on a set of benchmark environments. Each cell entry reports average cost,
rounded to the nearest integer, till reaching the goal and sample standard deviation, given 30 independent trials (the randomness
is due to the environment uncertainty as well as randomness in the algorithms).

Lustrek 2006). A more intelligent search strategy than uni-
form depth first search should help to mitigate this problem.

7. Related Work
There is an extensive literature on simultaneous localization
and mapping, though mostly focussed on the passive sens-
ing case. (LaValle 2004) discusses active variants, as well as
algorithms for representing uncertainty in discrete grids and
continuous worlds using reduced information spaces. Our
algorithm differs in that it is primarily concerned with navi-
gation rather than building a map, explicitly models changes
in the obstacle set, and is based on a graph rather than a
metric map.

Navigation using topological roadmaps has been well
studied. Most existing work has assumed the graph is
known. (Missiuro and Roy 2006) is an exception, in which
the obstacles are assumed to be polygons whose vertex loca-
tions are uncertain with Gaussian distributions. They mod-
ify a probabilistic roadmap motion planner to accept or re-
ject sampled points based on the probability of collision, and
then essentially look for an unconditional plan with a high
chance of success. In contrast, since our approach has an
observation model, it will return plans that condition future
actions on the results of observations.

Ong et al (Ong et al. 2009) studied mixed observabil-
ity Markov decision processes (MOMDPs), in which part of
the state is perfectly observed, and showed how to speed
up offline dynamic programming algorithms in this case.
Our problem is a MOMDP, since the robot position in the
roadmap is perfectly observed. Unfortunately, the unob-
served portion of the state space is still exponentially large.

Theocharous and Kaelbling (Theocharous and Kaelbling
2003) also describe a macro-action-based POMDP planning
algorithm for robot navigation. In their setting, the robot
position is the only hidden variable and observations give
incomplete information about position. They describe an
algorithm based on an adaptive discretization of the belief
simplex that estimates the entire Q-function (as opposed to
just the value from a single state). In our setting, the state
space is exponentially larger due to the obstacle states, mak-
ing full planning on the belief simplex challenging. Making
the true position partially observable in our setting could be
a useful extension in environments where accurate localiza-

tion is not possible.

Closely related to this research is that of Kneebone and
Dearden (Kneebone and Dearden 2009). Like us, they con-
sider navigation in a partially observed graph, and represent
the uncertainty using a POMDP. A major difference is that
in their framework, obstacles are static: they do not appear
and disappear. This makes a qualitative difference in the
kinds of policies that are found: there is no longer any util-
ity in taking wait actions, nor are there useful inferences to
be made about obstacle classes (effectively, all obstacles be-
long to a single class whose unblocking rate is 0). The fact
that new obstacles don’t appear also allows them to perform
an exact reduction of the state space, in which the robot may
only be at possible obstacle locations. The above comments
also apply to the literature on the Canadian Traveller’s Prob-
lem (Papadimitriou and Yannakakis 1991).

A complementary line of research is on motion plan-
ning among movable obstacles (Hsu et al. 2002). Unlike
our work, which considers an unknown and changing set
of static obstacles, this work considers a known, fixed set
of (stochastically) moving obstacles. A natural extension
would be to allow the moving obstacles to appear and disap-
pear, and to have hidden state similar to our obstacle classes,
that governs whether and how they move. The problem
would be complicated by the need to perform data associ-
ation.

8. Conclusion

We have presented a formulation of navigation in a changing
and partially observable world as a POMDP. This formula-
tion deals with uncertainty in a principled way, and optimal
solutions to it exhibit various behaviors that are normally
hardcoded in, such as persistence and inference about ob-
stacles. We also described an efficient approximate solution
algorithm that can feasibly be run online on a robot, and
showed improved performance compared with traditional
deterministic planners. Future work includes improving the
search control, extending to domains with movable objects,
and allowing the robot to take actions that affect the graph
connectivity.

References
Boyen, X., and Koller, D. 1998. Tractable inference for
complex stochastic processes. In Cooper, G. F., and Moral,
S., eds., UAI, 33–42. Morgan Kaufmann.
Bulitko, V., and Lustrek, M. 2006. Lookahead pathology
in real-time path-finding. In AAAI. AAAI Press.
Choset, H., and Burdick, J. W. 2000. Sensor-based explo-
ration: The hierarchical generalized voronoi graph. I. J.
Robotic Res. 19(2):96–125.
Hsu, D.; Kindel, R.; Latombe, J.-C.; and Rock, S. M. 2002.
Randomized kinodynamic motion planning with moving
obstacles. I. J. Robotic Res. 21(3):233–256.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1998. Planning and acting in partially observable stochas-
tic domains. Artif. Intell. 101(1-2):99–134.
Kearns, M. J.; Mansour, Y.; and Ng, A. Y. 1999. A
sparse sampling algorithm for near-optimal planning in
large markov decision processes. In IJCAI, 1324–1231.
Kneebone, M., and Dearden, R. 2009. Navigation planning
in probabilistic roadmaps with uncertainty. In Gerevini,
A.; Howe, A. E.; Cesta, A.; and Refanidis, I., eds., ICAPS.
AAAI.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
monte-carlo planning. In Fürnkranz, J.; Scheffer, T.; and
Spiliopoulou, M., eds., ECML, volume 4212 of Lecture
Notes in Computer Science, 282–293. Springer.
LaValle, S. M. 2004. Planning algorithms.
Lavalle, S. 2009. Filtering and planning in information
spaces. IROS tutorial notes.
McAllester, D. A., and Singh, S. P. 1999. Approximate
planning for factored pomdps using belief state simplifica-
tion. In Laskey, K. B., and Prade, H., eds., UAI, 409–416.
Morgan Kaufmann.
Missiuro, P. E., and Roy, N. 2006. Adapting probabilistic
roadmaps to handle uncertain maps. In ICRA, 1261–1267.
IEEE.
Norris, J. R. 1999. Markov Chains. Cambridge University
Press, 1 edition.
Ong, S.; Png, S.; Hsu, D.; and Lee, W. 2009. POMDPs for
robotic tasks with mixed observability. In Proc. Robotics:
Science and Systems.
Papadimitriou, C. H., and Yannakakis, M. 1991. Shortest
paths without a map. Theor. Comput. Sci. 84(1):127–150.
Puterman, M. 2005. Markov decision processes. Wiley-
Interscience.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008.
Online planning algorithms for pomdps. J. Artif. Intell. Res.
(JAIR) 32:663–704.
Russell, S. J., and Wefald, E. 1991. Principles of metarea-
soning. Artif. Intell. 49(1-3):361–395.
Theocharous, G., and Kaelbling, L. P. 2003. Approximate
planning in pomdps with macro-actions. In Thrun, S.; Saul,
L. K.; and Schölkopf, B., eds., NIPS. MIT Press.

