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Abstract. This paper presents an algorithm for the estimation of multi-
ple regions with unknown shapes and positions using multiple active con-
tour models (ACM’s). The algorithm organizes edge points into strokes
and computes the association between those strokes and the ACM’s us-
ing the component wise EM algorithm (CEM) for MAP estimation. The
algorithm is randomly initialized with a high number of ACM’s and per-
forms online model selection using importance sampling. Experimental
results show the effectiveness of the proposed technique.

1 Introduction

Active contour models (ACM’s) or snakes [1] have been extensively used to esti-
mate object boundaries in images. However, their difficulties with initialization
and outlier rejection are still unsolved problems. In addition, most of the re-
search done on ACM’s tries to estimate a single region using one elastic model
(for e.g. see [2] [3]) and little research has addressed estimation of multiple elastic
models. Some examples include [4] where multiple regions are estimated but the
approach is restricted to regions that have some common characteristic or prop-
erty and weighting parameters are defined heuristically. In [5] several ACM’s are
initialized in the centers of divergence of the gradient vector flow field. Some of
the centers are discarded using heuristic rules and the method is unable to deal
with regions inside other regions. In [6] a single contour can break automatically
to represent the contours of multiple objects. In [7] multiple level set contours
are also used but they evolve independently. The initial segmentation and num-
ber of ACM’s is determined by fuzzy c-means clustering. In [8] gradient vector
diffusion is used for the evolution and also the initialization of multiple contours.
After the contours evolution region merging reduces the number of contours.

In this paper we present a method for the automatic segmentation of multiple
regions which, in simultaneous with shape estimation, deals with the problem of
sensitivity to the initialization and robustness to outliers. The algorithm builds
on the work proposed in [9] in which multiple ACM’s compete for the boundaries
of multiple regions, using the EM algorithm for MAP estimation. The algorithm
proposed in this paper includes three major contributions 1) it automatically
selects the number of ACM’s 2) it uses a different observation model which makes
it less sensitive to initialization and more robust to outliers and 3) initialization
of the ACM’s is fully automatic.



This paper is organized as follows: section 2 formulates the problem, section 3
describes the proposed algorithm for multiple active contours, section 4 presents
experimental results and section 5 concludes the paper.

2 Problem formulation

Given an image with an unknown number of objects and assuming that is is pos-
sible to detect connected sets of edge points belonging to the objects boundaries,
our aim is to connect segments belonging to individual object and to discard out-
lier segments associated with spurious edges. Let y be the set of all edge points
detected in an image and let us assume that y is organized in connected com-
ponents, called strokes, yj , j = 1, ..., N where yj = {yj

1, ..., y
j
n} is the set of edge

points belonging to the j-th stroke. We will assume for now that the number of
ACM’s, L is known and we add an extra model to account for outliers. We de-
note it the outlier model, xoutlier . Let xk be the the k-th active contour model,
k = 1, ..., L defined by a sequence of 2D points xk

i , i = 1, ..., Mk; the number of
points for each snake is adjusted by insertion and deletion in order to keep the
distance between two consecutive points constant and therefore different ACM’s
may have different number of points. xk can either be an open or closed contour.
We will assume that the strokes detected in the image are independent:

p(y|x) =
∏

j

p(yj |x) (1)

and that the distribution of each stroke is a mixture of L+1 densities:

p(yj |x) =
∑

k

αkp(yj |xk) + αoutlierp(yj |xoutlier) (2)

where the αk’s are the mixing proportions verifying αk ≥ 0 , αoutlier ≥ 0 and∑
k

αk + αoutlier = 1.

Our aim is to estimate the ACM’s and also their number L. We will iteratively
estimate the ACM’s using the MAP criterion and assuming L is fixed:

x∗ = arg max
x

p(x|y) = arg max
x

[log p(y|x) + log p(x)] (3)

Then a new value for L will be estimated by importance sampling. In the
following we will specify each of the distributions involved in this problem.

2.1 Observation and prior models

We assume each stroke has i.i.d. edge points, each modelled by a mixture of Mk

Gaussian densities centered in the snake elements:

p(yj |xk) =
∏
n

p(yj
n|xk) =

∏
n

1
Mk

∑

i

N(yj
n, xk

i ,σ2I) (4)



where N(y, µ, R) denotes the normal density function with mean µ and co-
variance R. This model is closely related to the elastic net model [10] and asso-
ciates every edge point with a given snake element. For the case of the outlier
model, the contribution of each feature to the potential is a constant, but a
different constant is used for each stroke, V j .

p(yj |xoutlier) =
∏
n

p(yj
n|xoutlier) =

∏
n

N jV j =
(
V j

)Nj

(5)

If V j is set inversely proportional to the size of the corresponding stroke,
N j , then the smaller strokes will also tend to be classified as outliers, and the
ACM’s will be able to bridge the small outlier strokes. Therefore we used V j =
exp(−KN j) where K is a positive constant.

We adopt the prior model proposed in [9] which is the following:

log p(x) =
∑

k


Eint(xk) +

∑

l 6=k

Einter(xk, xl)


 (6)

where Ei(xk) is a regularization energy that expresses the assumption that
each contour is smooth and Einter(xk, xl) is another regularization energy that
expresses the interaction between different active contours.

3 Unsupervised multiple active contours estimation

The algorithm proposed in [9] described the estimation of multiple models in
which multiple ACM’s compete for the boundaries of the multiple regions. The
algorithm solves the association between strokes and multiple models problem
and also the outlier rejection. However it does not solve the initialization problem
and the estimation of the number of models. To deal with these difficulties
we initiate the algorithm with an arbitrary large number of snakes, L. The
initialization of these L ACM’s is fully automatic; circular ACM’s are randomly
distributed throughout the image, inside the strokes bounding boxes. The size
of the circles is defined by the average size of the bounding boxes or may be user
defined. Then the algorithm iteratively performs the following two steps.

1. Update
The ACM’s are sequentially updated with the Component wise EM algo-
rithm which is summarized in the sub-section 3.1. Convergence is achieved
when all the points move less than a threshold.

2. Sampling
The algorithm relocates the ACM’s by performing Importance Sampling
using the mixing proportions αk as the importance function. The set of
ACM’s xk, k = 1, ...L is sampled in order to obtain a new set of L ACM’s
with the highest values of αk. Obviously some ACM’s will be sampled several
times and other will not be sampled at all. The ACM’s that are not sampled



are eliminated and the ones that were sampled several times will give rise
to new ACM’s that are equal. However the CEM algorithm will insure they
will converge to different locations since they are updated one at a time.

The sampling step does not change the number of ACM’s. Therefore, in
order to reduce the number of ACM’s, we add a model elimination step every
P iterations. In this step we eliminate multiple copies of the models which were
sampled several times and keep only one realization of such ACM. The number
of different ACM’s is the estimated number of models.

3.1 Component Wise EM algorithm

In the EM algorithm it is assumed that y is incomplete data and that the com-
plete data includes binary labels zj , j = 1, ..., N with zj = {z1

j , ..., zL+1
j }, that

indicate which model generated the stroke; zk
j = 1 means that stroke yj was

generated by model xk. The complete log likelihood is given by:

log p(y, z|x) =
∑

j

∑

k

zk
j log p(yj |xk) (7)

Instead of maximizing (3), the EM algorithm alternates between two steps. In
the E-step it finds the conditional expectation of the complete log likelihood with
respect to the unknown x given the observed data y and the current estimate,
x̂ .

Q(x,
_
x) = E

[
log p(y, z|x)|y,

_
x
]

(8)

= E

[
∑
j

∑
k

zk
j log

[
αkp(yj |xk)

]
]

=
∑
j

∑
k

wj
k log

[
αkp(yj |xk)

]
(9)

where wj
k is a set of weights summing to one assigned to each stroke. Each

weight wj
k represents the soft assignment of stroke yj to the active contour xk.

The weights are given by:

wj
k = p(zk

j = 1|yj ,
_
x) =

αkp(yj |xk)∑
m

αmp(yj |xm)
(10)

In the M-step the estimation of the active contour is obtained by the maximiza-
tion of:

U(x,
_
x) = Q(x,

_
x) + log p(x) (11)

The CEM algorithm sequentially performs one E step and one M step for
each of the ACM’s and iterates until convergence [11]. In our implementation
the order of this estimation is predefined.

The E and M steps will be detailed in the following subsections.



The E-Step In the E-step the weights are calculated. Substituting (4) into (10)
we obtain the following expression:

wj
k =

αk

∏
n

1
Mk

∑
i

N(xk
i ,σ2I)

∑
m

αm

∏
n

1
Mm

∑
i

N(xm
i ,σ2I) + αoutlier(V j)Nj (12)

The mixing proportions are updated by:

αk =
1

N j

∑

j

wj
k (13)

The M-Step In the M-step the estimation of the active contour is obtained by
the minimization of (11) performed by the gradient algorithm:

xk
t+1 = xk

t − γ∇x(Q(x,
_
x)) (14)

where ∇x represents the gradient. This equation can be rewritten as follows:

xk
t+1 = xk

t − γintfint − γextfext − γinterfinter (15)

where fext(xk
i ), fint(xk

i ) and finter(xk
i ) are external, internal and interaction

forces. External and internal forces are given by expressions (16) and (17):

fext(x
k
i ) = − 1

σ2

∑

j

wk
j

∑
n

(yj
n − xk

i )φσ(|yj
n − xk

i |2) (16)

fint(xk
i ) = −2

(
li−1 − l0

li−1
(xk

i − xk
i−1) +

li+1 − l0
li+1

(xk
i − xk

i+1)
)

(17)

where li−1 =
∥∥xk

i − xk
i−1

∥∥ and li+1 =
∥∥xk

i − xk
i+1

∥∥. The expression of the inter-
action force depends on the application. For instance, if we expect each model
to attract the other models, we can use ϕ(d) = − exp(−d/2σ2

inter) leading to:

finter(x
k
i ) =

1
σ2

inter

∑

l 6=k

∑
m

(xk
i − xl

m)ϕ(|xl
m − xk

i |2) (18)

4 Experimental Results

This section presents examples to illustrate the performance of the proposed
method. The examples were performed in the following conditions. Edges were
obtained with the Canny edge detector and strokes were obtained with a con-
nected components labelling algorithm. The external forces acting on each model
unit were multiplied by independent gains to limit the maximum displacement
of the model units in each iteration. All the experiments used ∆max = 2 and the
gain factors γint and γinter were chosen manually.



Fig. 1. Bacteria Example; 100 initial contours (left) and 21 final estimated contours
(right).

The first example illustrates the performance of the algorithm in the presence
of multiple objects (bacteria). Fig. 1 shows the initial contours on the left and the
final contours on the right. The algorithm was initialized with 100 ACM’s that
were overlapping and the final result was able to separate 21 different objects.
All the objects were correctly associated with a different ACM.

The second example shows the performance of the proposed algorithm ap-
plied to the segmentation of pedestrians in a video sequence. In this example 10
ACM’s were used to segment the image obtained from Fig. 2 a) after background
subtraction. The background estimation was based on modelling the intensity
of each pixel with a single gaussian. Fig. 2 shows the initial contours on the left
and the final contours on the right. The algorithm successfully estimated the
correct number of pedestrians, producing 4 ACM’s.

Fig. 2. Pedestrians; 10 initial contours (left) and 4 final estimated contours (right).

The third example shows the performance of the proposed algorithm with
nested regions. In this example 50 ACM’s were used to segment inhibition halos



of antibacterial activity in microbiologic plate assays. Fig. 3 shows the initial
contours on the left and the final contours on the right. The algorithm success-
fully estimated the correct number of objects, producing 12 ACM’s and detecting
no outliers.

Fig. 3. Microbiologic plate assay; 50 initial contours (left) and 12 final estimated con-
tours (right).

The final example illustrates the application of the algorithm to a blood cell
image using the outlier model to discard the smaller objects. The algorithm was
initialized with 120 ACM’s and in the final segmentation 27 contours remain.
Fig. 4 shows the initial contours on the left, the final contours in the middle
and the strokes classified as outliers on the right. In this example a couple of
the final ACM’s represent more than one object because they were overlapping
in the image and originated only one stroke. The outliers that were detected
correspond to the smaller strokes present in the image.

Fig. 4. Cell example; 120 initial contours (left), 27 contour estimates (middle) and
outlier strokes (right).



5 Conclusions

This paper presents an algorithm for the extraction of multiple regions using mul-
tiple active contour models (ACM’s). Initialization is automatic, the algorithm
estimates the number of models and also accounts for outlier features detected in
the image. It is shown that the proposed algorithm is able to robustly estimate
all the deformable contours and to compute the association probability between
strokes and multiple models.
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[11] Celeux, G., Chréetien, Forbes, F. and Mkhadri, A. A component-wise EM algo-
rithm for mixtures, Journal of Computational and Graphical Statistics, 10: 699-712,
2001.


