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ABSTRACT 

 
This paper describes an algorithm for the extraction of multiple 
regions using multiple active contour models (ACMs). The 
algorithm organizes edge points into strokes and assigns a set 
of weights summing to one to each stroke. These weights 
represent the soft assignment of the stroke to each of the 
ACMs and depend on the distance between the stroke points 
and the ACM units. Both the weights and the ACMs energy 
minimization are computed using the expectation-
maximization (EM) algorithm. The algorithm described in this 
paper is an extension of the Adaptive Snakes recently 
proposed in [9]. Experimental results will be provided to 
illustrate the performance of the proposed algorithm.  
 

1. INTRODUCTION 
 
Active contour models (ACMs)[1] have been extensively used 
to estimate object boundaries in images. Active contours are 
influenced by external forces that push the contour towards 
image features such as edge points and by internal forces that 
try to keep the shape’s continuity and smoothness.  

Most of the research done on ACMs tries to estimate a 
single region using one elastic model (e.g. see [1][2][3]). The 
estimation of multiple elastic models has received much less 
attention. Multiple ACM’s have been used for the extraction of 
a single region [4][5]. For instance in [4] two contours are 
used, one expands from inside the region and another contracts 
from the outside. This requires judicious initialization of the 
two contours. Some work has been done on the use of multiple 
ACMs for the extraction of multiple regions [6][7]. For 
example in [6] multiple regions are used but the approach is 
restricted to regions that have some common characteristic or 
property and weighting parameters are defined heuristically. In 
[7] several ACMs are initialized in the centers of divergence of 
the gradient vector flow field. Some of the centers are 
discarded using heuristic rules and the method is unable to deal 
with regions inside other regions. 

We propose the use of multiple ACMs for the simultaneous 
extraction of multiple regions inspired in the Adaptive Snakes 
algorithm recently proposed in [9]. The multiple ACMs 
compete for the boundaries of the different regions. This 
competition alleviates the problem of contour initialization. 
The proposed method is able to deal with separate regions and 
also with nested regions. The method is based on the use of 

middle level features (strokes) instead of low level features 
(edge points) and the assignment of a weight to each 
stroke/model pair. Weight assignment is computed using the 
EM algorithm for MAP estimation. 

This paper is organized as follows: section 2 formulates the 
problem, section 3 describes the proposed algorithm for 
multiple active contours, section 4 presents experimental 
results and section 5 concludes the paper. 
 

2. PROBLEM FORMULATION 
 
Let y  be the set of all edge points detected in an image and 
let us assume that y  is organized in connected components, 

called strokes, , ,...,jy j N= 1  where { ,..., }jj j
ny y y= 1  is 

the set of edge points belonging to the j-th stroke. 
We will assume that the number of ACMs, L is known and 

we add an extra model to account for outliers. We designate it 
the outlier model. Let kx  be the k-th active contour model, 

,...,k L= 1  defined by a sequence of 2D points , ,...,k
ix i M= 1 ; 

kx  can be either an open or a closed contour.  
Figure 1 shows an example of an image with 3 strokes 

, ,y y y1 2 3  and two active contours x1  and x2 . 
We will assume that the strokes detected in the image are 

independent: 

( | ) ( | )j

j
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and that each stroke is a mixture of L+1 densities: 

( | ) ( | )j j k
k

k

p y x p y xα=∑  (2)  

where the kα ’s are the mixing proportions verifying kα ≥ 0  

and k
k

α =∑ 1 . 

Assuming a Gibbs distribution based on the Cohen 
potential we have [2] [9]: 

( | ) exp ( , )j k k j
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where ( , )k j
iP x y  is a potential function given by: 

( , ) (| | )k j j k
i n i

n

P x y y xσφ= − −∑ 2  (4)  

where (| | )j k
n iy xσφ − 2  is the contribution of each feature j

ny  
to the potential and is obtained by convolving the edge map 
with the Gaussian kernel ( ) exp( / )d dσφ σ= − 22 . For the case 
of the outlier model, the contribution of each feature to the 
potential is constant, and chosen as (| | )σφ σ 23 . 

Our aim is to estimate the L ACM’s using the MAP 
criterion: 
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Using (1) and (2) to solve (5) is equivalent to maximizing: 
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which can not be solved analytically. Therefore the EM 
algorithm is used, as detailed in section 3. 

We adopt the following prior: 
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where ( )k
intE x  is a regularization energy that expresses the 

assumption that each contour is smooth and ( , )k l
interE x x  is 

another regularization energy that expresses the interaction 
between different active contours. For ( )k

intE x  we used: 

( )( )k k k
int i i

i

E x x x l−= − −∑
2

1 0  (8)  

where l0  is the desired spacing between successive snake 
elements, set by the user. Setting l ≠0 0  prevents the active 

contour from shrinking [8]. For ( , )k l
interE x x  we used: 

( , ) (| | )k l l k
inter m i

i m

E x x x xϕ= −∑∑ 2  (9) 

In this expression ( )dϕ  is a distance measure that can be 
tailored to fit a particular application. Some examples for 

( )dϕ  will be given in section 3.2.  
 

 
Figure 1 Image with 3 strokes and two active contours. 
 

3. MULTIPLE ACTIVE CONTOURS 
 

The EM algorithm assumes that y is incomplete data and 
that the complete data includes binary labels , ,...,jz j N= 1  

with { ,..., }L
j j jz z z += 1 1 , that indicate which model generated 

the stroke, k
jz = 1  means that stroke jy  was generated by 

model kx . The complete log likelihood is given by: 

log ( , | ) log ( | )k j k
j

j k

p y z x z p y x=∑∑  (10)  

Instead of maximizing (5), the EM algorithm alternates 
between two steps. In the E-step it finds the conditional 
expectation of the complete log likelihood with respect to the 
unknown x given the observed data y and the current 
estimate, x̂ . 
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where j
kw  is set of weights summing to one assigned to each 

stroke. Each weight j
kw  represents the soft assignment of 

stroke jy  to the kx  active contour. The weights are given by:  
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In the M-step the estimation of the active contour is 
obtained by the maximization of: 

( , ) ( , ) log ( )U x x Q x x p x= +  (14)  

The algorithm sequentially performs one E step and one M 
step for each of the ACMs in a predefined order and iterates 
until convergence. This methodology is called the Component 



Wise EM (CEM) and it’s converge was shown in [11]. The E 
and M steps will be detailed in the following sections. 
 
3.1. The E-Step 
 
In the E-step the weights are calculated. Substituting (3) into 
(13) we obtain the following expression: 
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where the last term of the denominator is the contribution of 
the outlier model.  
The mixing proportions are updated by: 

j
k k

j

wα =∑  (16) 

3.2. The M-Step 
 
In the M-step the estimation of the active contour is obtained 
by the minimization of (12) performed by the gradient 
algorithm:  

( ( , ))k k
t t xx x Q x xγ+ = − ∇1  (17)  

where x∇  represents the gradient. This equation can be 
rewritten as follows: 

k k
t t int int ext ext inter interx x f f fγ γ γ+ = − − −1  (18)  

where ( )k
ext if x , ( )k

int if x  and ( )k
inter if x  are external, internal 

and interaction forces. External and internal forces are given 
by expressions (19) and (20): 
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where k k
i i il x x− −= −1 1  and k k

i i il x x+ += −1 1 . 

The expression of the interaction force depends on the 
choice of ( )dϕ  in equation (7). For instance, if we expect each 
model to attract the other models, we can use 

( ) exp( / )2
interd dϕ σ= − − 2  leading to: 

) ( ) (| | )k k l l k
inter i i m m i

inter l k m

f (x x x x xϕ
σ ≠

= − −∑∑ 2
2
1  (21)  

Similarly, we can define repulsion forces between models 
by using ( ) exp( / )2

interd dϕ σ= − 2  leading to: 

  
Figure 2 Results obtained with the proposed method using 

two ACMs; initial contours and contour estimates at iteration 
2. 
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Another possibility is to define ( )dϕ  in order to impose 
some kind of geometrical constraint between the different 
active contours. For instance for concentric models we can use 
the distance between the models centroids: 

)k k l
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This method belongs to a class of constrained clustering 
algorithms of methods, denoted Unified Framework, in which 
models points are attracted towards the centroids k

iξ  of their 
attraction regions [10]. Therefore the external forces can be 
rewritten as: 

( ) ( )k k k k
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with  
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4. EXPERIMENTAL RESULTS 
 
This section presents examples to illustrate the performance of 
the proposed method. The examples were performed in the 
following conditions. Edges were obtained with the Canny 
edge detector and strokes were obtained with a connected 
components labeling algorithm. Strokes with length smaller 
than a predefined threshold minl  were considered noise and 
discarded. The external forces acting on each model unit were 
multiplied by independent gains as suggested in [10]: 

max( ) min( , )
| |

ext
k
i k k kxi i i

γ
µ ξ

∆
=

−

1 1  (27)  



where max∆  is the maximum displacement of the model units 

in each iteration. All the experiments used max∆ = 10  and the 
gain factors intγ  and interγ  were chosen manually. 

The first example illustrates the performance of the 
algorithm in the presence of multiple objects (grains of rice). 
Figure 2 shows the initial contours on the left and the final 
contours on the right. It can be seen that although the initial 
contours were overlapping the final result was able to separate 
two different rice grains and to discard the other grains 
classifying them as outliers. 

The second example shows the performance of the 
proposed algorithm with more than two elastic models. It also 
shows the robustness with respect to initialization since all the 
contours were initialized in the same way. In this example four 
closed ACMs were used to segment the different rings of the 
eyespot of a butterfly wing. Figure 3 shows the initial 
contours on the left and the final contours on the right. 
Although the ACMs were equally initialized each converged to 
a different ring of the butterfly eyespot. The third example 
illustrates the application of the algorithm to medical data2. In 
this example three closed ACMs were used to segment the 
skull and the brain in a MRI medical image. All the ACMs 
were initialized with the same contour. Figure 4 shows the 
initial contours on the left and the final contours on the right. 
Although all ACM’s were equally initialized two of them 
converged towards the exterior skull borders and another 
converged towards the outline of the brain. 

We emphasize that it is because of the competition between 
models and the use of the CEM algorithm that different models 
converge to different strokes even when they are initialized 
with the same configuration. 
 

5. CONCLUSIONS 
 

This paper presents an algorithm for the extraction of multiple 
regions using multiple active contour models (ACMs) which 
also accounts for outlier features detected in the image. It is 
shown that the proposed algorithm is able to robustly estimate 
all the deformable contours and to compute the association 
probability between strokes and multiple models. In addition, 
it can deal with separate regions as well as nested regions and 
it is less sensitive to the initial configuration than the 
conventional single ACMs.  

Future work should consider the automatic estimation of 
the number of multiple models as well as automatic 
initialization procedures. 
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