MOBILE ROBOTICS course

SMOOTH PATH PLANNING

Maria Isabel Ribeiro
Pedro Lima

Instituto Superior Técnico (IST) Instituto de Sistemas e Robótica (ISR)

Av.Rovisco Pais, 1
1049-001 Lisboa
PORTUGAL
April. 2002

All the rights reserved

References

- Smooth Path Planning

- Y.Kanayama, B. Hartman, "Smooth Local Path Planning for Autonomous Vehicles", in Autonomous Robot Vehicles, edited by Cox, Wilfong, Springer, 1990, pp.62-67.

Reading assignment

- Basis on Curves
- Taylor Mann, "Advanced Calculus", Xerox College Publishing, 1972.

Problem Statement

- Unsmooth motions cause slippage of wheels which degrades the robot dead-reckoning ability
- Problem: define a smooth path between start and goal posture
- What is a smooth path?
- How do we compare smoothness?
- Is there any other characteristic that we may use to have a smooth motion

Example

Path define by ($\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}, \mathrm{p}_{5}, \mathrm{p}_{6}$)

Definitions

Smooth path

- A curve that does not intersect itself, and
- It has a tangent at each point whose direction varies continuously as the point moves along the curve
- Sectionally smooth path
- A curve composed by a finite number of smooth arcs joined end to end
straight line + arc of circle
- Curvature of a path
$\frac{d T(s)}{d s}=K(s) n$
|| $\mathrm{n} \|=1$

|| $\mathrm{T}(\mathrm{s})|\mid=1$
$\mathrm{T}(\mathrm{s})$ is a unit lenght vector along the tangent line of the path in the motion direction
$\mathrm{K}(\mathrm{s})$ is the curvature of the path
$\theta(s)=$ orientation of a posture corresponding to s

$$
\dot{\theta}(\mathrm{s})=\mathrm{K}(\mathrm{~s})
$$

Definitions

$\mathbf{K}(\mathbf{s})$ - curvature of a path in a given point
$K(s)=\frac{1}{r(s)}$ radious of curvature of a path in a given point

$$
\dot{\theta}(s)=K(s)
$$

straight line + arc of circle

r-radius of curvature

- smooth path
-The direction of a tangent vector in each point is continuous
- the curvature is not continuous

- clotoid
-The curvature varies linearly along the path

If $B=0$ the curvature is continuous
If $\mathrm{C}=0$ the curve is smooth

Path Representation

$$
\begin{aligned}
& \mathrm{K}:[-\ell / 2, \ell / 2] \rightarrow \Re \\
& x(0)=y(0)=\theta(0)=0
\end{aligned}
$$

standard convention for path positioning

Tangent direction function

$$
\theta(\mathrm{s})=\int_{0}^{\mathrm{s}} \mathrm{~K}(\mathrm{t}) \mathrm{dt}, \quad-\ell / 2 \leq \mathrm{s} \leq \ell / 2
$$

$$
K(s)=\dot{\theta}(s)
$$

Coordinates of a point (x, y)=(x(s),y(s)) on Π

$$
\begin{aligned}
& x=x(s)=\int_{0}^{s} \cos \theta(t) d t \\
& y=y(s)=\int_{0}^{s} \sin \theta(t) d t
\end{aligned}
$$

End postures of a path Π

$$
\begin{aligned}
& x(-\ell / 2), y(-\ell / 2), \theta(-\ell / 2) \\
& x(\ell / 2), y(\ell / 2), \theta(\ell / 2)
\end{aligned}
$$

- Path Property

- If a curvatura function $\mathrm{K}(\mathrm{s})$ is symmetric

$$
K(-s)=K(s)
$$

then

$$
\begin{array}{ll}
\theta(s)=-\theta(-s) & \text { odd } \\
x(s)=-x(-s) & \text { odd } \\
y(s)=y(-s) & \text { even }
\end{array}
$$

for $s=\ell / 2$ the endpostures are symmetric

Overview of the Method

$p(x, y, \theta) \quad$ posture (x, y) point

- Orientation β from point \mathbf{p}_{1} to point $\mathbf{p}_{\mathbf{2}}$

$$
\beta=\operatorname{arctg}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)
$$

- p_{1} and p_{2} are symmetric - $\operatorname{sym}\left(p_{1}, p_{2}\right)$ - iff

$$
\begin{array}{ll}
\operatorname{sym}\left(p_{1}, p_{2}\right) & \sim \operatorname{sym}\left(p_{4}, p_{5}\right) \\
\operatorname{sym}\left(p_{2}, p_{3}\right) & \sim \operatorname{sym}\left(p_{5}, p_{6}\right) \\
\operatorname{sym}\left(p_{3}, p_{4}\right) & \\
\operatorname{sym}\left(p_{6}, p_{7}\right) & \\
\operatorname{sym}\left(p_{7}, p_{8}\right) &
\end{array}
$$

- A size d of a deflection α of a pair $\left(p_{1}, p_{2}\right)$ of a symmetric posture pair, sym ($\mathrm{p}_{1}, \mathrm{p}_{2}$)

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \alpha=\theta_{2}-\theta_{1} \\
& \text { Variation in orientation } \\
& \text { evaluated counterclowise }
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{1}=\pi / 2 \\
& \theta_{2}=\pi \\
& \alpha=\theta_{2}-\theta_{1}=\pi / 2
\end{aligned}
$$

- A posture q is a split posture of a pair of postures $\left(p_{1}, p_{2}\right)$ iff

$\operatorname{sym}\left(\mathrm{p}_{1}, \mathrm{q}\right)$
$\operatorname{sym}\left(q, p_{2}\right)$
- A path (with a finite lenght) is said to be simple if its end postures are symmetric
- Example: every circular arc

Problem Solution

- Problem: define a path between postures p_{1} and p_{2} that minizes a given cost (related with smoothness)

Solution:

1. If $\operatorname{sym}\left(\mathrm{p}_{1}, \mathrm{p} 2\right)$ the solution is a single smooth path obtained by the minimization of a cost functional.
2. If $\sim \operatorname{sym}\left(p_{1}, p_{2}\right)$ find a split postures q and then apply 1 for the local paths ($\mathrm{p}_{1}, \mathrm{q}$) and ($\mathrm{q}, \mathrm{p}_{2}$). Chose q in such a way that the total cost is minimzed.

Cost Functional

- Cost Function 1

$\cos _{1}(\Pi)=\int_{-\ell / 2}^{\ell / 2} \mathrm{~K}^{2}(\mathrm{~s}) \mathrm{ds}=\int_{-\ell / 2}^{\ell / 2} \dot{\theta}^{2}(\mathrm{~s}) \mathrm{ds}$

- Cost Function 2

$$
\operatorname{cost}_{2}(\Pi)=\int_{-\ell / 2}^{\ell / 2} \dot{\mathrm{~K}}^{2}(\mathrm{~s}) \mathrm{ds}=\int_{-\ell / 2}^{\ell / 2} \dot{\theta}^{2}(\mathrm{~s}) \mathrm{ds}
$$

Interpretation

Hypothesis:

constant-velocity navigation of the robot along its path
centripetal acceleration $\mathrm{a}_{\mathrm{c}}(\mathrm{s})$

$$
a_{c}(s)=r(s) \dot{\theta}^{2}(s)
$$

$$
a_{c}(s)=r(s) \dot{\theta}^{2}(s)=\frac{1}{K(s)} K^{2}(s)=K(s)
$$

The centripetal acceleration equals, at each path point, the path curvature

Cost $_{1}=\int$ quadrado de a_{c}
Cost $_{2}=\int$ quadrado de $\dot{\mathrm{a}}_{\mathrm{c}}=\int q u a d r a d o$ de jerk

Problem Solution (Cost 1)

- Cost Function 1

$$
\cos t_{1}(\Pi)=\int_{-\ell / 2}^{\ell / 2} \mathrm{~K}^{2}(\mathrm{~s}) \mathrm{ds}=\int_{-\ell / 2}^{\ell / 2} \dot{\theta}^{2}(s) \mathrm{ds}
$$

Solution

for a fixed path lenght ℓ
$\min \operatorname{cost}_{1}(\Pi)$

$\dot{\theta}(\mathrm{s})=\mathrm{A}=\mathrm{K}(\mathrm{s})$
$\theta(s)=A s+B$
A, B integral constants

$$
\begin{aligned}
& \left.\begin{array}{l}
A, B \neq 0 \\
A \neq 0, B=0
\end{array}\right\} \quad \text { circular arcs } \\
& A=0 \quad \text { straight lines }
\end{aligned}
$$

- Cost Function 2

$$
\operatorname{cost}_{2}(\Pi)=\int_{-\ell / 2}^{\ell / 2} \dot{\mathrm{~K}}^{2}(\mathrm{~s}) \mathrm{ds}=\int_{-\ell / 2}^{\ell / 2} \ddot{\theta}^{2}(\mathrm{~s}) \mathrm{ds}
$$

Solution

for a fixed path lenght ℓ

$$
\begin{aligned}
\min \operatorname{cost}_{2}(\Pi) \longleftarrow \dot{\theta}(s) & =K(s)=\frac{1}{2} A s^{2}+B s+C \\
\theta(s) & =\frac{1}{6} A s^{3}+\frac{1}{2} B s^{2}+C s+D
\end{aligned}
$$

A, B, C, D integral constants

cubic spirals

Cubic Spirals

$\mathrm{K}(\mathrm{s})$ symmetric
The path is simple

Fig. 3 Curvature and Tangent Direction of Cubic Spiral

Fig. 4 A Whole Cubic Spiral

Fig. 5. Standard Cubic Spirals

Problem solution: particular cases

Case A - Start and end postures are symmetric pairs
$\left(p_{1}, p_{2}\right)$ known start and end postures

Circular path - cost $_{1}$

$$
\begin{aligned}
& \ell=\frac{\alpha / 2}{\sin (\alpha / 2)} d \\
& K(s)=\frac{2 \sin (\alpha / 2)}{d} \\
& \operatorname{cost}_{1}=\frac{2 \alpha \sin (\alpha / 2)}{d}
\end{aligned}
$$

Cubic spiral path - cost $_{2}$

$$
\ell=\frac{d}{D(\alpha)}
$$

$$
D(\alpha)=2 \int_{0}^{1 / 2} \cos \left[\alpha\left(3 / 2-2 s^{2}\right) s\right] d s
$$

$$
K(s)=\frac{6 \alpha D^{3}(\alpha)}{d^{3}}\left(\frac{d^{2}}{4 D^{2}(\alpha)}-s^{2}\right)
$$

$$
\operatorname{cost}_{2}=\frac{12 \alpha^{2} D^{3}(\alpha)}{\mathrm{d}^{3}}
$$

Circle

Minimum lenght
Clotoid
Maximum lenght
The maximum curvature of the cubic spiral is less than that of the clotoid

Fig. $7 \quad$ Simple Curves with $\alpha=\pi$

Case B - Start and end postures are NON symmetric pairs

$$
\begin{array}{ll}
\sim \operatorname{sym}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) & \mathrm{p}_{1}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \theta_{1}\right) \\
& \mathrm{p}_{2}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \theta_{2}\right)
\end{array}
$$

General approach

- Find the locus of split postures $q=(x, y, \theta)$ of the pair $\left(p_{1}, p_{2}\right)$
- Now, $\operatorname{sym}\left(p_{1}, q\right)$, $\operatorname{sym}\left(q, p_{2}\right)$
- Solve (locally) the smooth path planning problem for $\left(p_{1}, q\right)$ and (q, p_{2}) chosing the split posture q that minimizes the sum

$$
\operatorname{cost}\left(\Pi\left(p_{1}, q\right)\right)+\operatorname{cost}\left(\Pi\left(q, p_{2}\right)\right)
$$

- Case B-1
- p_{1} and p_{2} are parallel $\theta_{1}=\theta_{2}$

Fig. 8 Split Postures in Parallel Case

For either cost $_{1}$ and cost_{2} the least cost split point of p_{1} and p_{2} is

$$
q=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \beta-(\theta-\beta)\right)
$$

The locus of split postures is the line determined by p_{1} and p_{2}

Problem solution: particular cases

Case B - Start and end postures are NON symmetric pairs

$$
\begin{aligned}
\sim \operatorname{sym}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) & \mathrm{p}_{1}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \theta_{1}\right) \\
& \mathrm{p}_{2}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \theta_{2}\right)
\end{aligned}
$$

$\begin{aligned} & \text { Case } B-2 \\ & -\quad p_{1} \text { and } p_{2} \text { are NON parallel }\end{aligned} \theta_{1} \neq \theta_{2}$

Fig. 11
Example of Non-Parallel Case

