Instituto Superior Técnico

Licenciatura em Eng^a Electrotécnica e de Computadores

Controlo

Introdução ao Matlab e Simulink

Elaborado por F. Garcia e M. Ortigueira - Setembro 2001

Reformulado por J .Gaspar - Setembro 2003

Secção de Sistemas e Controlo

Departamento de Engenharia Electrotécnica e de Computadores

1.1 - Operações elementares

» x=3+5	Atribui à variável x o valor da	Números complexos:	
	operação e mostra o resultado no	» z = 3 + j*	4 tanto "i" como "j" definem a variável
	monitor		imaginária pura "sqrt(-1)"
»х	Mostra o valor de x no monitor	» conj(z)	Conjugado
» 4-10	Apenas apresenta o resultado da	» abs(z)	Módulo
	operação no monitor	» angle(z)	Fase
» x=4*6;	O ";" impede o resultado de aparecer	» real(z)	Parte real
	no monitor	» imag(z)	Parte imaginária
» x=log(8)	Logaritmo natural. Usar "log10(x)"	» exp(i*pi)	Exponencial de um complexo
	para calcular o logaritmo na base 10		
	de x.		
» x=exp(log(8))			
» x=5^3	Eleva um número à potência 3		

Faça "help elfun" para ajuda relativa a outras funções elementares. Nota: "Helpwin" pode ser usado no lugar de "help" para uma visualização numa janela individual.

1.2 - Manipulação de vectores e matrizes

ntre
ì
de

Faça help elmat para ajuda relativa a funções elementares com matrizes

1.3 - Representação gráfica de sinais representados por vectores

» N=1000;		» plot(t,x);	
» t=1:N;	cria um vector de dimensão N com	» plot(t,x, ´*´); visualização discreta.	
	os naturais de 1 a N.	» plot(t(1:100),y(1:100), ´*´); desenha,	
» x=cos(2*pi*0.005*t); cria um vector com os		apenas, uma parte do sinal.	
valores de uma sinusóide.		» t=0.1:0.1:20;	

Faça help graph2d para ajuda relativa a gráficos a duas dimensões

1.4 - Definição e análise no tempo e em frequência de SLITs contínuos através do Matlab

» num = [2 1]	
» den = [1 2 3]	» step(sys) Resposta ao escalão do sistema
» roots(den) Determina as raízes do polinómio	"sys"
cujos coeficientes correspondem aos	<pre>» t = 0:.1:10; u = sin(3*t); lsim(sys,u,t)</pre>
elementos de "den" (neste caso será	Resposta de "sys" à entrada "u"
o polinómio $s^2 + 2s + 3$)	definida nos instantes "t"
» sys = tf(num,den) Cria o SLIT cuja função	» bode(sys) Desenha o diagrama de bode de
de transferência tem numerador	amplitude e fase do sistema "sys"
"num" e denominador "den"	

Faça Help de cada uma das funções anteriores para mais detalhes.

Faça help control para ajuda relativa a funções de Matlab para problemas de controlo.

1.5 - Criação de funções (ficheiros ".m")

As instruções podem ser encadeadas de forma a constituírem uma rotina ou função. Devem ficar num ficheiro cujo nome terminará, necessariamente, por .m.

Exemplos: y = exp(-t)*cos(t)

Nome do ficheiro - fff.m

O conteúdo do ficheiro é o detalhado na caixa seguinte

function $y = fff(x)$	
y = exp(-x).*cos(x);	

Este ficheiro deve estar na directoria de trabalho (usar o comando "cd" para mudar de directoria) Testar o ficheiro fazendo na linha de comandos

» t = 0:.1:10; y = fff(t); plot(t,y)

1.6 - Simulação de sistemas em Simulink

Na janela de Matlab, o comando

» simulink

abre a janela "Simulink Library Browser" (designada em seguida por SLB) que contém os blocos de sistemas, entrada/saída e conexão (entre outros) para a simulação de sistemas (ver figura 1 - esquerda). Descrevemos aqui alguns dos blocos mais importantes.

A primeira operação a fazer consiste em abrir um espaço de trabalho Simulink, clicando com o mouse no botão "create a new model" da janela SLB. O sistema para simulação será criado fazendo "dragand-drop" dos blocos da SLB para o espaço de trabalho Simulink.

A resposta a um SLIT de primeira ordem pode ser obtida da seguinte forma:

i) Usar "find" do SLB para encontrar cada um dos blocos "Transfer Fcn", "Step" e "Scope".

Fazer drag-and-drop destes blocos para a janela de trabalho. Ligar os blocos utilizando o mouse (ver fig 1 - meio).

- ii) Duplo clique em "Scope" para abrir janela onde serão mostrados os resultados.
- iii) Premir Ctrl+T para realizar a simulação e mostrar o resultado.

Figura 1: Simulink Library Browser (esquerda), exemplo de um sistema de primeira ordem (meio) e resposta do sistema ao escalão (direita).

Notas:

- Clicando duas vezes nos blocos com o mouse é possível modificar os parâmetros dos blocos.

 Os parâmetros de simulação são escolhidos clicando em "Simulation → Parameters" na janela do espaço de trabalho Simulink (convém, em particular, escolher o tempo de simulação desejado).

Figura 2: Blocos frequentemente utilizados.

Na figura 2 mostram-se mais alguns blocos frequentemente utilizados na simulação de sistemas de controlo. Os blocos indicados permitem colocar nos sistemas a simular: entradas sinusoidais (bloco "Sine Wave"), pontos de soma (bloco "Sum"), ganhos (bloco "Gain") e integradores (bloco "Integrator"). O bloco "Mux" é útil para juntar sinais e desta forma operá-los em conjunto. O bloco "To Workspace" permite obter os resultados da simulação no espaço de trabalho do Matlab, o que é útil por exemplo para criar gráficos de comparação entre resultados. No exemplo da figura 3 é simulado um sistema de segunda ordem, e o resultado é visualizado a partir da linha de comando.

Figura 3: Simulação de um sistema de segunda ordem com exportação de resultados para o workspace. O gráfico é obtido com o comando de matlab: plot(tout, simout.signals.values)

1.7 - Nota final

Para obter mais detalhes sobre os comandos e os blocos simulink indicados ao longo deste documento, consultar a documentação on-line do matlab, existente na forma de ajuda rápida na linha de comando ("help" ou "helpwin") e em documentos organizados em páginas html (menu help).