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Abstract

This paper presents an integrated design framework to utilize multi-sensor data fusion (MSDF) techniques for process
monitoring enhancement to detect and diagnose sensor and process faults. Two different distributed and centralized archi-
tectures are presented to integrate the multi-sensor data based on extended Kalman filter (EKF) data fusion algorithm.
The distributed integration architecture uses the state-vector fusion method, while the centralized integration architecture
is based on the output augmented fusion (OAF) method. The usual approach in the classical EKF implementation is based
on the assumption of constant diagonal matrices for both the process and measurement covariances. This inflexible con-
stant covariance set-up may cause degradation in the EKF performance. A new adaptive modified EKF (AMEKF) algo-
rithm has been developed to prevent the filter divergence and hence leading to an improved EKF estimation. A set of
simulation studies have been conducted to demonstrate the performances of the proposed adaptive and non-adaptive pro-
cess monitoring approaches on a continuous stirred tank reactor (CSTR) benchmark problem. The sensor fault studies
include the sensor faults due to drift in calibration and drift in sensor degradation anomalies. Whereas, the process faults
consist of four probable CSTR faults in cascaded single, double, triple and quadruple set-up.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In modern chemical process industries, there has
been an ever-increasing push to optimize their pro-
duction processes by satisfying the continuously
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tightening safety and environmental regulations.
Industrial processes have become more highly inte-
grated and complex and hence their proper moni-
toring presents challenges that are not readily
addressed using the conventional diagnosis by the
operators. To ensure that the process operations
are able to satisfy the increasingly stringent perfor-
mance specifications, an accurate automated pro-
cess monitoring is essential.
.
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The main goal of this automated process moni-
toring is to ensure the success of plant operations
by recognizing anomalies of the behavior in real-
time. It includes the tasks of fault detection to deter-
mine the existence of faults due to sensor or process
upsets and their fault diagnosis to find the root fac-
tors causing such events.

This information keeps the plant operator and
maintenance personnel better informed of the status
of the process operation in order to make appropri-
ate remedial actions to improve the abnormal behav-
ior. As a result of this proper process monitoring,
downtime is minimized, safety of plant operation is
improved and manufacturing costs are reduced.

The automated fault detection and diagnosis has
been an active area of research for many decades
and broad spectrums of methods have been devel-
oped. Generally, depending on the rigorousness of
the process knowledge employed, the existing meth-
ods can be broadly classified into two main
categories of process history-based and process
model-based methods. Each of these categories can
further be divided into qualitative and quantitative
approaches. The qualitative approaches involve
fault trees [1], signed directed graph [2,3], fuzzy logic
[4] and expert systems [5]. In many cases, however,
these qualitative approaches simply give multiple
interpretations for a single event which is an inherent
limitation of the qualitative model-based methods [6].
The quantitative model-based approaches, on the
other hand, utilize the process model and on-line
measurements to back-calculate crucial process vari-
ables. These approaches include basically modeling,
filtering and estimation techniques, where a widevari-
ety of them have already been reviewed by [7–9].
Among the existing quantitative model-based meth-
ods, the Kalman filter variants have found widespread
applications due to their simplicity and ability to
handle reasonable uncertainties and nonlinearities.

The purpose of this work is to present a new
automated fault detection and diagnosis system
based on an enhanced extended Kalman filter
(EKF) estimator. The proposed methodology uti-
lizes a multi-sensor data fusion (MSDF) technique
to enhance the accuracy and reliability of state esti-
mation in the process fault detection. The field of
multi-sensor data fusion is fairly young and most
of its literature has dealt with military and civilian
target tracking and autonomous robotics. This tech-
nique seeks to combine data from multiple sensors
and related information to achieve improved accu-
racies and more specific inferences. Thus, the main
Please cite this article in press as: M. Mosallaei et al., Centra
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problem in this paper is focused on the methodol-
ogy by which the multi-sensor measurements can
be combined and processed. There are various
multi-sensor data fusion approaches to resolve this
problem. In this work, two different multi-sensor
integration architectures have been presented based
on the EKF data fusion algorithm. Using the EKF,
two key architecture scenarios called as centralized
and decentralized or distributed methods have been
developed. In the centralized integration method,
called as measurement fusion integration method,
all the raw data from different sensors is sent to a
single location to be fused. While, in the distributed
integration method, called as state-vector fusion
integration method, the filtering process is divided
between some local EKF filters working in parallel
to obtain individual sensor-based estimates and
one master EKF filter to combine these local esti-
mates to yield an improved global state estimate.
However, the operation of the EKF algorithm as
the data fusion technique is critically influenced by
uncertainty in covariance parameters of the process
noise (Q) and the observation error (R).

In this paper, an online adaptive scheme has been
developed to enhance the EKF estimation proce-
dure based on the innovation and residual
sequences of the EKF algorithm. As a consequence,
three different process monitoring approaches,
called as non-adaptive centralized output aug-
mented fusion (NACOAF), adaptive centralized
output augmented fusion (ACOAF) and adaptive
distributed state-vector fusion (ADSVF) have been
proposed in this paper.

The paper is organized as follows. The model-
based process fault monitoring problem is formu-
lated in Section 2. In Section 3, first, a discrete-time
EKF algorithm is presented. Then, an adaptive
EKF is developed. Finally, two different centralized
and distributed multi-sensor integration architec-
tures combined with the adaptive EKF data fusion
will be presented. Simulation studies illustrating
the performances of the three proposed process
monitoring approaches (i.e., NACOAF, ACOAF
and ADSVF) are evaluated for sensor and process
fault detection and diagnosis in Section 4. In Section
5, the main concluding remarks are summarized.

2. Formulation of model-based process fault

monitoring problem

Instrumentation sensors are usually distributed
throughout the chemical process plants to meet
lized and decentralized process and sensor ..., Measure-
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both operational and safety requirements. However,
this scheme introduces a number of complications
which makes the consolidation of the data from
the located sensors a complicated task even for an
experienced engineer. Further complications include
the nature of information obtained from the sensors
which is inherently incomplete, uncertain, and
imprecise. Hence, it is imperative that a fusion
mechanism be devised so as to combine data from
multiple sensors to minimize such imprecision and
uncertainty, leading to a more comprehensive and
unified view of the sensor data.

These conditions combined with the require-
ments for a model-based approach to provide any
process failure detection and diagnosis information
make the Kalman filter (KF) approach an ideal
solution for the data fusion problem. However,
the effectiveness of such approach depends to a large
extent on how redundant and complementary are
the information cues obtained from the installed
sensors and the KF estimation. It is equally impor-
tant to decide at what level of abstraction the fusion
process is going to take place, e.g., at the measure-
ment level, at the feature/state level, or at the deci-
sion level.

The main issue in this model-based approach
concerns the ability to detect and diagnose the pro-
cess faults using the dependencies between the dif-
ferent process observed or estimated variables.
These dependencies can be explored by considering
mathematical process and measurement models.

Assume that the process is monitored by N differ-
ent sensors, described by the following general non-
linear process and measurement models in discrete-
time state-space framework:

xðkÞ ¼ f ðxðk � 1Þ; uðk � 1Þ; dðk � 1ÞÞ þ wðk � 1Þ
ð1Þ

ziðkÞ ¼ hiðxðkÞÞ þ viðkÞ; i ¼ 1; . . . ;N ð2Þ

where f(�) and hi(�) are the known nonlinear func-
tions, representing the state transition model and
the measurement model, respectively. xðkÞ 2 Rnx is
the process state-vector, uðkÞ 2 Rnu denotes the
manipulated process variables, dðkÞ 2 Rnd represents
the process faults modeled by the process distur-
bances, ziðkÞ 2 Rnzi are the measured variables ob-
tained from the N installed sensors, w(k) and vi(k)
indicate the stochastic process and measurement
disturbances modeled by zero-mean white Gaussian
noises with covariance matrices Q(k) and Ri(k),
respectively.
Please cite this article in press as: M. Mosallaei et al., Centra
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Therefore, the process fault monitoring problem
in this paper can be reduced to a design methodol-
ogy to realize a data integration mechanism which
is able to fuse together the N noisy measured data
(zi(k); i = 1, . . .,N), given in Eq. (2), to generate
the optimal detection and diagnostic estimation
information (x̂ðkÞÞ about the real-time status of
the nonlinear process operation, described by Eq.
(1).

The central challenges of this design problem,
however, can specifically be expressed in terms of
the data fusion algorithm by which the multi-sensor
measured data are fused together and the data inte-
gration architecture approach to determine the
fusion level and its implementation topology.

3. Multi-sensor data fusion technique based on

extended Kalman filter algorithm

Multi-sensor data fusion(MSDF) is a synergistic
process, concerning the mechanism of fusing uncer-
tain, incomplete, and sometimes conflicting data
from a variety of disparate sensors in real time to
extract a single compilation of the overall system
status for monitoring, control and decision-making
purposes.

For a particular industrial process application,
there might be plenty of associated sensor measure-
ments located at different operational levels and
having various accuracy and reliability specifica-
tions. One of the key issues in developing a MSDF
system is the question of how can the multi-sensor
measurements be fused or combined to overcome
uncertainty associated with individual data sources
and obtain an accurate joint estimate of the system
state vector. There exists various approaches to
resolve this MSDF problem, of which the KF is
one of the most significant and applicable candidate
solution.

3.1. Discrete-time extended Kalman filter

In most practical applications of interest, the
process and/or measurement dynamic models are
described by nonlinear equations, represented in
Eqs. (1) and (2). This means that the non-linear
behavior can affect the process operation at least
through its own process dynamics or measurement
equation. In such cases, the standard KF algorithm
is often unsuitable to estimate the process states
using its linearized time-invariant state-space model
at the desired process nominal operating point.
lized and decentralized process and sensor ..., Measure-
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Extended Kalman filter (EKF) gives a simple and
effective remedy to overcome such nonlinear estima-
tion problem. Its basic idea is to locally linearize the
nonlinear functions, described by Eqs. (1) and (2), at
each sampling time instant around the most recent
process condition estimate. This allows the Kalman
filter to be applied to the following linearized time-
varying model:

xðkÞ ¼ AðkÞxðk � 1Þ þ BuðkÞuðk � 1Þ
þ BdðkÞdðk � 1Þ þ wðk � 1Þ ð3Þ

ziðkÞ ¼ H iðkÞxðkÞ þ viðkÞ; i ¼ 1; . . . ;N ð4Þ

where the state transition matrix A(k), the input
matrices Bu(k) and Bd(k), and the observation ma-
trix Hi(k) are the Jacobian matrices which are eval-
uated at the most recent process operating condition
in real-time rather than the process fixed nominal
values:

AðkÞ ¼ of
ox

����
x̂ðkÞ

ð5Þ

BuðkÞ ¼
of
ou

����
uðkÞ

ð6Þ

BdðkÞ ¼
of
od

����
d̂ðkÞ

ð7Þ

HiðkÞ ¼
ohi

ox

����
x̂ðkÞ
; i ¼ 1; . . . ;N ð8Þ

In classical control, disturbance variables d(k) are
treated as known inputs with distinct entry in the
process state-space model. This distinction between
state and disturbance as non-manipulated variables,
however, is not justified from the monitoring per-
spective using the EKF estimation procedure.
Therefore, a new augmented state variable vector
x*(k) = [dT(k)xT(k)]T is developed by considering
the process disturbances or faults as additional state
variables. To implement this view, the process faults
are assumed to be random state variables governed
by the following stochastic auto-regressive (AR)
model equation:

dðkÞ ¼ dðk � 1Þ þ wdðk � 1Þ ð9Þ

This assumption changes the linearized model for-
mulations in Eqs. (3) and (4) to the following aug-
mented state-space model:

x�ðkÞ ¼ A�ðkÞx�ðk � 1Þ þ B�ðkÞuðk � 1Þ
þ w�ðk � 1Þ ð10Þ

ziðkÞ ¼ H �i ðkÞx�ðkÞ þ viðkÞ; i ¼ 1; . . . ;N ð11Þ
Please cite this article in press as: M. Mosallaei et al., Centra
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Noting that:

A�ðkÞ ¼
Ind�nd 0nd�nx

BdðkÞnx�nd AðkÞnx�nx

� �
ð12Þ

B�ðkÞ ¼ 0nd�nu BuðkÞnx�nu
� �T ð13Þ

H �i ðkÞ ¼ 01�nd H iðkÞ1�nx
� �

ð14Þ

w�ðk � 1Þ ¼ wdðk � 1Þnd�1 wðk � 1Þnx�1
� �T ð15Þ

where nx and nu denote the dimensions of the state
vector (x) and the manipulated variables (u), respec-
tively, and nd indicates the dimension of the distur-
bance or non-manipulated variables (d).

In practice, the process dynamic model in Eq. (1)
is of continuous-time nature. While, the measure-
ments in Eq. (2) are available through the digital
data-acquisition systems at discrete time instants.
Furthermore, the EKF algorithm is implemented
digitally to provide a quick and accurate estimate
of the process variables of interest. Therefore, an
efficient formulation of the algorithm needs to be
made for a real-time practical implementation in
order to minimize the filter cycle time, while obtain-
ing a reasonable state estimate accuracy. An appro-
priate method can be used for numerical integration
of the continuous-time process model from one
sample time to the next. In this paper, the simple
first-order Euler integration algorithm has shown
to be adequate. The time propagation equation for
the state covariance matrix P(k) is solved using
the transition matrix technique [10]. This method
preserves both the symmetry and the positive defi-
niteness of P(k), and hence yields adequate estima-
tion performance:

P�ðkÞ ¼ UðkÞPðk � 1ÞUTðkÞ þ QdðkÞ ð16Þ
where U(k) denotes the state transition matrix asso-
ciated with A(k) for all the time interval s 2
[(k � 1)Ts,kTs] which can be evaluated by:

UðkÞ ¼ I þ T sA
�ðkÞ ð17Þ

where Ts is the sampling period and Qd(k) is calcu-
lated as follows:

QdðkÞ ¼
Z kT s

ðk�1ÞT s

UðkT s; sÞQðsÞUTðkT s; sÞds ð18Þ

As a result, Qd(k) can be obtained using the follow-
ing trapezoidal integration scheme:

QdðkÞ ¼ ðUðkÞQðkÞUTðkÞ þ QðkÞÞ T s

2
ð19Þ

The EKF is then implemented using the time update
equations which project the state and covariance
lized and decentralized process and sensor ..., Measure-
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estimates forward one time step, and the measure-
ment update equations which correct the state and
covariance estimates using the latest measurement
information, are summarized as follows:

EKF time update equations

(1) x̂��ðkÞ ¼ x̂�ðk � 1Þ þ T sf ðx̂�ðk � 1Þ;
uðk � 1Þ; d̂ðk � 1ÞÞ

(2) P�ðkÞ ¼ UðkÞP ðk � 1ÞUTðkÞ þ QdðkÞ

EKF measurement update equations

(1) KðkÞ ¼ P�ðkÞH �T

i ðkÞ½H �i ðkÞP�ðkÞH �
T

i ðkÞþ
RðkÞ��1

(2) x̂�ðkÞ ¼ x̂�ðk � 1Þ þ KðkÞ½ziðkÞ � H �i ðkÞx̂��ðkÞ�
(3) P ðkÞ ¼ P�ðkÞ � KðkÞH �i ðkÞP�ðkÞ

The covariance matrix can be initialized (P(0)) with
a large value. This option, however, causes rapid
fluctuations in the initial EKF state estimates and
hence endangers the estimator convergence. On
the other hand, choosing a small initial covariance
matrix will make the estimator adaptation very
slow. Furthermore, when the process dynamics
change, the old estimated information will lose its
significance as far as the new process dynamic is
concerned. Thus, there should be a means of drain-
ing off old information at a controlled rate. One
simple and useful way of rationalizing this desired
approach is to modify the covariance matrix update
relationship as follows:

P ðkÞ ¼ ½P�ðkÞ � KðkÞH �i ðkÞP�ðkÞ�=k ð20Þ

where 0 < k 6 1 behaves as the forgetting factor
concept in the weighted recursive least squares
(WRLS) algorithm.

3.1.1. Adaptive extended Kalman filter (AEKF)

The operation of the EKF algorithm as the data
fusion technique relies on the precise a priori knowl-
edge of the process and measurement dynamic mod-
els and their noise properties. The uncertainty in the
covariance parameters of the process noise (Q) and
the observation error (R) has a crucial impact on the
EKF performance and may significantly degrade its
performance. This is due to the fact that Q and R

influence the weight that the EKF applies between
the existing process information and the latest mea-
surements. Hence, errors in any of them may cause
the EKF to diverge.

The conventional way of determining Q and R
requires good a priori knowledge of the process
Please cite this article in press as: M. Mosallaei et al., Centra
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noise and measurement error, which typically comes
from intensive empirical analysis. In practice, how-
ever, their values are generally assumed to be fixed
during the whole process of estimation time inter-
val. The resulting EKF performance suffers due to
this inflexibility scheme, because, process and mea-
surement noises are dependent on the application
environment and process dynamics. Thus, their set-
tings in different applications have to be done con-
servative in order to stabilize the EKF for the
worst case scenario, leading to performance
degradation.

In this paper, an online scheme is presented to
prevent the EKF degradation and divergence. It is
well known that the innovation and residual
sequences of the EKF are reliable indicators of its
filtering performance. The innovation sequence is
defined as

giðkÞ ¼ ziðkÞ � H �i ðkÞx̂��ðkÞ ð21Þ

and the residual sequence as

eiðkÞ ¼ ziðkÞ � H �i ðkÞx̂�ðkÞ ð22Þ
Substituting the measurement model (Eq. (11)) into
Eq. (21), gives:

giðkÞ ¼ ðH �i ðkÞx�ðkÞ þ viðkÞÞ � H �i ðkÞx̂��ðkÞ
¼ H �i ðkÞ½x�ðkÞ � x̂��ðkÞ� þ viðkÞ

ð23Þ

On the other hand, we have:

e��k ffi x�ðkÞ � x̂��ðkÞ ð24Þ

e�k ffi x�ðkÞ � x̂�ðkÞ ð25Þ

P�ðkÞ ¼ E½e��k e��T
k � ð26Þ

P ðkÞ ¼ E½e�ke�Tk � ð27Þ

Ri ¼ E½viðkÞviðkÞT� ð28Þ

For an optimal EKF operation, the innovation and
residual sequences should be white Gaussian noise
sequences with zero mean. On the basis of assuming
that w*(k) and vi(k) are uncorrelated white Gaussian
noise sequences and the orthogonality condition ex-
ists between observation error and state estimation
error, the innovation covariance can be computed
from Eq. (23):

E½giðkÞgT
i ðkÞ� ¼ E½ðH �i ðkÞe��k ÞðH �i ðkÞe��k Þ

T�
þ E½viðkÞvT

i ðkÞ�
¼ H �i ðkÞE½e��k e��T

k �H �Ti ðkÞ þ RiðkÞ ð29Þ
lized and decentralized process and sensor ..., Measure-
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That is

RiðkÞ ¼ E½giðkÞgT
i ðkÞ�

� H �i ðkÞP�ðkÞH �Ti ðkÞ; i ¼ 1; . . . ;N ð30Þ

Thus, when the innovation covariance E½giðkÞgT
i ðkÞ�

is available, the covariance of the observation error
Ri(k) can be estimated directly from Eq. (30). Calcu-
lation of the residual covarianceE½giðkÞgT

i ðkÞ� nor-
mally uses a limited number of samples of the
innovation sequence:

E½giðkÞgT
i ðkÞ� ¼

1

M

XM�1

m¼0

giðk � mÞgT
i ðk � mÞ ð31Þ

in which M represents the estimation window size.
However, it is noted that Eq. (31) gives a valid result
when the innovation sequence is stationary and
ergodic over the M sample steps.

To improve the robustness of the adaptive filter-
ing algorithm to innovation and residual covariance
estimations, a new process noise method is pro-
posed here as follows:

giðkÞ � eiðkÞ ¼ H �i ðkÞ½x̂�ðkÞ � x̂��ðkÞ� ð32Þ

Noting that the process output variables in our
formulation are always the same as the process state
variables, implying that H �i ðkÞ ¼ I . Hence, Eq. (32)
will be reduced to giðkÞ � eiðkÞ ¼ x̂�ðkÞ � x̂��ðkÞ.
Thus, it can be written:

ðgiðkÞ � eiðkÞÞT ¼ ½x̂�ðkÞ � x̂��ðkÞ�T ð33Þ

Multiplying Eq. (32) into Eq. (33) and taking the
expectation operator from its both sides, gives:

ðgiðkÞ � eiðkÞÞðgiðkÞ � eiðkÞÞT

¼ ½x̂�ðkÞ � x̂��ðkÞ�½x̂�ðkÞ � x̂��ðkÞ�T ð34Þ

E½giðkÞgT
i ðkÞ� þ E½eiðkÞeT

i ðkÞ�

¼ E½ðx̂�ðkÞ � x̂��ðkÞÞðx̂�ðkÞ � x̂��ðkÞÞT�
¼ E½ðe��k � e�kÞðe��k � e�kÞ

T� ¼ P�ðkÞ þ PðkÞ ð35Þ

On the other hand, the residual covariance can be
approximated as follows:

E½eiðkÞeT
i ðkÞ� ¼

1

M

XM�1

m¼0

eiðk � mÞeT
i ðk � mÞ ð36Þ

When the residual covariance E½eiðkÞeT
i ðkÞ�is avail-

able, the covariance of the process error Qd(k) can
be estimated from substituting equations (16),
(31), (36) into Eq. (35):
Please cite this article in press as: M. Mosallaei et al., Centra
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QdðkÞ ¼ ½
1

M

XM�1

m¼0

ðgiðk � mÞgT
i ðk � mÞ

þ eiðk � mÞeT
i ðk � mÞÞ�

� ½UðkÞP ðk � 1ÞUTðkÞ þ PðkÞ� ð37Þ
3.2. Multi-sensor integration architectures based on

Kalman filter data fusion algorithm

Multi-sensor data fusion can be done at a variety
of levels from the raw data or observation level to
the feature/state vector level and the decision level.
This idea can lead to utilization of different possible
configurations or architectures to integrate the data
from disparate sensors in an industrial plant to
extract the desired monitoring information. Using
Kalman filtering as the data fusion algorithm, mul-
tiple sensors can be integrated in two key architec-
ture scenarios called centralized method and
decentralized or distributed method. These methods
have been widely studied over the last decade
[11,12]. In centralized integration method, all the
raw data from different sensors is sent to single loca-
tion to be fused, as shown in Fig. 1.

This architecture is sometimes called as measure-
ment fusion integration method [11,12], in which
observations or sensor measurements are directly
fuses to obtain a global or combined measurement
data matrix (H*). Then, it uses a single Kalman filter
to estimate the global state vector based upon the
fused measurement. Although this conventional
method provides high fusion accuracy to the estima-
tion problem, the large number of states may
require high processing data rates that cannot be
maintained in practical real time applications.
Another disadvantage of this method is the lack of
robustness in case of failure in sensor or central fil-
ter itself. For these reasons, parallel structures can
often provide improved failure detection and cor-
rection, enhance redundancy management, and
decreased costs for multi-sensor system integration.
As such, there has recently been considerable inter-
est shown in distributed integration method in
which the filtering process is divided between some
local Kalman filters working in parallel to obtain
individual sensor-based state estimates and one
master filter combining these local estimates to yield
an improved global state estimate, as shown in
Fig. 2. This architecture is sometimes called as
state-vector fusion integration method [11,12]. The
advantages of this method are higher robustness
lized and decentralized process and sensor ..., Measure-



Fig. 1. Centralized integration architecture.

Fig. 2. Distributed integration architecture.
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due to parallel implementation of fusion nodes and
lower computation load and communication cost at
each fusion node. It is also applicable in modular
systems where different process sensors can be pro-
vided as separate units. On the other hand, distrib-
uted fusion is conceptually a lot more complex and
is likely to require higher bandwidth compared with
centralized fusion. However, a trade-off between
bandwidth and performance is possible by letting
the fusion nodes communicate at reduced rates [13].
3.2.1. Centralized integration method based on EKF

data fusion algorithm

In the presented centralized integration method,
the data from all the local sensors is fed into a data
fusion center where all the process measurements
are processed centrally by the EKF data fusion
algorithm to yield the global process state estimate.

Assume that the nonlinear dynamic process to be
monitored is described by the augmented state-
space model, given in Eq. (10). Accordingly, the
process measurement system, including N different
sensors, has the following dynamic model (Eq. (11)):

ziðkÞ ¼ H �i ðkÞx�ðkÞ þ viðkÞ; i ¼ 1; . . . ;N ð38Þ

where zi(k) represents the ith sensor measurement
data and H �i ðkÞ indicates its corresponding linear-
ized measurement matrix.

The centralized fusion problem is concerned with
different formulation methods by which the obser-
Please cite this article in press as: M. Mosallaei et al., Centra
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vation data (zi, i = 1,. . ., N) can be combined to
transform the N measurement equations described
by Eq. (38) into the following single measurement
equation:

zðkÞ ¼ H �ðkÞx�ðkÞ þ vðkÞ ð39Þ

where H*(k) indicates a single observation matrix,
called as global observation matrix and v(k) denotes
the overall measurement noise vector [v1(k) v2(k) . . .
vN(k)]T based on the assumption that vi(k) are
independent.

3.2.1.1. Centralized integration method using outputs

augmented fusion (OAF) formulation. The observa-
tion data (zi) can simply be combined by augment-
ing the multi-sensor data, leading to the following
observation model:

zðkÞ ¼ ½zT
1 ðkÞ . . . zT

N ðkÞ�
T ð40Þ

H �ðkÞ ¼ ½H �T1 ðkÞ . . . H �TN ðkÞ�
T ð41Þ

RðkÞ ¼ diag½R1ðkÞ . . . RN ðkÞ� ð42Þ

It is then straightforward to apply the discrete-time
EKF algorithm as the global data fusion algorithm
in centralized integration architecture to obtain
fused measurement information.

This method makes use of all the raw measure-
ment information in their original form without
any dimension reduction in the observation model.
lized and decentralized process and sensor ..., Measure-
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Thus, it is applicable in all situations such as dissim-
ilar sensors whose measurement matrices might be
of different sizes. However, its computational load
increases with adding more sensors.
3.2.2. Distributed state-vector integration method

based on the modified track-to-track fusion (MTTF)

algorithm

The standard track-to-track fusion (TTF) algo-
rithm is an alternative approach to optimally com-
bine the local state estimations. In this approach,
the individual and local estimations (i.e., x̂iðkjkÞÞ
are fed back to the predictive stage of the Kalman
filtering process corresponding to each individual
sensor. This makes the state estimations x̂iðkjkÞ be
mutually dependent. A better approach has been
introduced by the MTTF algorithm in which the
prediction procedure of the Kalman filtering
will be improved by the fused state estimationbX ðkjk � 1Þ at the last time step instead of the indi-
vidual or local state estimation (i.e., x̂iðkjkÞÞ in the
standard TTF algorithm. In this paper, the MTTF
algorithm, shown in Fig. 3, has been employed for
the proposed distributed integration method. The
new fused estimation bX ðkjkÞ and the covariance
matrix of the fused estimation are derived by the
following equations:

bX ðkjkÞ ¼ x̂1ðkjkÞ þ
1

N � 1

XN

i¼2

½P 1ðkjkÞ � P 1iðkjkÞ�

� ½P 1ðkjkÞ þ P iðkjkÞ � P 1iðkjkÞ � P i1ðkjkÞ��1

� ½x̂iðkjkÞ � x̂1ðkjkÞ� ð43Þ

PðkjkÞ ¼ P 1ðkjkÞ �
1

N � 1

XN

i¼2

½P 1ðkjkÞ � P 1iðkjkÞ�

� ½P 1ðkjkÞ þ P iðkjkÞ � P 1iðkjkÞ � P i1ðkjkÞ��1

� ½P 1ðkjkÞ � P i1ðkjkÞ� ð44Þ
Fig. 3. The modified (T–T

Please cite this article in press as: M. Mosallaei et al., Centra
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4. Simulation studies

A major objective of this research is to investi-
gate the usefulness of different multi-sensor integra-
tion architectures based on the EKF data fusion
algorithm to detect and diagnose sensor and process
faults. The basic idea of the adapted monitoring
approach is to reconstruct the process states from
the available multi-sensor data measurements inte-
grated in two centralized and decentralized configu-
rations using the EKF algorithm for both state
estimation and data fusion purposes. Two general
types of sensor and process faults are realized in a
simulation continuous stirred tank reactor (CSTR)
as a typical chemical benchmark problem.

4.1. CSTR plant description

The CSTR represented schematically in Fig. 4
works under atmospheric pressure [14]. It is a cooling
water-jacketed reactor which involves an irreversible
and liquid phase exothermic reaction A ? B taking
place inside the reactor tank. The cooling jacket sur-
rounding the reactor circulates the coolant water to
absorb the generated reaction heat.

Two proportional controllers are used to regulate
the reactor outlet temperature (T) and the liquid
volume (V) inside the reactor tank. The temperature
is controlled by manipulating the flow rate of the
coolant water (u1 = Fj) following through the
jacket. While, the level in the reactor is controlled
by manipulating the outlet flow rate (u2 = Fo) from
the reactor.

The dynamic behavior of the CSTR is modeled
by a system of differential equations translating
molar and heat balances in the reactor. The derived
model is based on the following hypotheses:

� The reactor is perfectly stirred implying that the
reaction mass temperature and concentrations
are homogeneous through the mass volume.
) fusion algorithm.

lized and decentralized process and sensor ..., Measure-



Fig. 4. Continuous stirred tank reactor.
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� The heat losses are negligible.
� No phase change occurs in the reaction mass.
� The density, the specific heat of the cooling and

the reaction mass heat are independent of the
temperature.
� Constant holdup and perfect mixing are assumed

in the cooling jacket.

The resulting CSTR plant model equations can
be described by [14]:

dV
dt
¼ F i � F o ð45Þ

dðVCaÞ
dt

¼ F iCai � F oCa� V k0 exp
Ea

RT

� �� �
Ca

ð46Þ

qcp
dðVT Þ

dt
¼ qcpðF iT i � F oT Þ � DHV

� ko exp
Ea

RT

� �� �
Ca� Ua0ðT � T jÞ ð47Þ

qjV jcj
dT j

dt
¼ qjcjF jðT c � T jÞ þ Ua0ðT � T jÞ ð48Þ

F o ¼ 40� 10ð48� V Þ
ðProportional level controllerÞ ð49Þ

F j ¼ 49:9� 4ð600� T Þ
ðProportional temperature controllerÞ ð50Þ

The derived model equations are modified to be for-
mulated in terms of the normalized and dimension-
less states by the main process variables
(Fi,Cai,Ti,Tc) to be monitored. The resulting state
equations include the explicit fault terms (DFi,DCai,
DTi,DTc), as follows [15]:

dx1

dt
¼ F i

V s

� F os

V s

ðu1 þ 1Þ

þ 1

1þ Cai
Cas
þ T i

T s

DF i

1

V s

þ Cai

V sCas

þ T i

V sT s

� �
ð51Þ
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dx2

dt
¼ F iCai

V sCas

� F osðu1 þ 1Þðx2 þ 1Þ
V sðx1 þ 1Þ

� k0ðx2 þ 1Þ exp
�Eaðx1 þ 1Þ
RT sðx3 þ 1Þ

� �
þ Cai

Cas þ Cai þ CasT i
T s

DF i

1

V s

þ Cai

V sCas

þ T i

V sT s

� �
þ DCai

F i

V sCas

ð52Þ

dx3

dt
¼ F iT i

V sT s

� F osðu1 þ 1Þðx3 þ 1Þ
V sðx1 þ 1Þ � DHCask0

qcpT s

�ðx2 þ 1Þ exp
�Eaðx1 þ 1Þ
RT sðx3 þ 1Þ

� �
� Ua0ðx3 þ 1Þ

qcpV sðx1 þ 1Þ þ
Ua0T jsðx4 þ 1Þ

qcpV sT s

þ DT i
F i

V sT s

þ T i

T s þ CaiT s

Cas
þ T i

DF i

1

V s

þ Cai

V sCas

þ T i

V sT s

� �
ð53Þ

dx4

dt
¼ T cF js

V jT js

ðu2 þ 1Þ � F jsðu2 þ 1Þðx4 þ 1Þ
V j

þ Ua0T sðx3 þ 1Þ
qjcjV jT jsðx1 þ 1Þ �

Ua0ðx4 þ 1Þ
qjcjV j

 !

þ DT c

F jsðu2 þ 1Þ
V jT js

ð54Þ

where

x1 ¼
V � V s

V s

; x2 ¼
VCa� V sCas

V sCas

; x3 ¼
VT � V sT s

V sT s

;

x4 ¼
T j � T js

T js

; u1 ¼
F o � F os

F os

; u2 ¼
F j � F js

F js

ð55Þ
lized and decentralized process and sensor ..., Measure-



Table 1
Non-isothermal CSTR parameters

Notation Variable Steady state values

Fo Outlet flow rate 40 ft3/h (Fos)
Cai Inlet reactant concentration 0.5 lb mol of A/ft3
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The relevant parameters for simulating the CSTR
plant are tabulated in Table 1. The table includes
the steady-state condition of the reactor indicated
by the subscript ‘‘s” as Vs, Cas, Ts, Tjs, Fos, Fjs at
normal operating point.
(Cais)
T Temperature of tank 600 �R (Ts)
Fj Coolant flow rate 49.9 ft3/h (Fjs)
V Volume of reactor 48 ft3 (Vs)
Ca Outlet reactant

concentration
0.245 lb mol of A/
ft3(Cas)

Tj Temperature of the outlet
coolant

594.6 �R (Tjs)

Ti Inlet feed temperature 530 �R (Tis)

Parameter values

Vj Volume of jacket 3.85 ft3

Ea Activation energy 30,000 Btu/lb mol
U Heat-transfer coefficient 150 Btu/h ft2 �R
Tc Temperature of the inlet

coolant
530 �R

cp Heat capacity (process side) 0.75 Btu/lbm �R
q Density of process mixture 50 lbm/ft3

k0 Frequency factor 7.08 � 1010 h�1

R Universal gas constant 1.99 Btu/lb mol �R
a0 Heat-transfer area 250 ft2

DH Heat of reaction �30,000 Btu/lb mol
Cj Heat capacity (coolant side) 1.0 Btu/lbm �R
qj Density of coolant 62.3 lbm/ft3
4.2. Formulation of plant state equations for fault
monitoring

The CSTR plant dynamic model in Eqs. (51)–
(54) demonstrate its nonlinear dynamic nature
which can be represented by the following general
nonlinear state equations (fi(�); i = 1, . . ., 4) in dis-
crete-time domain:

x1ðk þ 1Þ ¼ f1ðxðkÞ; uðkÞ; dðkÞÞ þ w1ðk � 1Þ ð56Þ
x2ðk þ 1Þ ¼ f2ðxðkÞ; uðkÞ; dðkÞÞ þ w2ðk � 1Þ ð57Þ
x3ðk þ 1Þ ¼ f3ðxðkÞ; uðkÞ; dðkÞÞ þ w3ðk � 1Þ ð58Þ
x4ðk þ 1Þ ¼ f4ðxðkÞ; uðkÞ; dðkÞÞ þ w4ðk � 1Þ ð59Þ

where k denotes the sampling instants and

xðkÞ ¼ ½x1ðkÞ x2ðkÞ x3ðkÞ x4ðkÞ�T

ðState vectorÞ ð60Þ
uðkÞ ¼ ½u1ðkÞ u2ðkÞ�T

ðInput vectorÞ ð61Þ
dðkÞ ¼ ½DF iðkÞ DCaiðkÞ DT iðkÞ DT cðkÞ�T

ðProcess fault vectorÞ ð62Þ

wi(k � 1); i = 1, . . ., 4, describe the process noises
which have been added artificially to the CSTR pro-
cess state model equations to include the real uncer-
tainties faced in the practical situations. These
process noises are assumed to behave as zero-mean
white Gaussian noises with covariance matrix Q(k).
Similarly, the output equation can be described by
the following general nonlinear model (h(�)), derived
from the CSTR dynamic model in Eqs. (51)–(54):

yðkÞ ¼ hðx�ðkÞÞ þ vðkÞ ð63Þ

where x*(k) = [dT(k) xT(k)]T represents the aug-
mented state variable vector, v(k) = [v1(k), v2(k),
v3(k),v4(k)]T has been added to represent the inevi-
table measurement noises and y(k) denotes the out-
put vector. v(k) is assumed to behave as zero-mean
white Gaussian noises with covariance matrix
R(k). Therefore, the nonlinear functions f(�) = [f1(�),
f2(�), f3(�), f4(�)]Tand h(�) in state and output model
equations can be linearized at each sampling time
around the most recent process condition estimate,
Please cite this article in press as: M. Mosallaei et al., Centra
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leading to the augmented state-space model given
by Eqs. (10) and (11).

For computer simulation of the plant fault mon-
itoring studies, the CSTR nonlinear model dynam-
ics, described in Eqs. (56)–(59), are implemented
using s-function and SIMULINK facilities in MAT-
LAB. The basic time unit is hours (h) and the sam-
pling time is taken to be equal to 0.005 h.

4.3. Sensor fault detection and diagnosis

A sensor often comprises of different parts such
as a sensing device, transducer, signal processor,
and communication interface. Any of these parts
may malfunction causing the sensor to generate sig-
nals with unacceptable deviation from its normal
condition. A sensor working under this condition,
i.e. faulty sensor, may cause process performance
degradation, process shut-down or even fatal acci-
dents. A sensor is declared faulty when it displays
a non-permitted deviation from the characteristic
properties.

This study focuses on drift in sensor calibration
(i.e., bias error) and drift in sensor degradation
(i.e., excessive-variance noise) anomalies. A sensor
lized and decentralized process and sensor ..., Measure-



Table 2
Sensor fault scenario in the key variable sensors

Sensor fault parameter The magnitude of fault

V T Ca Tj

Bias 5 0.03 �30 60
Excessive-variance coefficient 0.5 0.01 2 2.5
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is biased if its reading differs by a constant value
from the actual value. The excessive-variance noise
fault refers to the case where the sensor reading is
affected by an excessive-variance white noise. This
fault might represent the gradual or incipient sensor
degradation due to wear, aging, fouling or corrosion
which is generally not detectable in their early
stages.

4.3.1. Drift in sensor calibration (bias error)

To carry out the sensor calibration fault detec-
tion, a method is required to quantity the state der-
ivation due to sensor fault occurrence. The
following stochastic AR model is employed to
explain the time evolution of the sensor bias as extra
process state variables

biðkÞ ¼ biðk � 1Þ þ N biðkÞ; i ¼ 1; . . . ; nb ð64Þ
where nb denotes the number of faulty sensors, and
Nbi(k) indicates a zero-mean white Gaussian noise
with covariance matrices Qbi(k) describing the bias
model uncertainty. Therefore, the process state var-
Fig. 5. Sensor faults including bias and drift, (a) sens

Please cite this article in press as: M. Mosallaei et al., Centra
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iable vector in Eqs. (10) and (11) is augmented by
the sensor bias states, defined in Eq. (64).
4.3.2. Drift in sensor degradation (excessive-variance

noise)
To simulate this type of sensor fault, the follow-

ing model equation is used to describe an added sen-
sor white noise whose variance characteristic is
changed linearly with time evolution.

nðkÞ ¼ r0

k � 1

T max=1:5� 1
N nðkÞ ð65Þ

where r0 shows the coefficient noise variance, Tmax

indicates the maximum number of measurement
or V, (b) sensor Ca, (c) sensor T, (d) sensor Tc.

lized and decentralized process and sensor ..., Measure-
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time samples, and Nn(k) is a zero-mean white
Gaussian noise with unit variance and uncorrelated
with process and measurement noises.
4.3.3. Simulation and results

To illustrate the application of the fault detection
and identification procedures, a simulation study
will be conducted in this subsection. Consider the
CSTR plant described in Section 4.1. A sensor fault
scenario is simulated in which the four CSTR key
measured variables (V,T,Ca,Tj) are corrupted with
the combined drift in their corresponding sensor
calibration (bias) and degradation (excessive-vari-
ance) as summarized in Table 2.

The distributed state-vector fusion integration
method is used to detect and diagnosis the sensor
calibration and degradation faults. This is mainly
due to the distributed nature of this method in
which the filtering process is done by parallel Kal-
man filters, located locally at the individual sensor
positions. This makes it possible to detect and iso-
Fig. 6. Bias d

Please cite this article in press as: M. Mosallaei et al., Centra
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late the sensor faults in order to differentiate the real
sensor data before integrating it at the fusion center.

In this approach, the sensor bias faults are esti-
mated by the individual EKF estimation algorithms
using the augmented state variable vector including
the bias vector term. While, the sensor faults due to
drift in sensors degradation are detected via the
residual errors (z� H �x̂) of each individual EKF
estimates.

Fig. 5 illustrates the corrupted sensor measure-
ments V,T,Ca,Tj due to the simultaneous occur-
rence of both introduced sensor faults (described
in Table 2) including with the sensor data measure-
ments due to actual fault-free for comparison
purposes.

Figs. 6 and 7 demonstrate the resulting sensor
fault detection and isolation in which both type of
sensor faults been estimated. As shown, the faults
due to the sensor biases have accurately been esti-
mated in Fig. 6. Fig. 7 depicts the estimated sensor
faults due to drift in the degradation.
etection.

lized and decentralized process and sensor ..., Measure-



Fig. 7. Drift detection.

Table 3
Comparison of RMSE drift fault between proposed method and
ICA method

Measurement
variable

RMSE for the proposed
method (%)

RMSE for the
ICA method (%)

V 3.5466 3.4415
Ca 0.4462 0.6664
T 3.7973 17.511
Tj 3.6446 14.1558
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Table 3 summarizes the resulting drift detection
accuracies calculated individually for each measured
variable in terms of the root mean-squared error
(RMSE) in the estimates (i.e., the difference between
estimated and true values).

The obtained results indicate the superior effi-
ciency of the proposed algorithm to detect and diag-
nose both types of the sensor faults. To investigate
the capability of the presented algorithm to reveal
the excessive-variance sensor fault, its performance
is evaluated and compared with that of the indepen-
dent component analysis (ICA), as an emerging
powerful statistical signal processing technique,
which is able to extract the hidden or underlying
sensor fault noise from the measured data using
the FastICA algorithm [16]. The obtained results
are depicted in Figs. 8–11 for the different key mea-
sured variables.

A comparison of the RMSE measures for the
both approaches, indicate that the presented algo-
rithm in this work is able to provide more accurate
estimates with respect to the ICA method.
Please cite this article in press as: M. Mosallaei et al., Centra
ment (2008), doi:10.1016/j.measurement.2008.02.009
4.4. Process fault detection and diagnosis

4.4.1. CSTR process faults

Table 4 lists some of the probable CSTR process
faults.
4.4.2. Simulation and results

A series of simulation runs will be conducted on
the CSTR plant to evaluate and compare the effec-
tiveness of the two multi-sensor distributed and
centralized integration approaches based on the
lized and decentralized process and sensor ..., Measure-
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Kalman filter data fusion algorithm. To carry out
the different simulation test runs under the same
process fault, a predefined multi-fault test scenario
is programmed. First, the inlet reactant feed is chan-
ged by a negative step of DFi = 10% at sampling
Fig. 8. Drift detection in the sensor (V). (a) Th

Fig. 9. Drift detection in the sensor (Ca). (a) Th
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instant (t) of 5. Then, the inlet reactant concentra-
tion undergoes a step change of DCai = 10% at
t = 10. Following that, the inlet temperature of the
reactant undergoes a negative step change of
DTi = 10% at t = 15 and subsequently the inlet tem-
e proposed method. (b) The ICA method.

e proposed method. (b) The ICA method.
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perature of coolant goes up by a step change of D
Tc = 5% at t = 20. Thus, this fault test scenario
embodies a complete simulation picture in which
single, double, triple and finally quadruple process
faults occur sequentially after a 5 sampling time
interval.
Fig. 10. Drift detection in the sensor (T). (a) Th

Fig. 11. Drift detection in the sensor (Tc). (a) Th

Please cite this article in press as: M. Mosallaei et al., Centra
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Three different simulation runs, corresponding to
three different process monitoring approaches, i.e.,
non-adaptive centralized output augmented fusion
(OAF) or (NACOAF) method, adaptive centralized
OAF (ACOAF) method and adaptive distributed
state-vector fusion (ADSVF) method, were carried
e proposed method. (b) The ICA method.

e proposed method. (b) The ICA method.
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Table 4
List of process faults

Fault number Fault name Notation

1 Low inlet feed of reactant dFi

2 High inlet concentration of reactant dCai

3 Low inlet temperature of reactant dTi

4 High inlet temperature of coolant dTc
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out. Fig. 12 demonstrates the resulting process fault
estimation outcomes due to the foregoing three
monitoring approaches.

In order to clarify the assessment of the monitor-
ing performances, the corresponding errors in the
resulting fault estimation are depicted in Fig. 13.

Noting that all the fault monitoring approaches
have been evaluated on the same measured data
for the same realizations of the fault test scenario.
The resulting observations demonstrate that the
ACOAF method generally present better fault esti-
mation performance in terms of the resulting RMSE
measures, summarized in Table 5.

However, ADSVF method has a lower computa-
tion time and communication cost and benefits the
Fig. 12. Estimation of faults occurring at di

Please cite this article in press as: M. Mosallaei et al., Centra
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advantage of parallel distributed implementation,
leading to a higher fault-tolerant capability.
5. Conclusions

This paper addresses the sensor and process fault
monitoring problem using multi-sensor data fusion
technique based on EKF estimation algorithm. A
discrete-time EKF approach has been adapted to
enhance the robustness of its implementation. The
process and sensor bias faults have been treated as
extra states from the monitoring perspective, lead-
ing to a new augmented state-space model formula-
tion. A new adaptive EKF algorithm has been
developed to include the time-varying nature of pro-
cess and measurement noises in the estimation algo-
rithm. To realize this uncertainty adaptation, the
innovation and residual errors information have
been incorporated in the developed online relation-
ships, to update the process and measurement
covariance matrices. This adaptive scheme increases
the accuracy of the estimation and prevents the
fferent times with different magnitudes.
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Fig. 13. The fault estimation errors and their RMSE.

Table 5
Resulting RMSE measures and computation time

Method RMSE of process faults (%) Computation time (s)

dFi dCai dTi dTc

NACOAF 17.2971 88.5621 61.0648 17.8263 15.6941
ACOAF 2.8565 2.8379 2.8471 1.2242 26.7952
ADSVF 2.9819 3.9120 4.0590 1.2850 15.3771
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EKF algorithm to degrade its performance. Two
different centralized and distributed multi-sensor
integration architectures were presented based on
the non-adaptive and adaptive EKF data fusion
algorithms to monitor sensor and process faults.

A set of simulation studies were conducted on a
CSTR benchmark problem to investigate the per-
formances of the proposed monitoring methods.
The sensor fault study focused on drift in sensor cal-
ibration (i.e., bias error) and drift in sensor degrada-
tion (i.e., excessive-variance noise) anomalies. The
process fault study included four probable CSTR
process faults listed in Table 4.

The sensor bias faults were estimated accurately
using the individual EKF algorithms based on the
augmented state variable vector including the bias
vector terms. While, sensor faults due to drifts were
estimated via the EKF residual estimation errors.
Comparison of the resulting sensor drift fault mon-
itoring to that of the ICA method, as a powerful
Please cite this article in press as: M. Mosallaei et al., Centra
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noise separation approach, revealed a better perfor-
mance in terms of the obtained RMSE measure.

Three different proposed monitoring approaches,
i.e. NACOAF, ACOAF and ADSVF, were tested
on the CSTR plant to evaluate their performance
against process faults using a series of simulation
studies. The resulting performances, summarized
in Table 5, demonstrate that the ACOAF method
can generally present a better fault estimation from
the RMSE measure point of view. However, ADS-
VF method has the advantages of parallel distrib-
uted architecture, benefiting a lower computation
time and communication cost and higher fault-tol-
erant characteristic.
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