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Abstract

We address the problem of space-time codebook design for non-coherent communications in multiple-antenna

wireless systems. In contrast with other approaches, the channel matrix is modeled as an unknown deterministic

parameter at both the receiver and the transmitter, and the Gaussian observation noise is allowed to have an arbitrary

correlation structure, known by the transmitter and the receiver. In order to handle the unknown deterministic space-

time channel, a generalized likelihood ratio test (GLRT) receiver is considered. A new methodology for space-time

codebook design under this non-coherent setup is proposed. This optimizes the probability of error of the GLRT

receiver’s detector in the high signal-to-noise ratio (SNR) regime, thus solving a high-dimensional nonlinear non-

smooth optimization problem in a two-step approach: (i) firstly, a convex SDP relaxation of the codebook design

problem yields a rough estimate of the optimal codebook; (ii) this is then refined through a geodesic descent

optimization algorithm that exploits the Riemannian geometry imposed by the power constraints on the space-

time codewords. The results obtained through computer simulations illustrate the advantages of our method. For

the specific case of spatio-temporal white observation noise, our codebook constructions replicate the performance

of state-of-art known solutions. The main point here is that our methodology permits to extend the codebook

construction to any given correlated noise environment. The simulation results show the good performance of these

new designed codes.
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I. INTRODUCTION

THE main challenges in designing wireless communication systems comprise of dealing with the highly

random channel conditions, which may vary rapidly, and also with the additive observation noise at the

receiver. Exploiting temporal and spatial diversity employing multiple antennas at the transmitter and receiver and

encoding the data over several symbol intervals, known as space-time coding, has shown to be an efficient approach

when dealing with the problems aforesaid, provided that either channel state information (CSI) is accessible at the

receiver [1], [2], [3], [4], or the signal power at the receiver is significantly higher than the power of the additive

observation noise [5], [6], [7].

In slowly fading scenarios, when the fading channel coefficients remain approximately constant for many symbol

intervals, channel stability enables the receiver to be trained in order to acquire the CSI. This is usually referred

to as coherent detection. Code design for the coherent systems is performed with the assumption that the CSI is

available at the receiver. It is known [1], [3] that, when CSI is available at the receiver, the maximal achievable rate,

referred to as capacity of the link, increases linearly (for rich scattering environments) with the minimum number

of transmit and receive antennas.

In fast fading scenarios, fading coefficient change into new, almost independent values before being learned by

the receiver through training signals. Using multiple antennas at the transmitter increases the number of parameter

to be estimated at the receiver which makes this problem more serious. This makes the non-coherent detection

mode, where the receiver detects the transmitted symbols without having information about the realization of the

channel, an attractive option for these fast fading scenarios.

Previous work. The capacity of non-coherent multiple antenna systems was studied in [5], [6]. Under the additive

white observation Gaussian noise and Rayleigh channel assumptions, it has been shown that at high signal-to-

noise ratio (SNR), or when the coherence interval, T , is much bigger than the number of transmit antennas M ,

capacity can be achieved by using a constellation of unitary matrices as codebooks. These unitary constellations

are capacity optimal. Furthermore, in [8] has been shown that, under the assumption of equal-energy codewords,

scaled unitary codebooks are optimal from an asymptotic (high SNR) union bound (UB) on the error probability

minimization perspective. Hence, at high SNR unitary constellations are optimal from both the capacity and

symbol error probability viewpoints. Optimal unitary constellations correspond to optimal packings in Grassmann

manifolds [9]. In [7], [10], a systematic method for designing unitary space-time constellations was presented.

In [11], Sloan’s algorithms [12] for producing sphere packings in real Grassmannian space have been extended to

complex Grassmannian space. For a small number of transmit antennas, by using chordal distance as the design

criterion, the corresponding constellations improve on the bit error rate (BER) when compared with the unitary

space-time constellations presented in [7]. In [13] the problem of designing signal constellations for the multiple

antenna noncoherent Rayleigh fading channel has been examined. The asymptotic UB on the probability of error

has been considered, which, consequently, gave rise to a different notion of distance on the Grassmann manifold.
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By doing this, a method of iteratively designing signals, called successive updates, has been introduced. The signals

obtained therein are, in contrast to [7], [11], guaranteed to achieve the full diversity order of the channel. Later,

Borran et. al. [14], under the assumption of equally probable codewords, presented a technique that uses Kullback-

Liebler (KL) divergence between the probability density functions induced at the receiver by distinct transmitted

codewords as a design criterion for codebook construction. The codes thereby obtained collapse to the unitary

constellations at high SNR, but at low SNR they have a multilevel structure and show improvement over unitary

constellations of same size. In [15] a family of space-time codes suited for noncoherent multi-input multi-output

(MIMO) systems was presented. These codes use all the degrees of freedom of the system, and they are constructed

as codes on the Grassmann manifold by the exponential map. Recently, in [16], [17] some sub-optimal simplified

decodings for the class of unitary space-time codes obtained via the exponential map were presented.

The techniques aforementioned can not be readily extended to the more realistic and challenging scenario,

where the Gaussian observation noise has an arbitrary correlation structure. The assumption of spatio-temporal

Gaussian observation noise is common, as there are at least two reasons for making it. First, it yields mathematical

expressions that are relatively easy to deal with. Second, it can be justified via the central limit theorem. Although

customary, the assumption of spatio-temporal white Gaussian observation noise is clearly an approximation. In

general, in realistic scenarios, the noise term might have very rich correlation structure, e.g, see pp.10,159,171

in [18]. The generalization to arbitrary noise covariance matrices encompasses many scenarios of interest as special

cases: spatially colored or not jointly with temporally colored or not observation noise, multiuser environment, etc.

Intuitively, unitary space-time constellations are not the optimal ones for this scenario.

In this paper, we look for a more practical code design criterion based on error probability, rather than capacity

analysis. The calculus of the exact expression for the average error probability for the general non-coherent systems

seems not to be tractable. Instead, we consider pairwise error probability (PEP) in high SNR regime, and use it to

find a code design criterium (a merit function) for an arbitrarily given noise correlation structure.

Contribution. Our contributions in this area are summarized in the following: (1) The main contribution of this

paper is a new technique that systematically designs space-time codebooks for non-coherent multiple-antenna

communication systems. Contrary to other approaches, the Gaussian observation noise may have an arbitrary

correlation structure. In general correlated noise environments, computer simulations show that the space-time

codes obtained with our method significantly outperform those already known which were constructed for spatio-

temporally white noise case. We recall that codebook constructions for arbitrary noise correlation structures were

not previously available and this demonstrates the interest of the codebook design methodology introduced herein.

(2) For the special case of spatio-temporal white observation noise, our codebooks recover the previously known

unitary structure, namely the codes in [7] (in fact, our codes are marginally better). Also, for this specific scenario

and M=1 we show that the problem of finding good codes coincides with the very well known packing problem in

the complex projective space. We compare our best configurations against the codes in [10] and the Rankin bound.
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We manage to improve the best known results and in some cases actually provide optimal packings in complex

projective spaces which attain the Rankin upper bound. (3) Theoretical analysis leading to an upper bound on PEP

in the high SNR scenario for the Gaussian observation noise with an arbitrary correlation structure.

Paper organization. The paper is organized as follows. In section II, we introduce the data model and formulate the

problem addressed in this paper. We describe the structure of our non-coherent receiver and discuss the selection of

the codebook design criterium. In section IV we propose a new algorithm that systematically designs non-coherent

space-time constellations for an arbitrarily given noise covariance matrix and any M , N , K and T , respectively,

number of transmitter antennas, number of receiver antennas, size of codebook, and channel coherence interval. In

Section V, we present codebook constructions for several important special cases and compare their performance

with state-of-art solutions. Section VI presents the main conclusions of our paper.

Throughout the paper, the operator T (H ) denotes transpose (complex conjugate transpose). The multivariate

circularly symmetric, complex Gaussian distribution with mean vector µ and covariance matrix Σ is denoted by

CN (µ,Σ). The expectation operator is denoted by E[·]. For any matrix A we write its trace as tr(A). The Kronecker

product of two matrices is denoted by ⊗. The N -dimensional identity matrix is denoted by IN and the M × N

matrix of all zeros by 0M×N (also 0N = 0N×N ). The minimum (maximum) eigenvalue of the symmetric matrix

A is denoted by λmin(A) (λmax(A)). The determinant of matrix A is denoted by det(A). The operator vec(A)

stacks all columns of the matrix A on the top of each other, from left to right. The curled inequality symbol �
represents matrix inequality between Hermitian matrices.

II. PROBLEM FORMULATION

Data model and assumptions. The communication system comprises M transmit and N receive antennas and we

assume a block flat fading channel model with coherence interval T . That is, we assume that the fading coefficients

remain constant during blocks of T consecutive symbol intervals, and change into new, independent values at the

end of each block. In complex base band notation we have the model

Y = XHH + E, (1)

where X is the T ×M matrix of transmitted symbols (the matrix X is called hereafter a space-time codeword),

Y is the T ×N matrix of received symbols, H is the N ×M matrix of channel coefficients, and E is the T ×N

matrix of zero-mean additive observation noise. In Y , time indexes the rows and space (receive antennas) indexes

the columns. We shall work under the following assumptions:

A1. (Channel matrix) The channel matrix H is not known at the receiver neither at the transmitter, and no

stochastic model is assumed for it;

A2. (Transmit power constraint) The codeword X is chosen from a finite codebook X = {X1, X2, . . . , XK}
known to the receiver, where K is the size of the codebook. We impose the power constraint tr(XH

k Xk) = 1

for each codeword. Furthermore, we assume that T ≥ M and each codeword is of full rank, i.e., rank(X) = M ;
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A3. (Noise distribution) The observation noise at the receiver is zero mean and obeys circular complex Gaussian

statistics, that is, vec(E) ∼ CN (0,Υ). The noise covariance matrix Υ = E[vec(E) vec(E)H ] is known at

the transmitter and at the receiver.

Remark that in assumption A3, we let the data model depart from the customary assumption of spatio-temporal

white Gaussian observation noise. Also, note that one cannot perform “pre-whitening” in order to revert the colored

case (Υ 6= ITN ) into the spatio-temporal white noise case (Υ = ITN ). To see this, let’s consider two systems

where system 1 is described by

Y 1 = X1H
H + E1, (2)

with e1 = vec(E1) ∼ CN (0,Υ), and system 2 is given by

Y 2 = X2H
H + E2, (3)

with e2 = vec(E2) ∼ CN (0, ITN ). The systems (2) and (3) are equivalent to

y1 = vec(Y 1) = (IN ⊗X1) vec(HH) + e1, (4)

y2 = vec(Y 2) = (IN ⊗X2) vec(HH) + e2 (5)

respectively. After pre-whitening, from (4) we get

ỹ1 = Υ
− 1

2 y1 = Υ
− 1

2 (IN ⊗X1) vec(HH) + ẽ1 (6)

with ẽ1 = Υ
− 1

2 e1 ∼ CN (0, ITN ). From (5) and (6) we deduce that the systems 1 and 2 are not equivalent, i.e.,

the unitary constellations (which are optimal for spatio-temporally white noise at high SNR) cannot be employed

by performing suitable pre-whitening.

Receiver. According to the system model (1) and the assumptions above mentioned, the conditional probability

density function of the received vector y = vec(Y ), given the transmitted matrix X and the unknown realization

of the channel g = vec
(
HH

)
, is given by

p(y|X, g) =
exp{−||y − (IN ⊗X)g||2

Υ
−1}

πTN detΥ
,

where the notation ||z||2A = zHAz was used.

Since no stochastic model is attached to the channel propagation matrix, the receiver faces a multiple hypothesis

testing problem with the channel H as a deterministic nuisance parameter. We assume a generalized likelihood

ratio test (GLRT) receiver which decides the index k of the codeword as the index k̂ such that

k̂ = argmax p(y|Xk, ĝk)

k = 1, 2, . . . , K

= argmin ||y − X̃kĝk||2Υ−1

k = 1, 2, . . . , K
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where

X̃k = IN ⊗Xk and ĝk = (X H
k X k)

−1X H
k Υ

− 1

2 y (7)

with X k = Υ
− 1

2 X̃k denoting the whitened version of X̃k . The GLRT [21], [22], [23] is composed of a bank

of K parallel processors where the k-th processor assumes the presence of the k-th codeword and computes the

likelihood of the observation, after replacing the channel by its maximum likelihood (ML) estimate. The GLRT

detector chooses the codeword associated with the processor exhibiting the largest likelihood of the observation.

Due to the respective expression for the ML estimate of the channel, equation (7), we note that since each codeword

of the codebook has full rank (assumption A2), the channel estimate is well defined.

Codebook design criterion. In this paper, our goal is to design a codebook C = {X1, X2, . . . , XK} of size

K for the current setup. A codebook C is a point in the space M = {(X1, . . . , XK) : tr(XH
k Xk) = 1}.

Note that the space M can be viewed as multi-dimensional torus, i.e, the Cartesian product of K unit-spheres :

M = S
2TM−1×· · ·×S

2TM−1 (K times) and each codeword Xk belongs to C
T×M . The symbol S

n−1 denotes the

unit sphere in R
n. First, we must adopt a merit function f : M→ R which gauges the quality of each constellation

C. The average error probability for a specific C would be the natural choice, but the theoretical analysis seems

to be intractable. Instead, as commonplace [6]- [7], we rely on a pairwise error probability study to construct our

merit function. For the special case of unitary codebooks (XH
k Xk = 1

M
IM ), spatio-temporal white Gaussian noise

(Υ = ITN ) and independent identically distributed (iid) Rayleigh fading, the exact expression and Chernoff upper

bound for the pairwise error probability have been derived in [6]. However, the calculus of these expressions for

the general case, i.e, arbitrary matrix constellations C and noise correlation matrix Υ, seems to be burdensome.

Since the advantages of good codes are usually more impressive in high SNR scenarios we focus our attention

in constructing codes that are optimal for this range of SNR. Namely, in this paper we resort to the asymptotic

expression of the PEP in the high SNR regime, for arbitrary C and Υ. This paper completes our previous work in

[19]. For a corresponding study in the low SNR regime, see [20]. Let PXi→Xj
be the probability of the GLRT

receiver deciding Xj when X i is sent. It can be shown (see Appendix I) that at sufficiently high SNR we have

the approximation

PXi→Xj
' Q

(
1√
2

√
gH Lijg

)
, (8)

with

Lij = X H
i Π

⊥
j X i and Π

⊥
j = ITN −X j

(
X H

j X j

)−1
X H

j

where Q(x) =
∫ +∞
x

1√
2π

e−
t2

2 dt is the Q-function and Π
⊥
j is the orthogonal projector onto the orthogonal

complement of the column space of X j .

Equation (8) shows that the probability of misdetecting X i for Xj , depends on the channel realization g =

vec
(
HH

)
and on the relative geometry of the codewords X i and X j . We can decouple the action of g and Lij
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as follows: using the inequality gHLijg ≥ λmin(Lij) ||g||2 and the fact that Q(·) is monotonically non-increasing,

we have the upper bound on the PEP for high SNR

PXi→Xj
≤ Q

(
1√
2
||g||

√
λmin(Lij)

)
. (9)

We cannot control the power of the channel g = vec(HH), but we can design codebooks aiming at maximizing

λmin(Lij).

Geometrical interpretation. This later objective has a clear geometric interpretation. Define V = Π
⊥
j X i. Then

Π
⊥
j X i is the orthogonal projection of X i onto the orthogonal complement of span {X j}, see figure 1. Now, note

that

Lij = V HV = (Π⊥
j X i)

H(Π⊥
j X i)

is the corresponding Gram matrix and
√

det(V HV ) =

√
λmin(V

HV ) · . . . · λmax(V
HV ) ≥ λmin(V

HV )
MN

2 .

Hence, by maximizing λmin(V
HV ), we are increasing

√
det
(
(Π⊥

j X i)H(Π⊥
j X i)

)
which is proportional to the

volume of the parallelepiped spanned by the columns of the Π
⊥
j X i. That is, we are trying to place X i in the

orthogonal complement of span {X j}.

Problem formulation. Following a worst-case approach, we are led from (9) to define the codebook merit function

f : M→ R and C = {X1, . . . , XK} 7→ f(C)

as

f(C) = min{fij(C) : 1 ≤ i 6= j ≤ K} (10)

where fij(C) = λmin(Lij(C)). Constructing an optimal codebook C = {X1, X2, ..., XK} amounts to solving the

optimization problem

C∗ = arg max

C ∈ M
f(C). (11)

The problem defined in (11) is a high-dimensional, non-linear and non-smooth optimization problem. As an example,

for a codebook of size K = 256 the number of fij functions is K(K − 1) = 65280. Also, for T = 8 and M = 2,

there are 2KTM = 8192 real variables to optimize. Moreover, note that we have

f(X1, X2, . . . , XK) = f(X1e
iθ1 , X2e

iθ2 , . . . , XKeiθK )

for any θk ∈ R and k = 1, . . . , K. This means that f depends on each Xk (‖Xk‖ = 1) only through the line

spanned by it (i.e., {λXk : λ ∈ C}). Thus, we can interpret the optimization problem in (11) as a packing problem

in a product of projective spaces [10], [24].
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Before deriving an algorithm to design non-coherent space-time constellations for arbitrary noise covariance

matrix Υ and any M , N , T and K, in the next section we draw some conclusions about our new codebook merit

function f defined in (10). First, we show that for the special case of spatio-temporally white noise and K = 2 the

unitary constellations are the optimal ones with respect to f . Then, we show that our design problem is related to

a packing problem in Grassmannian space [24]. Furthermore, we will show that packings in Grassmannian space

with respect to spectral distance should be the natural choice for codebook constellations.

III. CONSIDERATIONS ABOUT THE NEW CODEBOOK MERIT FUNCTION

We start by rewriting the matrix Lij = X H
i Π

⊥
j X i as

Lij =
(
X H

i X i

) 1

2

(
IMN −UH

i U jU
H
j U i

) (
X H

i X i

) 1

2 (12)

where U i = X i

(
X H

i X i

)− 1

2 , U j = X j

(
X H

j X j

)− 1

2 . That is, U i contains an orthonormal basis for the subspace

spanned by the columns of X i. Notice that UH
j U j = UH

i U i = IMN . To proceed with the analysis we use the

known fact from [25] pp.199: if U i, U j are TN ×MN matrices with orthonormal columns (T ≥ M ), then there

exist MN ×MN unitary matrices W 1 and W 2, and a TN ×TN unitary matrix Q with the following properties:

(i) If 2MN ≤ TN (2M ≤ T ), then

QU iW 1 =




IMN

0MN

0(TN−2MN)×MN


 QU jW 2 =




Cij

Sij

0(TN−2MN)×MN


 (13)

where Cij is a diagonal MN ×MN matrix with diagonal entries cos α1, . . . , cos αMN , 0 ≤α1≤. . .≤αMN≤ π
2 ,

and S2
ij + C2

ij = IMN . Now, using (13) we can write

W H
2 UH

j QHQU iW 1 = W H
2 UH

j U iW 1 = Cij ⇒ UH
j U i = W 2CijW

H
1 , (14)

so αi for i = 1, . . . , MN are the principal angles between the subspaces spanned by U i and U j . Due to Ostrowski’s

theorem pp.224,225 in [26], and equations (12) and (14), it is not difficult to see that the following inequality holds

λmin (Lij) ≥ λmin

(
X H

i X i

)
λmin

(
S2

ij

)
. (15)

Clearly, from (15), we deduce that in order to minimize an upper bound on PEP in high SNR regime, one should

simultaneously increase λmin

(
X H

i X i

)
and λmin

(
S2

ij

)
. Unfortunately, the right-hand side of the inequality (15)

does not offer much insight into the form of the optimal codebook for the case of arbitrary noise covariance matrix

Υ (even for the case K = 2). One of the reasons originates from the fact that pairwise error probabilities are not

symmetric for this general case. Hence, in the sequel, we treat the specific case of spatio-temporal white Gaussian

observation noise to find out what conclusions can we draw about the form of the optimal codebook.

(a) Special case (spatio-temporal white noise): Υ = ITN , 2M ≤ T . Remark that using (7), (9), and for Υ = ITN ,

we have

Lij = IN ⊗
(
XH

i Xi −XH
i Xj

(
XH

j Xj

)−1
XH

j Xi

)
.
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Hence,

λmin(Lij) = λmin

(
XH

i Xi −XH
i Xj

(
XH

j Xj

)−1
XH

j Xi

)
. (16)

From (16), an immediate conclusion is that the code design criterion in (11) does not depend on the number of

receive antennas N . Because T ≥ 2M (in particular T ≥ M ), using a thin singular value decomposition (SVD),

we can write X i = V iDiW i and Xj = V jDjW j where V i and V j are T ×M unitary (orthonormal) matrices,

W i and W j are M ×M unitary matrices, and Di, Dj are M ×M real nonnegative diagonal matrices. It is not

difficult to see that

λmin(Lij) = λmin

(
D2

i −DiV
H
i V jV

H
j V iDi

)
. (17)

As we can see from (17), the matrices W i and W j do not appear in the expression. This implies that any

optimal constellation can be described in the form X i = V iDi. We now show that for two symbol constellations

(K = 2) the unitary constellations are optimal in the sense of maximizing the codebook merit function defined

in (10). Toward this end, note that for X1 = V 1D1 and X2 = V 2D2

f (X1, X2) = min{f12 (X1, X2) , f21 (X1, X2)} ≤ f12 (X1, X2) = λmin(L12), (18)

where V 1 and V 2 are T ×M unitary (orthonormal) matrices, and D1, D2 are M ×M real nonnegative diagonal

matrices. Since V 1, V 2 are T ×M matrices with orthonormal columns and 2M ≤ T , as before, we know that

there exist M×M unitary matrices W1 and W2, and a T ×T unitary matrix Q with the following properties [25]:

QV 1W1 =




IM

0M

0(T−2M)×M


 QV 2W2 =




C12

S12

0(T−2M)×M


 (19)

where C12 is a diagonal M × M matrix with diagonal entries cos β1, . . . , cos βM , 0 ≤β1≤. . .≤βM≤ π
2 , and

S2
12 + C2

12 = IM . Substituting (19) in (18) yields

λmin(L12) = λmin

(
D1W1S

2
12W1

HD1

)

= λmin

(
S12W1

HD2
1W1S12

)
≤ λmin

(
D2

1

)
λmax

(
S2

12

)
(20)

where (20) is valid due to Ostrowski’s theorem. Since λmin

(
D2

1

)
≤ 1

M
tr(XH

1 X1) = 1
M

, and also using (18)

and (20) we have the upper bound on the codebook merit function for K = 2:

f (X1, X2) ≤
1

M
. (21)

Since we want to maximize the codebook merit function, from (18) and (21) we can list some of the conditions

for it to happen:

1. The constellation of unitary matrices is optimal, i.e., D1 = D2 = 1√
M

IM and XH
1 X1 = XH

2 X2 = 1
M

IM .

2. We want V 1 and V 2 to be separated as much as possible. The optimal scenario is when β1 = π
2 , the case

when codewords X1 and X2 are mutually orthogonal, i.e., XH
2 X1 = 0.
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In this case, the inequality sign in (21) can be replaced with an equality sign. Thus, we showed that for the

special case of spatio-temporally white noise and K = 2 the unitary constellations are the optimal ones with respect

to our codebook design criterion f . We recall that the unitary structure was also shown to be optimal in [5], [6],

[8] from both the capacity and asymptotic UB on the probability of error minimization viewpoints.

(ii) For M ≤ T ≤ 2M , then

QU iW 1 =




ITN−MN 0(TN−MN)×(2MN−TN)

0(2MN−TN)×(TN−MN) I2MN−TN

0TN−MN 0(TN−MN)×(2MN−TN)




QU jV 1 =




Cij 0(TN−MN)×(2MN−TN)

0(2MN−TN)×(TN−MN) I2MN−TN

Sij 0(TN−MN)×(2MN−TN)




where Cij is a diagonal (TN − MN) × (TN − MN) matrix with diagonal entries cos α1, . . . , cosαTN−MN ,

0 ≤ α1 ≤ . . . ≤ αTN−MN ≤ π
2 , and S2

ij + C2
ij = ITN−MN .

Repeating the analysis for the case 2M ≤ T , we have

Lij =
(
X H

i X i

) 1

2 W 1


 S2

ij 0(TN−MN)×(2MN−TN)

0(2MN−TN)×(TN−MN) 02MN−TN


W H

1

(
X H

i X i

) 1

2 .

(22)

From (22) we conclude that the upper bound in (9) is a constant for any combination of two codewords X i and

X j . This implies the following result.

Proposition: The length of the coherence interval T should be at least as twice as large as the number of transmit

antennas M . In symbols, 2M ≤ T .

The result is not surprising since, for the special case Υ = ITN , Rayleigh fading and in high SNR scenario, it

is known that the length of the coherence interval has to be necessarily at least as twice as large as the number of

transmit antennas (2M ≤ T ) to achieve full order of diversity MN [8], but also, from the capacity viewpoint it is

found that there is no point in using more than T
2 transmit antenna when one wants to maximize the number of

degrees of freedom [9]. Therefore, in this work, when designing constellations for arbitrary Υ, we take 2M ≤ T .

Remark that

λmin(L12) = λmin

(
S12W1

HD2
1W1S12

)
≥ λmin

(
D2

1

)
λmin

(
S2

12

)
(23)

where (23) is valid due to Ostrowski’s theorem and (20). Since we have seen that the unitary constellations are the

optimal ones with respect to f for the case of spatio-temporally white Gaussian noise, equation (23) shows that

our design problem for any K is related to a packing problem in Grassmannian space [24]. Furthermore, it seems

that packings in Grassmannian space with respect to spectral distance should be the natural choice for codebook

constellations. Moreover, from (11) and (16) for M=1 we see that the problem of finding good codes coincides
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with the very well known packing problem in the complex projective space [10]. Please refer to [10] and [24] for

more details on packing problems in Grassmannian space.

IV. CODEBOOK CONSTRUCTION

We propose a two-phase methodology to tackle the optimization problem in (11). In phase one, we start by solving

a convex semi-definite programming (SDP) relaxation to obtain a rough estimate of the optimal codebook. Phase

two refines it through a geodesic descent optimization algorithm (GDA) which efficiently exploits the Riemannian

geometry of the constraints. Suppose a codebook of size K is desired. In table I, page 11 we give the strategy that

has shown to be efficient.

input: M, N, T, K, Υ

step 1) Choose the first codeword;

step 2) Set k = 2;

step 3) Perform SDP relaxation to obtain k-th codeword;

step 4) Set k = k + 1;

step 5) if k ≤ K, return to Step 3);

step 6) Run the geodesic descent algorithm (GDA) to

obtain the final codebook;

output: The matrix X =
�
vec(X1) . . . vec(XK) �

TABLE I

CODEBOOK DESIGN ALGORITHM

We now explain Steps (3) and (6), respectively, in more detail.

Phase 1: SDP relaxation. This phase constructs a sub-optimal codebook C∗ = {X∗
1, ..., X

∗
K}. The codebook is

constructed incrementally. We start assuming that we are in a possession of an acceptable estimate of a codebook of

size k−1, while we are interested in a rough estimate of a codebook of size k, where k = 2, 3, ..., K. We obtain an

estimate of a codebook of size k by retaining the first k− 1 codewords. Hence, we solve the optimization problem

in the sequel consecutively K − 1 times. There are several strategies for choosing the first codeword X∗
1, e.g,

randomly generated, filling columns of the matrix with eigenvectors associated to the smallest eigenvalues of the

noise covariance matrix, etc. Addition of a new codeword consists in solving a SDP. Let C∗k−1 = {X∗
1, ..., X

∗
k−1}
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be the codebook at the k − 1th stage. The new codeword is found by solving

X∗
k = arg max

tr(XH
k Xk) = 1

f(X∗
1, . . . , X

∗
k−1, Xk)

= arg max

tr(XH
k Xk) = 1

min
1≤m≤ k−1

{λmin(Lmk), λmin(Lkm)}.

(24)

We can show that the optimization problem defined in (24) is equivalent to

(X∗
k, vec(Xk

∗), t∗) = arg max t (25)

with the following constraints

LMIAm
(Xk, vec(Xk), t) � 0, m = 1, ..., k − 1

LMIBm
(Xk, vec(Xk), t) � 0, m = 1, ..., k − 1

tr(Xk) = 1, Xk = vec(Xk)vecH(Xk) (26)

where the abbreviations LMIAm
(Xk, vec(Xk), t) and LMIBm

(Xk, vec(Xk), t) denote linear (actually, affine)

matrix inequalities in the variables Xk, vec(Xk), and t of type A and B, respectively, for m = 1, ..., k − 1.

The proof and the meaning of the LMI’s of type A and B are given in Appendix II.

Due to the rank condition in (26) (note that the equations Xk = vec(Xk)vecH(Xk) and tr(Xk) = 1 imply

that rank (Xk) = 1), the design of the codewords, once again, translates into a difficult high-dimensional nonlinear

optimization problem. However, relaxing this restriction as

Xk � vec(Xk)vecH(Xk) (27)

and rewriting (27) as

 Xk vec(Xk)

vecH(Xk) 1


 � 0

the optimization problem in (25) becomes

(X∗
k, vec(Xk

∗), t∗) = arg max t (28)

with the constraints

LMIAm
(Xk, vec(Xk), t) � 0, m = 1, ..., k − 1

LMIBm
(Xk, vec(Xk), t) � 0, m = 1, ..., k − 1

tr(Xk) = 1,


 Xk vec(Xk)

vecH(Xk) 1


 � 0.
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The rank 1 relaxation is usually known as the Shor relaxation [27]. The optimization problem in (28) is a convex

one in the variables Xk, vec(Xk) and t. Remark that for K = 256, M = 2, N = 2, T = 8 and in the last passage

through the loop, i.e., for k = K, the output variable Xk is of dimension 16×16 (does not depend on N and K) and

the number of linear matrix inequality constraints that needs to be defined is of order K. To solve the optimization

problem in (28) we used the Self-Dual-Minimization package SeDuMi 1.1 [28]. Once the problem defined in (28)

is solved we need to extract the kth codeword from the output variable Xk. Toward this end, we adopt a technique

similar to [32]. The technique consists in generating independent realizations of random vectors that follow a

Gaussian distribution with zero mean and covariance matrix Xk, i.e., zl
iid∼ CN (0, Xk) , for l = 1, 2, ..., L, where

L is a parameter to be chosen (in all simulations herein presented we assumed L=10000). After forcing norm 1,

i.e., vl = zl/||zl|| for l = 1, 2, ..., L, we choose the k − th codeword, X∗
k = ivec(v∗l ) where

l∗ = arg max

l = 1, 2, ..., L

f(X∗
1, X

∗
2, ..., X

∗
k−1, ivec(v)). (29)

The operation “ivec” operates as an inverse of “vec” (reshapes the TM -dimensional vector into a T ×M matrix).

Note that X∗
k is a valid codeword because tr(X∗H

k X∗
k) = 1. We are clearly dealing with a suboptimal solution for

a codebook.

Phase 2: Geodesic Descent Algorithm. Problem (28) requires the optimization of a non-smooth function over

the smooth manifold M (Cartesian product of K spheres). After phase 1, i.e., having solved the optimization

problem (28) consecutively K − 1 times, for k = 2,3,..,K, we are now in possession of a rough estimate of a

codebook of size K. To refine this estimate we resort to an iterative algorithm, which we call GDA (geodesic

descent algorithm). In table II we explain the GDA in more detail.

Let Ck be the kth iterate (the initialization C0 is furnished by phase 1). Note that the power constraint tr(XH
i Xi) =

1, for i = 1, 2, ..., K, can be equivalently written as

xT
i xi = 1,

where

xi =


< vec(X i)

= vec(X i)


 ∈ R

2TM ,

and < and = denote the real and imaginary part of a complex quantity, respectively. In step 3 each xi, i = 1, ..., K

is used to construct the vector x. In step 4 we identify the index set A of “active” constraint pairs (i, j), i.e.,

A = {(i, j) : fij(Ck) ≤ f(Ck) + ε} where ε is arbitrary small (in all simulations herein presented we have chosen

ε = 10−5). In step 8 we check if there is an ascent direction d simultaneously for all functions fij with (i, j) ∈ A.

We know that if it exists d such that ∇T fiaja
(x) d > 0, for 1 ≤ ia 6= ja ≤ K, a = 1, 2, ..., z, we can try to

improve our cost function locally. In order to solve the optimization problem in step 8 we need to determine the

gradient ∇fiaja
. In Appendix III, we give its respective expression. This ascent direction d is searched within
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input: The matrix X =
�
vec(X1) . . . vec(XK) �

step 1) Determine the value of the merit function,

cost = f(X1, X2, ..., XK);

step 2) Initialize ε = 10−5;

step 3) Construct the vector x =

�����
x1

...

xK

� ���� =

�����������

<vec(X1)

=vec(X1)

...

<vec(XK)

=vec(XK)

� ����������
;

step 4) Determine z, the number of combinations (X i, Xj),

1 ≤ i 6= j ≤ K, such that fij(C) = λmin(Lij(C))

falls into the interval [cost,cost + ε], i.e. fij

attains the minimum. These combinations (Xi, Xj)

are called the active ones;

step 5) Determine the gradient, ∇fiaja(x), for every

active combination (Xia , Xja), 1 ≤ ia 6= ja ≤ K, a =

1, 2, ..., z;

step 6) Construct the gradient matrix

G =

�����
∇T fi1j1(x)

...

∇T fizjz (x)

� ����
z×2KTM

;

step 7) Construct the matrix

H =

��������
xT

1 0 · · · 0

0 xT
2 · · · 0

...
...

...
...

0 · · · · · · xT
K

� �������
K×2KTM

;

step 8) Solve the linear program

(d∗, s∗) = arg max

Gd ≥ s1z×1

Hd = 0K×1

−12KTM×1 ≤ d ≤ +12KTM×1

s;

step 9) If s ≤ 0 , Go to Step (16);

step 10) Initialize β = 0.9, c = 0, cmax = 400 and t = 1;
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step 11) Construct the geodesic

Γ(t) =

�����
x1(t)

...

xK(t)

� ���� =

�����
x1 cos(||d1||t) + d1

||d1||
sin(||d1||t)

...

xK cos(||dK ||t) + dK

||dK ||
sin(||dK ||t)

� ���� ;

step 12) Determine temporary value of the merit function,

tempcost = f(ivec(x1(t)),ivec(x2(t)), ...,ivec(xK(t)));

step 13) If tempcost > cost, then cost = tempcost, xi = xi(t)

for i=1,2,..,K. Return to Step (3);

step 14) Increment c, update t = βc;

step 15) If c ≤ cmax, Return to Step (12);

step 16) Return the matrix X =
�
vec(X1) . . . vec(XK) � =�

xi . . . xK � ;
output: The matrix X =

�
vec(X1) . . . vec(XK) �
TABLE II

GDA ALGORITHM

TCk
M, the tangent space to M at Ck, and consists in solving a linear program. To ensure that d belongs to TCk

M,

the constraint Hd = 0K×1 (equivalently, xT
i di = 0 for i=1, 2, ..., K) in step 8 is introduced. The constraint

−12KTM×1 ≤ d ≤ +12KTM×1 bounds the solution of the linear program in step 8. If there is no such ascent

direction, the algorithm stops. Otherwise, we perform an Armijo search for f(C) along the geodesic which emanates

from Ck in the direction d. This Armijo search determines Ck+1 and we repeat the loop. From the expression for the

geodesic in step 11, it is easy to see that we travel along the surface of the sphere S2TM−1, i.e., xi(t)
T xi(t) = 1

for every i=1,2,...,K.

A geodesic is nothing but the generalization of a straight line in Euclidean space to a curved surface [33]. In

loose terms, GDA resembles a sub-gradient method and consequently, the algorithm usually converges slowly near

local minimizers. Note however that this is not a serious drawback since codebooks can be generated off-line.

The parameter ε in step 2 controls the complexity of the optimization problem in step 8. A too small ε implies

slow convergence of the algorithm, whereas a big ε increases the complexity of the linear program (by increasing

z, the number of active functions fij). For a codebook of size K = 256, and T = 8, M = 2, the gradient matrix G

can be of size 10000× 8000 (remark that zmax = K(K − 1) = 65280). Although the matrix G is a sparse matrix,

it is preferably to impose it to be of moderate size too. The choice of ε made in step 2 controls that.

Remark: The utility of the step 3 (SDP) in table I for large K is an open issue. We have found it quite useful for

small and moderate sized codebooks. For example, for the real case, M = 1 and T = 2, the step 3 provides us the

optimal codebook for K = 2p where p = 1, 2, .... In this case there is no need to use step 6 of the algorithm. In
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all simulations herein presented the procedure presented in table I has been implemented.

V. RESULTS

We have constructed codes for three special categories of noise covariance matrices Υ. In all simulations we

assumed a Rayleigh fading model for the channel matrix, i.e., hij
iid∼ CN

(
0, σ2

)
.

a) First category: spatio-temporal white observation noise: In the first category the spatio-temporal white

observation noise case is considered, i.e., Υ = E[vec(E) vec(E)H ]= INT . We compared our codes with the best

known found in [7]. We considered scenarios with coherence interval T=8, M=1, 2 and 3 transmit antennas, N=1

receive antennas and a codebook with K=256 codewords. Let

dist =
1

K

K∑

k=1

√√√√tr

((
XH

k Xk −
1

M
IM

)2
)

denote the average distance of our codebooks from the constellation of unitary matrices. For M = 2, T = 8 and

K = 256, the average distance obtained was dist = 1.6 · 10−3, while for M = 3, T = 8 and K = 256, the average

distance was dist = 1.3 ·10−2. As it was expected, the algorithm converged to constellations of unitary matrices. In

that case and for spatio-temporal observation noise, our GLRT receiver corresponds to the Bayesian receiver (takes

in account the statistics of the channel). In figures 2–4, we show the symbol error rate (SER) versus

SNR = E{||XkH
H ||2}/E{||E||2} = Nσ2/tr(Υ).

The solid-plus and dashed-circle curves represent performances of codes constructed by our method, and unitary

codes respectively. As we can see, our codebook constructions are only marginally better for these particular cases.

For M=1, in figure 5 and table-III we compare our results with [10] for T = 2, 3, . . . , 6. We manage to improve

the best known results and in some cases actually provide optimal packings which attain the Rankin upper bound.

b) Second category: spatially white-temporally colored observation noise: The second category corresponds

to spatially white-temporally colored observation noise, i.e., Υ = IN ⊗ Σ(ρ) where the vector ρ : T × 1 is the

first column of an Hermitian Toeplitz matrix Σ(ρ). To the best of our knowledge, we are not aware of any work

that treats the problem of codebook constructions in the presence of spatially white-temporally colored observation

noise. Hence, we compare our codes designed (adopted) to this specific scenario with unitary codes [7]. The goal

here is to demonstrate the increase of performance obtained by matching the codebook construction to the noise

statistics. In figures 6–8 the solid curves represent the performance of codes constructed by our method, while the

dashed curves represent the performance of unitary codes. In either case, the plus sign indicates that the GLRT

receiver is implemented. The square sign indicates that the Bayesian receiver is implemented. Figure 6 plots the

result of the experiment for T=8, M=2, N = 1, K=67 and ρ=[ 1; 0.85; 0.6; 0.35; 0.1; zeros(3,1) ]. It can be seen

that for SER = 10−3, our codes demonstrate a gain of 3dB when compared with the unitary codes. Figure 7 plots

the result of the experiment for T=8, M=2, N=1, K=256 and ρ=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. For SER = 10−3

our codes demonstrate gain of 2dB when compared with unitary codes. Figure 8 plots the result of the experiment
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for T=8, M=2, N = 1, K=32 and ρ=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. For SER = 10−3, our codes demonstrate

gain of 3dB when compared with the unitary codes.

c) Third category: E = s αT + Etemp: In the third category, we considered the case where the noise matrix

is of the form E = s αT +Etemp. This models an interfering source s (with known covariance matrix Υs) where

the complex vector α is the known channel attenuation between each receive antenna and the interfering source.

The matrix Etemp has a noise covariance matrix belonging to the second category. Thus, the noise covariance

matrix is given by Υ = ααH⊗Υs +IN⊗Σ(ρ). As for the second category, we compare our codes adopted to this

particular scenario with unitary codes. In figures 9–10 the solid curves represent performance of codes constructed

by our method, while the dashed curves represent performance of unitary codes [7]. Figure 9 plots the result of the

experiment for T=8, M=2, N = 2, K=32, s=[1;0.7;0.4;0.15;zeros(4,1)], ρ = [1;0.8;0.5;0.15;zeros(4,1)] and α =

[-1.146 + 1.189i;1.191- 0.038i]. For SER = 10−3, once again our codes demonstrate a gain of more than 2dB gain

when compared with the unitary codes. Figure 10 plots the result of the experiment for T=8, M=2, N = 2, K=67,

ρ=[1;0.7;0.4;0.15;zeros(4,1)], s = [1;0.8;0.5;0.15;zeros(4,1)] and α = [ -0.4534 + 0.0072i; 0.4869 + 1.9728i]. For

SER = 10−3, our codes demonstrate a gain of more than 1.5dB gain when compared with the unitary codes.

VI. CONCLUSIONS

We addressed the problem of codebook construction for non-coherent communication in multiple-antenna wireless

systems. In contrast with other related approaches, the Gaussian observation noise may have an arbitrary correlation

structure. The non-coherent receiver operates according to the GLRT principle. A methodology for designing

space-time codebooks for this non-coherent setup, taking the probability of error of the detector in the high SNR

regime as the code design criterion, is proposed. We have presented a two-phase approach to solve the resulting

high-dimensional, nonlinear and non-smooth optimization problem. The first phase solves a convex semi-definite

programming (SDP) relaxation to obtain a rough estimate of the optimal codebook. The second phase refines

it through a geodesic descent optimization algorithm which efficiently exploits the Riemannian geometry of the

constraints. Computer simulations show that our codebooks are marginally better than state-of-art known solutions

for the special case of spatio-temporal white Gaussian observation noise but significantly outperform them in the

correlated noise environments. This shows the relevance of the codebook construction tool proposed herein.

APPENDIX I

PAIRWISE ERROR PROBABILITY FOR FAST FADING IN THE HIGH SNR REGIME

In this appendix, we derive the expression for the asymptotic (high SNR regime) pairwise error probability for

fast fading presented in (8).

If Xi is transmitted, then the probability that the receiver decides in favor of X j is:

PXi→Xj
= P (zH

i Υ
−1zi > zH

j Υ
−1zj) (30)
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where for k ∈ {i, j}
zk = y − X̃kĝk,

X̃k = IN ⊗Xk, X k = Υ
− 1

2 X̃k

y = vec(Y ) = X̃ig + e, e = vec(E),

and

ĝk = (X H
k X k)

−1X H
k Υ

− 1

2 y

is the maximum likelihood (ML) estimate of the channel when Xk is transmitted. The unknown realization of the

channel is denoted by g = vec(HH).

Let Si = (X H
i X i)

−1X H
i Υ

− 1

2 . Thus,

zi = y − X̃iĝi

= (ITN − X̃iSi)︸ ︷︷ ︸
P i

(X̃ig + e)

= P ie. (31)

Similarly, it can be shown that

zj = ∆g + P je (32)

where P j = ITN − X̃jSj and ∆ = P jX̃i. Hence, substituting (31) and (32) in (30) we have

PXi→Xj
= P (eH(P H

i Υ
−1P i − P H

j Υ
−1P j)e− eHP H

j Υ
−1

∆g − gH
∆

H
Υ
−1P je > gH

∆
H
Υ
−1

∆g︸ ︷︷ ︸
λ

).

(33)

Unfortunately, the expression (33) cannot be simplified analytically. We shall analyze (33) in the high SNR

regime where the linear term of e is dominant, i.e., the quadratic term of e is negligible. Therefore,

PXi→Xj
' P (−eHP H

j Υ
−1

∆g − gH
∆

H
Υ
−1P je︸ ︷︷ ︸

z

> λ). (34)

Define z = −eHP H
j Υ

−1
∆g − gH

∆
H
Υ
−1P je. We see that z is a real Gaussian variable with zero mean

(because E[e] = 0) and unknown variance σ2, i.e., z
iid∼ N

(
0, σ2

)
, which will be calculated in sequel:

σ2 = E[z2] = E[
(
eHP H

j Υ
−1

∆g + gH
∆

H
Υ
−1P je

)2
]

= E[gH
∆

H
Υ
−1P jeeHP H

j Υ
−1

∆g + eHP H
j Υ

−1
∆ggH

∆
H
Υ
−1P je].

Continuing with analysis,

E[eHP H
j Υ

−1
∆ggH

∆
H
Υ
−1P je] = tr

(
E[eeHP H

j Υ
−1

∆ggH
∆

H
Υ
−1P j ]

)

= gH
∆

H
Υ
−1P jΥP H

j Υ
−1

∆g
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which implies

σ2 = 2gH
∆

H
Υ
−1P jΥP H

j Υ
−1

∆g

= 2gHX̃i

H
P H

j Υ
−1P jΥP H

j Υ
−1P j︸ ︷︷ ︸

R

X̃ig. (35)

It is known that, if z
iid∼ N

(
0, σ2

)
, then

P (z > λ) = Q
(

λ

σ

)
(36)

where Q(x) =
∫ +∞
x

1√
2π

e−
t2

2 dt.

The matrix R in (35) can be simplified and it can be easily shown that

R = P H
j Υ

−1P j = Υ
− 1

2 Π
⊥
j Υ

− 1

2 . (37)

where Π
⊥
j = ITN−X j

(
X H

j X j

)−1
X H

j is the orthogonal projector onto the orthogonal complement of the column

space of Xj .

Using (37) and substituting it in (35) we have

σ2 = 2gHX̃i

H
P H

j Υ
−1P jX̃ig = 2gH

∆
H
Υ
−1

∆g

which implies

σ =

√
2gH∆

H
Υ
−1

∆g . (38)

Equations (33), (34), (36) and (38) result in

PXi→Xj
= Q

(
λ

σ

)
= Q

(
gH

∆
H
Υ
−1

∆g√
2gH∆

H
Υ
−1

∆g

)
= Q

(
1√
2

√
gH∆

H
Υ
−1

∆g

)
. (39)

Let Lij = ∆
H
Υ
−1

∆. Thus,

Lij = ∆
H
Υ
−1

∆ = X̃i

H
P H

j Υ
−1P jX̃i. (40)

Hence, due to (37) and (40) it holds

Lij = X̃i

H
Υ
− 1

2 Π
⊥
j Υ

− 1

2 X̃i = X H
i Π

⊥
j X i. (41)

Equations (39), (40) and (41) result in (8). This completes the proof.

APPENDIX II

OPTIMIZATION PROBLEM

In this section, we prove that the equivalent formulation of the optimization problem (24) is given by (25).
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The optimization problem in (24) can be rewritten in the following way

(X∗

k
, t∗) = arg max

λmin(Lmk) ≥ t,m = 1, ..., k − 1 (A)

λmin(Lkm) ≥ t,m = 1, ..., k − 1 (B)

tr(XH

k
Xk) = 1,

t (42)

where Lij = X H
i Π

⊥
j X i, Π

⊥
j = ITN −X j(X

H
j X j)

−1X H
j , X i = Υ

− 1

2 X̃i and X̃i = IN ⊗X i.

Approach: Define Xk = vec(Xk)vecH(Xk). We are going to show that both (A) and (B) can be written as

linear matrix inequalities (LMI’s) with respect to Xk, vec(Xk) and t.

(A) Note that

λmin(Lmk) ≥ t ⇔ Lmk − tIMN � 0.

Since the matrix Lmk − tIMN = X H
mX m − X H

mX k(X
H
k X k)

−1X H
k X m − tIMN is the Schur complement [34]

of X H
k X k in 

X H
k X k X H

k X m

X H
mX k X H

mX m − tIMN




we have the following equivalence (we assumed that Xk is of full column rank):

λmin(Lmk) ≥ t ⇔


X H

k X k X H
k X m

X H
mX k X H

mX m − tIMN


 � 0. (43)

• Let [M ]ij denotes the ij-th element of the matrix M and ei represents the i-th column of the identity matrix

IMN . Then,

[X H
k X k]ij = eH

i X H
k X kej = eH

i X̃k

H
Υ
−1X̃kej = tr

(
Υ
−1X̃kej

(
X̃kei

)H
)

(44)

As X̃k = IN ⊗Xk, there exists matrix K of size TMN 2 × TM such that vec(X̃k) = K vec(Xk), see [36].

Hence,

X̃kej = vec
(
X̃kej

)
=
(
eT

j ⊗ ITN

)
vec(X̃k) = (eT

j ⊗ ITN )Kvec(Xk). (45)

Substituting (45) in (44) we have

[X H
k X k]ij = tr

(
Υ
−1(eT

j ⊗ ITN )Kvec(Xk)
(
(eT

i ⊗ ITN )Kvec(Xk)
)H)

= tr (Bij (ITN ) Xk) , (46)

where we define Bij(Φ) = KH(ei ⊗ ITN )Υ− 1

2 ΦΥ
− 1

2 (eT
j ⊗ ITN )K.

• Similarly,

[X H
mX k]ij = eH

i X H
mX kej = eH

i X H
mΥ

− 1

2 X̃kej = eH
i X H

mΥ
− 1

2 (eT
j ⊗ ITN )K vec(Xk). (47)

(B) By repeating the analysis for the case (A) we have:

[Lkm]ij = eH
i X H

k Π
⊥
mX kej = eH

i X̃k

H
Υ
− 1

2 Π
⊥
mΥ

− 1

2 X̃kej = tr

(
Υ
− 1

2 Π
⊥
mΥ

− 1

2 X̃kej

(
X̃kei

)H
)

.
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Using (45) we obtain

[Lkm]ij = tr
(
KH(ei ⊗ ITN )Υ− 1

2 Π
⊥
mΥ

− 1

2 (eT
j ⊗ ITN )Kvec(Xk)vecH(Xk)

)
.

Hence,

[Lkm]ij = tr
(
Bij(Π

⊥
m) Xk

)
. (48)

Combining (43), (44), (46), (47) and (48) we conclude that both (A) and (B) can be written as LMI’s with respect

to the variables Xk, vec(Xk) and t. Consequently, the optimization problems (24) and (25) are equivalent. This

concludes the proof.

APPENDIX III

CALCULATING GRADIENTS

In this section, we calculate gradient to be used in (30). Although the function fij assumes complex valued

entries, that is

fij : C
T×M × ...× C

T×M

︸ ︷︷ ︸
K

→ R fij(X1, X2, ..., XK) = λmin(Lij)

where Lij = X H
i Π

⊥
j X i, Π

⊥
j = ITN −X j(X

H
j X j)

−1X H
j , X i = Υ

− 1

2 X̃i and X̃i = IN ⊗X i, we shall treat fij

as a function of the real and imaginary components of X1, X2, ..., XK , i.e.

fij : R
T×M × ...RT×M

︸ ︷︷ ︸
2K

→ R fij(<X1,=X1,<X2,=X2...,<XK ,=XK) = λmin(Lij).

Let λmin be a simple eigenvalue of a hermitian matrix Lij , and let u0 be an associated eigenvector, so that

Liju0 = λminu0. Hence, fij = uH
0 Liju0 and differential dfij is given by, [36]

dfij = uH
0 dLiju0.

Define Kj = Υ
− 1

2 Π
⊥
j Υ

− 1

2 , hence

dLij = (dX̃i)
HKjX̃i + X̃i

H
KjdX̃i + X̃i

H
dKjX̃i.

and

dfij = uH
0 dLiju0 = uH

0 [(dX̃i)
HKjX̃i + X̃i

H
KjdX̃i + X̃i

H
dKjX̃i]u0

= <[tr[(dX̃i)
H 2KjX̃iu0u

H
0︸ ︷︷ ︸

Ci

]] + uH
0 X̃i

H
dKjX̃iu0. (49)

Continuing with analysis,
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dKj = −Υ
− 1

2

(
dX j(X

H
j X j)

−1X H
j + X j(X

H
j X j)

−1(dX j)
H
)
Υ
− 1

2

︸ ︷︷ ︸
Kj1

−

−Υ
− 1

2 X jd
((

X H
j X j

)−1
)

X H
j Υ

− 1

2

︸ ︷︷ ︸
Kj2

. (50)

Using the equality d
(
A−1

)
= −A−1dAA−1 [36], we can write

d
((

X H
j X j

)−1
)

= −
(
X H

j X j

)−1
(
(dX j)

H
X j + X H

j dX j

) (
X H

j X j

)−1
.

(51)

Substituting (51) and (50) in (49) we get

uH
0 X̃i

H
dKjX̃iu0 = uH

0 X̃i

H
Kj1X̃iu0 + uH

0 X̃i

H
Kj2X̃iu0

with

uH
0 X̃i

H
Kj1X̃iu0 = −2<[uH

0 X H
i X j

(
X H

j X j

)−1
(dX j)

H
X iu0]

= <[tr[
(
dX̃j

)H

−2Υ− 1

2 X iu0u
H
0 X H

i X j

(
X H

j X j

)−1

︸ ︷︷ ︸
Cj1

]]

and

uH
0 X̃i

H
Kj2X̃iu0 = 2<[uH

0 X H
i X j

(
X H

j X j

)−1
(dX j)

H
X j

(
X H

j X j

)−1
X H

j X iu0]

= <[tr[
(
dX̃j

)H

2Υ− 1

2 X j

(
X H

j X j

)−1
X H

j X iu0u
H
0 X H

i X j

(
X H

j X j

)−1

︸ ︷︷ ︸
Cj2

]]

Define Cj = Cj1 + Cj2. Thus,

dfij = <[tr[(dX̃i)
HCi]] + <[tr[(dX̃j)

HCj ]].

Note that dX̃i = IN ⊗ dX i, then

dfij = <[tr[(dX i)
HCi]] + <[tr[(dXj)

HCj ]]

where Ci =
∑N

k=1 Cik where Cik is a diagonal block of the matrix C i of size T ×M ., i.e.,

Ci =




Ci1

Ci2

. . .

CiN




.

Remark that the matrix Ci is of size TN ×MN . Now, it is straightforward to identify the gradient. Hence, the

gradient is given by
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∇fij(x) =




0(i−1)c×1

<vec(Ci)

=vec(Ci)

0(j−i−1)c×1

<vec(Cj)

=vec(Cj)

0(K−j)c×1




2KTM×1

for 1 ≤ i 6= j ≤ K and c = 2TM , where x =




< vec(X1)

= vec(X1)
...

< vec(XK)

= vec(XK)




.
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Fig. 1. Geometrical interpretation of Π
⊥
j X i.
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Fig. 2. Category 1 - spatio-temporally white observation noise: T=8, M=3, N=1, K=256, Υ= INT . Plus-solid curve:our codes; circle-dashed

curve:unitary codes.
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Fig. 3. Category 1 - spatio-temporally white observation noise: T=8, M=2, N=1, K=256, Υ= INT . Plus-solid curve: our codes; circle-

dashed curve: unitary codes.
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Fig. 4. Category 1 - spatio-temporally white observation noise: T=8, M=1, N=1, K=256, Υ= INT . Plus-solid curve: our codes; circle-

dashed curve: unitary codes.
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PACKING RADII (DEGREES)

T K MB JAT Rankin

2 3 60 60 60

2 4 54.74 54.74 54.74

2 5 45.00 45.00 52.24

2 6 45.00 45.00 50.77

2 7 38.93 38.93 49.80

2 8 37.43 37.41 49.11

2 9 35.26 − 48.59

2 10 33.07 − 48.19

2 11 31.72 − 47.87

2 12 31.72 − 47.61

2 13 28.24 − 47.39

2 14 27.83 − 47.21

2 15 26.67 − 47.05

2 16 25.97 − 46.91

3 4 70.53 70.53 70.53

3 5 64.26 64.00 65.91

3 6 63.43 63.43 63.43

3 7 61.87 61.87 61.87

3 8 60.00 60.00 60.79

3 9 60.00 60.00 60.00

3 10 54.74 54.73 59.39

3 11 54.74 54.73 58.91

3 12 54.74 54.73 58.52

3 13 51.38 51.32 58.19

3 14 50.36 50.13 57.92

3 15 49.80 49.53 57.69

3 16 49.60 49.53 57.49

3 17 49.13 49.10 57.31

3 18 48.12 48.07 57.16

PACKING RADII (DEGREES)

T K MB JAT Rankin

4 5 75.52 75.52 75.52

4 6 70.89 70.88 71.57

4 7 69.29 69.29 69.30

4 8 67.79 67.78 67.79

4 9 66.31 66.21 66.72

4 10 65.74 65.71 65.91

4 11 64.79 64.64 65.27

4 12 64.68 64.24 64.76

4 13 64.34 64.34 64.34

4 14 63.43 63.43 63.99

4 15 63.43 63.43 63.69

4 16 63.43 63.43 63.43

5 6 78.46 78.46 78.46

5 7 74.55 74.52 75.04

5 8 72.83 72.81 72.98

5 9 71.33 71.24 71.57

5 10 70.53 70.51 70.53

5 11 69.73 69.71 69.73

5 12 69.04 68.89 69.10

5 13 68.38 68.19 68.58

5 14 67.92 67.66 68.15

5 15 67.48 67.37 67.79

5 16 67.08 66.68 67.48

5 17 66.82 66.53 67.21

5 18 66.57 65.87 66.98

5 19 66.57 65.75 66.77

Fig. 5. PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best configurations (MB) of K points in P
T−1(C) against the

Tropp codes (JAT) and Rankin bound [10]. The packing radius of an ensemble is measured as the acute angle between the closest pair of

lines. Minus sign symbol (-) means that no packing is available for specific pair (T, K).
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PACKING RADII (DEGREES)

T K MB Rankin

6 7 80.41 80.41

6 8 77.06 77.40

6 9 75.52 75.52

6 10 74.20 74.21

6 11 73.22 73.22

6 12 72.45 72.45

6 13 71.82 71.83

6 14 71.31 71.32

6 15 70.87 70.89

6 16 70.53 70.53

6 17 70.10 70.21

6 18 69.73 69.94

6 19 69.40 69.70

TABLE III

PACKING IN COMPLEX PROJECTIVE SPACE: WE COMPARE OUR BEST CONFIGURATIONS (MB) OF K POINTS IN P
T−1(C)

AGAINST RANKIN BOUND. THE PACKING RADIUS OF AN ENSEMBLE IS MEASURED AS THE ACUTE ANGLE BETWEEN THE CLOSEST PAIR

OF LINES.
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Fig. 6. Category 2 - spatially white - temporally colored: T=8, M=2, N = 1, K=67, ρ=[ 1; 0.85; 0.6; 0.35; 0.1; zeros(3,1) ]. Solid curves:

our codes; dashed curves: unitary codes; plus signed curves: GLRT receiver; square signed curves: Bayesian receiver.
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Fig. 7. Category 2 - spatially white - temporally colored: T=8, M=2, N = 1, K=256, ρ=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. Solid curves:

our codes; dashed curves: unitary codes; plus signed curves: GLRT receiver; square signed curves: Bayesian receiver.
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Fig. 8. Category 2 - spatially white - temporally colored: T=8, M=2, N = 1, K=32, ρ=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. Solid curves: our

codes; dashed curves: unitary codes; plus signed curves: GLRT receiver; square signed curves: Bayesian receiver.
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Fig. 9. Category 3: T=8, M=2, N = 2, K=32. Solid curves: our codes; dashed curves: unitary codes; plus signed curves: GLRT receiver;

square signed curves: Bayesian receiver.
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Fig. 10. Category 3: T=8, M=2, N = 2, K=67. Solid curves: our codes; dashed curves: unitary codes; plus signed curves: GLRT receiver;

square signed curves: Bayesian receiver.


