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Outline

⊲ High SNR regime

– deterministic fading channel (PEP analysis and codebook construction)

→ conference paper published in IEEE ICASSP’2006

→ journal paper submitted to IEEE Transactions on Signal Processing

⊲ Low SNR regime

– random fading channel (mutual information analysis)

→ conference paper submitted to IEEE ICASSP’2007

– deterministic fading channel (PEP analysis and codebook construction)

→ conference paper published in IEEE SPAWC’2006

→ conference paper submitted to IEEE ICASSP’2007

→ journal paper in preparation for IEEE Trans. on Signal Processing

⊲ Future work
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Part 1: High SNR regime
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Problem Formulation

⊲ Data model: Y = XHH + E

X

1

M

Tx h1N

h11

h12
hM1

hMN

1

2

N

Rx Y

Figure 1: MIMO system

⊲ Y , E: T × N , X: T × M , H: N × M

⊲ Codebook : X = {X1, X2, ..., XK} is a point in the manifold

M = {(X1, . . . , XK) : tr(XH
k Xk) = 1}

⊲ Contribution: design codebook when H deterministic, unknown and

vec (E) ∼ CN (0,Υ) (colored noise)
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Problem Formulation

⊲ GLRT receiver:

bk = argmax p(y|Xk, bgk)

k = 1, 2, . . . , K

= argmin ||y −gXkbgk||2Υ−1

k = 1, 2, . . . , K

gXk = IN ⊗ Xk, bgk = (dXk

HdXk)−1dXk

H
Υ

− 1

2 y (ML channel estimate),
dXk = Υ

− 1

2gXk, ||z||2A = zHAz, y = vec (Y )

⊲ PEP analysis: it can be shown that (see [6]) for high SNR

PX i→X j
= Q

„
1√
2

q
gH Lijg

«
≤ Q

„
1√
2
||g||

q
λmin(Lij)

«
(1)

where g = vec(HH), Lij(X ) = cXi
H
„

IT −dXj

“
dXj

HdXj

”−1dXj
H
«

| {z }
Π⊥

j

cXi



'

&

$

%

Problem Formulation

⊲ Optimization problem: result (1) suggests the codebook merit function

X ∗ = arg max

X ∈ M
min{λmin(Lij(X )) : 1 ≤ i 6= j ≤ K}
| {z }

f(X1,...,XK)

(2)

⊲ The problem in (2) is a high-dimensional, non-linear and non-smooth

optimization problem!

e.g. for K = 256, T = 8, M = 2: K(K − 1) = 65280 Lij(X ) functions and

2KTM = 8192 real variables to optimize



'

&

$

%

Codebook design : geometrical interpretation

⊲ cXi should lie in the orthogonal complement of span{dXj}

Π⊥
j
cXi

dXj

cXi

⊲ f(X1, . . . , XK) = f(X1eiθ1 , . . . , XKeiθK ) : packing in complex projective space
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Codebook Construction

⊲ Two-phase methodology to tackle the optimization problem in (2)

⊲ Phase I: solves a convex semi-definite programming (SDP) relaxation

⊲ Incremental approach: Let X ∗
k−1 = {X∗

1, ..., X∗
k−1} be the codebook at the

k − 1th stage. The new codeword is found by solving

X∗
k = arg max

tr(XH
k Xk) = 1

min
1≤i≤ k−1

{λmin(Lik), λmin(Lki)} (3)

for k = 2, ..., K
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Codebook Construction - Phase I

⊲ The optimization problem (3) is equivalent to (see [6])

( bY ∗
,fX∗

, t∗) = arg max t (4)

with the following constraints
2
6664

tr(NiA1
bY B1) − t · · · tr(NiAMN

bY B1)

.

.

.
.
.
.

tr(NiA1
bY BMN ) · · · tr(NiAMN

bY BMN ) − t

3
7775 � 0,

"
M Zi

ZH
i P i

#
� 0 ∀1≤i≤ k−1 , K bY K

H
= eX, tr( eX) = 1,

f bY f
H

= 1, bY = bY H
, bY � 0, rank( bY ) = 1

and fX = vec(Xk)vecH(Xk), b2 = 1, bY = zzH , z =
h
vecT (gXk) b

iT
,

gXk = IN ⊗ Xk.

⊲ The matrices M, Zi — linear in bY
⊲ The matrices Ni, P i, K, f, Ai and Bi — constants, some depend on Υ
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Codebook Construction - Phase 1

⊲ Design of the codewords: high-dimensional difficult nonlinear optimization

problem (rank condition in (4))

⊲ Relaxing the rank constraint leads to an SDP [7]

⊲ The kth codeword is extracted from the output variable fX with a technique

similar to [8]

⊲ Initialization X∗
1: randomly generated, filling columns of the matrix with

eigenvectors associated to the smallest eigenvalues of the noise covariance

matrix,etc.
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Codebook Construction - Phase 2

⊲ Phase II: optimizes a non-smooth function on a manifold

Xk

γk(t)

Xk+1

dk

M
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Codebook Construction - Phase 2

⊲ Iterative algorithm, called GDA (geodesic descent algorithm)

⊲ Identify ”active” pairs (i, j) that attain minimum

⊲ Check if there is an ascent direction dk ∈ TXk
M for all active (i, j)

(consists of solving LP)

⊲ When dk is found, perform Armijo rule along geodesic γk(t)

⊲ If no dk is found, the algorithm stops
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Computer Simulations

� Example:

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

Figure 2: Category 1 - spatio-temporally white observation noise: T=8, M=3, N=1,

K=256, Υ= INT . Plus-solid curve-our codes, circle-dashed curve-unitary codes.
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� Example:
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Figure 3: Category 1 - spatio-temporally white observation noise: T=8, M=2, N=1,

K=256, Υ= INT . Plus-solid curve-our codes, circle-dashed curve-unitary codes.
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PACKING RADII (DEGREES)

T K MB JAT Rankin

2 3 60 60 60

2 4 54.74 54.74 54.74

2 5 45.00 45.00 52.24

2 6 45.00 45.00 50.77

2 7 38.93 38.93 49.80

2 8 37.43 37.41 49.11

2 9 35.26 − 48.59

2 10 33.07 − 48.19

2 11 31.72 − 47.87

2 12 31.72 − 47.61

2 13 28.24 − 47.39

2 14 27.83 − 47.21

2 15 26.67 − 47.05

2 16 25.97 − 46.91

Table 1: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best con-

figurations (MB) of K points in PT−1(C) against the Tropp codes (JAT) and Rankin

bound [4]. The packing radius of an ensemble is measured as the acute angle between

the closest pair of lines. Minus sign symbol (-) means that no packing is available for

specific pair (T, K).
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PACKING RADII (DEGREES)

T K MB JAT Rankin

3 4 70.53 70.53 70.53

3 5 64.26 64.00 65.91

3 6 63.43 63.43 63.43

3 7 61.87 61.87 61.87

3 8 60.00 60.00 60.79

3 9 60.00 60.00 60.00

3 10 54.74 54.73 59.39

3 11 54.74 54.73 58.91

3 12 54.74 54.73 58.52

3 13 51.38 51.32 58.19

3 14 50.36 50.13 57.92

3 15 49.80 49.53 57.69

3 16 49.60 49.53 57.49

3 17 49.13 49.10 57.31

3 18 48.12 48.07 57.16

Table 2: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best con-

figurations (MB) of K points in PT−1(C) against the Tropp codes (JAT) and Rankin

bound [4]. The packing radius of an ensemble is measured as the acute angle between

the closest pair of lines. Minus sign symbol (-) means that no packing is available for

specific pair (T, K).
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PACKING RADII (DEGREES)

T K MB JAT Rankin

4 5 75.52 75.52 75.52

4 6 70.89 70.88 71.57

4 7 69.29 69.29 69.30

4 8 67.79 67.78 67.79

4 9 66.31 66.21 66.72

4 10 65.74 65.71 65.91

4 11 64.79 64.64 65.27

4 12 64.68 64.24 64.76

4 13 64.34 64.34 64.34

4 14 63.43 63.43 63.99

4 15 63.43 63.43 63.69

4 16 63.43 63.43 63.43

Table 3: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best con-

figurations (MB) of K points in PT−1(C) against the Tropp codes (JAT) and Rankin

bound. The packing radius of an ensemble is measured as the acute angle between the

closest pair of lines.
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PACKING RADII (DEGREES)

T K MB JAT Rankin

5 6 78.46 78.46 78.46

5 7 74.55 74.52 75.04

5 8 72.83 72.81 72.98

5 9 71.33 71.24 71.57

5 10 70.53 70.51 70.53

5 11 69.73 69.71 69.73

5 12 69.04 68.89 69.10

5 13 68.38 68.19 68.58

5 14 67.92 67.66 68.15

5 15 67.48 67.37 67.79

5 16 67.08 66.68 67.48

5 17 66.82 66.53 67.21

5 18 66.57 65.87 66.98

5 19 66.57 65.75 66.77

Table 4: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best con-

figurations (MB) of K points in PT−1(C) against the Tropp codes (JAT) and Rankin

bound. The packing radius of an ensemble is measured as the acute angle between the

closest pair of lines.
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PACKING RADII (DEGREES)

T K MB Rankin

6 7 80.41 80.41

6 8 77.06 77.40

6 9 75.52 75.52

6 10 74.20 74.21

6 11 73.22 73.22

6 12 72.45 72.45

6 13 71.82 71.83

6 14 71.31 71.32

6 15 70.87 70.89

6 16 70.53 70.53

6 17 70.10 70.21

6 18 69.73 69.94

6 19 69.40 69.70

Table 5: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best con-

figurations (MB) of K points in PT−1(C) against Rankin bound. The packing radius

of an ensemble is measured as the acute angle between the closest pair of lines.
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� Example:
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Figure 4: Category 2 - spatially white - temporally coloured: T=8, M=2, N = 1,

K=67, Υ = INT ⊗ Σ(ρ), ρ=[ 1; 0.85; 0.6; 0.35; 0.1; zeros(3,1) ]. Solid curves-our

codes, dashed curves-unitary codes, plus signed curves-GLRT receiver, square signed

curves-Bayesian receiver.
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� Example:
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Figure 5: Category 2 - spatially white - temporally coloured: T=8, M=2, N = 1,

K=256, Υ = INT ⊗ Σ(ρ), ρ=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. Solid curves-our

codes, dashed curves-unitary codes, plus signed curves-GLRT receiver, square signed

curves-Bayesian receiver.
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� Example:
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Figure 6: Category 2 - spatially white - temporally coloured: T=8, M=2, N = 1,

K=32, Υ = INT ⊗ Σ(ρ), ρ=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. Solid curves-our

codes, dashed curves-unitary codes, plus signed curves-GLRT receiver, square signed

curves-Bayesian receiver.
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� Example:
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Figure 7: Category 3 - Υ = ααH ⊗ Υs + INT ⊗ Σ(ρ): T=8, M=2, N = 2,

K=32, s=[1;0.7;0.4;0.15;zeros(4,1)], ρ = [1;0.8;0.5;0.15;zeros(4,1)], α = [-1.146 +

1.189i;1.191- 0.038i]. Solid curves-our codes, dashed curves-unitary codes, plus signed

curves-GLRT receiver, square signed curves-Bayesian receiver.
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� Example:

−6 −5 −4 −3 −2 −1 0 1 2 3
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

Figure 8: Category 3 - Υ = ααH ⊗ Υs + INT ⊗ Σ(ρ): T=8, M=2, N = 2,

K=67, s=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ], ρ = [ 1; 0.7; 0.4; 0.15; zeros(4,1) ],

α = [−0.453+0.007i; 0.4869+1.9728i]. Solid curves-our codes, dashed curves-unitary

codes, plus signed curves-GLRT receiver, square signed curves-Bayesian receiver.
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Conclusions

⊲ Codebook design for noncoherent setup

– H deterministic, unknown

– Colored noise: vec (E) ∼ CN (0,Υ)

⊲ Results

– outperform significantly unitary constellations for colored noise case

– provide good packings for complex projective space (M = 1)

(near bound performance)

– small gain for white noise case

– for some cases actual Equiangular Tight Frames (ETF’s)

⊲ Publications

– conference paper published in IEEE ICASSP’2006

– journal paper submitted to IEEE Transactions on Signal Processing
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Part 2: Low SNR regime – random fading channel
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Problem Formulation

⊲ Data model: X = SH + E

S

1

M

Tx h1N

h11

h12
hM1

hMN

1

2

N

Rx X

⊲ X, E: T × N , S: T × M , H: M × N

⊲ Contribution: mutual information analysis for on-off and Gaussian signaling

when H =
q

ρ
M

K
1

2

t HwK
1

2
r and vec (E) ∼ CN (0,Υ) (colored noise)
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Mutual information: on-off signaling

⊲ The on-off signaling: for any ǫ > 1, S = Sonρ−
ǫ
2 w.p. ρǫ; S = 0 w.p. 1− ρǫ

⊲ At sufficiently low SNR

I(X; S) =
ρ

M
tr
“
Υ

−1
“
Kr ⊗ SonKtS

H
on

””
+ o(ρ), (5)

⊲ We maximize I(X; S) in (5) w.r.t Son, Kt and Kr

⊲ The maximum in (5) is attained by

bSon =
√

TM
h
ŝ 0T×(M−1)

i
, cKr = NûûH , cKt(i, i) = Mδi1 (6)

where

(û, ŝ) = arg max

u ∈ CN , ||u|| = 1

s ∈ CT , ||s|| = 1

(u⊗ s)H
Υ

−1 (u⊗ s) (7)
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Mutual information: on-off signaling

⊲ The optimization problem in (7) always admits a solution (maximization of a

continuous function over a compact set)

⊲ For the choice in (6), the maximal mutual information (p.c.u) is equal to

1

T
I(X; S) = ρ N Mλ̂ + o(ρ).

where λ̂ = (û⊗ ŝ)H
Υ

−1 (û⊗ ŝ)

⊲ Conclusions:

– From (6) we see that both Kt and Kr should be of rank one

– Correlated Rayleigh fading channel is beneficial from capacity viewpoint.

Gain of order M with respect to uncorrelated Rayleigh fading channel

– On-off signaling attains the known channel capacity

– Correlation in noise is beneficial too, λ̂ ≥ 1
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Mutual information: Gaussian modulation

⊲ On-off signaling is unpracticable due to large peakiness of the input signal

⊲ Let s = vec(S)∼CN (0, P ). At sufficiently low SNR

I(X; S) =
ρ2

2M2
tr
“
E[Z2] − (E[Z])2

”
+ o(ρ2) (8)

where Z = Υ
− 1

2

`
Kr ⊗ SKtS

H
´
Υ

− 1

2

⊲ We maximize I(X; S) in (8) w.r.t P , Kt and Kr

⊲ The maximum in (8) is attained by

bP = TMF1 ⊗ ŝŝH , cKr = NûûH , cKt(i, i) = Mδi1 (9)

where

(û, ŝ) = arg max

u ∈ CN , ||u|| = 1

s ∈ CT , ||s|| = 1

(u⊗ s)H
Υ

−1 (u⊗ s)
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Mutual information: Gaussian modulation

⊲ The M × M matrix F1 has all the entries equal to zero except the entry

(1,1) which is one

⊲ For the choice in (9), the maximal mutual information (p.c.u) is equal to

1

T
I(X; S) =

ρ2

2
N2 T M2 λ̂2 + o(ρ2).

⊲ Conclusions:

– From (9) we see that both Kt and Kr should be of rank one

– Correlated Rayleigh fading channel is beneficial from capacity viewpoint.

Gain of order M2N with respect to uncorrelated Rayleigh fading channel

– Correlation in noise is beneficial too, λ̂ ≥ 1

⊲ Publications

– conference paper submitted to IEEE ICASSP’2007

– journal paper in preparation for IEEE Trans. on Signal Processing
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Part 2: Low SNR regime – deterministic fading channel
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Problem Formulation

⊲ Data model: X = SH + E

S

1

M

Tx h1N

h11

h12
hM1

hMN

1

2

N

Rx X

⊲ X, E: T × N , S: T × M , H: M × N

⊲ Codebook : S = {S1, S2, ..., SK} is a point in the manifold

M = {(S1, . . . , SK) : tr(SH
k Sk) = 1}

⊲ Contribution: design codebook when H deterministic, unknown and

vec (E) ∼ CN (0,Υ) (colored noise)
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⊲ GLRT receiver:

bk = argmax p(x|Sk, bgk)

k = 1, 2, . . . , K

= argmin ||x− fSkbgk||2Υ−1

k = 1, 2, . . . , K

fSk = IN ⊗ Sk, bgk = (cSk

HcSk)−1cSk

H
Υ

− 1

2 y (ML channel estimate),

cSk = Υ
− 1

2 fSk, ||z||2A = zHAz, x = vec (X)

⊲ PEP analysis: it can be shown that at low SNR and T ≥ 2M

PSi→Sj
≈ Prob

“
Y > gH Lijg

”
, (10)

with Lij = cSi
H

Π
⊥
j
cSi, Π

⊥
j = IT N − cSj

“
cSj

HcSj

”−1 cSj
H

, and

Y =
PMN

m=1 sin αm (|am|2 − |bm|2) where am, bm
iid∼ CN (0, 1) for

m = 1, . . . , MN . The angles αm are the principal angles between the

subspaces spanned by cSi

“
cSi

HcSi

”− 1

2

and cSj

“
cSj

HcSj

”− 1

2
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Problem Formulation

⊲ PEP analysis: for M = 1 and Υ = IT N , (10) becomes

Psi→sj
= P

 
NX

n=1

`
|an|2 − |bn|2

´
> ||h||2 sin αij

!
(11)

where an,bn
iid∼ CN (0, 1) and the angle αij is the acute angle between the

codewords si and sj

⊲ In our work [5] the expression for the PEP in the high SNR regime,

M = 1 and Υ = IT N is given by

Psi→sj
= Q

„
1√
2
||h|| sin αij

«
(12)

where Q(x) =
R+∞

x
1√
2π

e−
t2

2 dt

⊲ Equations (11)-(12) confirm that the codewords si and sj should be

constructed as separate as possible

⊲ The problem of constructing good codes corresponds to the very well known

packing problem in the complex projective space [4]
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Problem Formulation

⊲ From (10), an upper bound on the PEP is readily found

PSi→Sj
≤ Prob

`
Z > ||g||2 λmin (Lij)

´
, (13)

where Z =
PMN

m=1 |am|2, am
iid∼ CN (0, 1)

⊲ The codebook design criterion in (13) is equivalent to the one for the high

SNR regime

S∗ = arg max

S ∈ M
min{λmin(Lij(X )) : 1 ≤ i 6= j ≤ K}
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Computer Simulations
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� Category 1 - spatio-temporally white observation noise: Constellations with

equal priors

0 2 4 6 8 10 12
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N (Number of receive antennas)
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M = 1, T = 2, 8−point, SNR = 7 dB

Our codes with GLRT receiver
Borran codes with ML receiver

Figure 9: M=1, T=2, K=8, SNR = 7 dB. Solid curve:our codes with our GLRT

receiver. Dashed curve:Borran codes designed for SNR = 7dB with ML receiver [1].
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� Category 1 - spatio-temporally white observation noise: Constellations with

equal priors

0 5 10 15
10

−3

10
−2

10
−1

10
0

N (Number of receive antennas)

S
E

R

M = 1, T = 2, 16−point, SNR = 7 dB

Our codes with GLRT receiver
Borran codes with ML receiver

Figure 10: M=1, T=2, K=16, SNR = 7 dB. Solid curve:our codes with our GLRT

receiver. Dashed curve:Borran codes designed for SNR = 7dB with ML receiver [1].
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� Category 1 - spatio-temporally white observation noise: Constellations with

unequal priors

4 5 6 7 8 9 10 11 12 13 14
10

−3

10
−2

10
−1

10
0

N (Number of received antennas)

S
E

R

T = 2, M = 1, SNR = 0 dB, Rate = 1 b/s/Hz

GLRT receiver, our 4−point constellation, equal priors
MAP receiver, Srinivasan’s 5−point constellation, unequal priors 
MAP receiver, our 5−point constellation, unequal priors

Figure 11: T=2, M=1, SNR = 0 dB, Rate = 1 b/s/Hz. Solid curve-our 5 point constellation

with unequal priors, dashed curve-Srinivasan’s 5 point constellation with unequal priors [2], dash-

dotted curve-our 4 point constellation with equal priors. Our and Srinivasan’s 5 point constellations

use maximum a-posteriori (MAP) receiver, our 4 point constellation uses GLRT receiver.
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� Category 1 - spatio-temporally white observation noise: Constellations with

equal priors and M ≥ 1

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

N (Number of received antennas)

S
E

R

T=3, K = 16, SNR = 0 dB

Our codes, M = 1, GLRT receiver 
Borran codes, M = 2, ML receiver

Figure 12: Solid curve-our codes for K = 16, T = 3, M = 1, dashed curve-Borran

codes for K = 16, T = 3, M = 2.
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� Category 1 - spatio-temporally white observation noise: Constellations with

equal priors and M ≥ 1

0 2 4 6 8 10 12 14 16
10

−2

10
−1

10
0

N (Number of received antennas)

S
E

R

T = 4, K = 32, SNR = 0 dB

Our codes, M = 1, GLRT receiver
Borran codes, M = 2, ML receiver

Figure 13: Solid curve-our codes for K = 32, T = 4, M = 1, dashed curve-Borran

codes for K = 32, T = 4, M = 2.
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� Category 1 - spatio-temporally white observation noise: Constellations with

equal priors and M ≥ 1
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T = 8, SNR = 0 dB, K = 256
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GLRT receiver, M = 2
GLRT receiver, M = 3

Figure 14: T=8, K=256, SNR = 0 dB. Solid curve-our codes for M = 1, dashed

curve-our codes for M = 2, dash-dotted curve-our codes for M = 3. All codes use

GLRT receiver.
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� Category 2 - spatially white - temporally colored: Υ = INT ⊗ Σ(ρ)
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T = 6, SNR = −6 dB, ro = [ 1; 0.85; 0.6; 0.35; 0.1; 0 ]

GLRT receiver, K=8, M=1, codes adopted to ro = [ 1; 0.85; 0.6; 0.35; 0.1; 0 ]
GLRT receiver, K=8,M=2, codes adopted to ro = [ 1; 0.85; 0.6; 0.35; 0.1; 0 ]
GLRT receiver,K=8,M=3, codes adopted to ro = [ 1; 0.85; 0.6; 0.35; 0.1; 0 ]
GLRT receiver, K=8,M=1, codes adopted to ro = [ 1; zeros(5,1) ]
MAP receiver, K=17,M=1, codes adopted to ro = [ 1; 0.85; 0.6; 0.35; 0.1; 0 ]
MAP receiver, K=17,M=1, codes adopted to ro = [ 1; zeros(5,1)  ]

Figure 15: T=6, SNR=-6dB, ρ=[ 1; 0.85; 0.6; 0.35; 0.1; 0 ].
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� Category 3 - E = sαT + Etemp

−16 −14 −12 −10 −8 −6 −4 −2 0 2
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

T=8,N=2,K=32,s=[1;0.7;0.4;0.15;zeros(4,1)],ro=[1;0.8;0.5;0.15;zeros(4,1)],alpha = [−1.146+1.189i;1.191−0.038i]

M = 2, codes adopted to colored noise, GLRT receiver
M = 1, codes adopted to colored noise, GLRT receiver
M = 1, codes adopted to white noise, GLRT receiver

Figure 16: T=8, N = 2, K=32, s=[1;0.7;0.4;0.15;zeros(4,1)], ρ = [1;0.8;0.5;0.15;ze-

ros(4,1)], α = [-1.146 + 1.189i;1.191- 0.038i].
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Conclusions

⊲ PEP analysis and codebook design in low SNR regime when H is

deterministic and unknown

⊲ Results

– outperform significantly state-of-art known solutions which assume equal

prior probabilities

– also of interest for the constellations with unequal priors

⊲ Publications

– conference paper published in IEEE SPAWC’2006

– conference paper submitted to IEEE ICASSP’2007

– journal paper in preparation for IEEE Trans. on Signal Processing
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Part 3: Future work

⊲ Influence of unperfect estimate of noise covariance matrix on the error

performance

⊲ Cooperative diversity

⊲ Space-frequency signaling in MIMO-OFDM systems (frequency-selective

fading)

⊲ ETF’s

⊲ Study of double scattering MIMO channels in the low SNR regime

.

.

.
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THANK YOU
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