Non-coherent Communication in Multiple-antenna Systems: Receiver Design, Codebook Construction and Capacity Analysis

Marko Beko

Advisor: João Xavier Co-advisor: Victor Barroso

Instituto de Sistemas e Robótica (ISR) – Instituto Superior Técnico

Av. Rovisco Pais, 1049-001

Lisboa, Portugal

{marko,jxavier,vab}@isr.ist.utl.pt

Outline

▷ High SNR regime

- deterministic fading channel (PEP analysis and codebook construction)

 \rightarrow conference paper published in IEEE ICASSP'2006

 \rightarrow journal paper submitted to IEEE Transactions on Signal Processing

▷ Low SNR regime

- random fading channel (mutual information analysis)

 \rightarrow conference paper submitted to IEEE ICASSP'2007

- deterministic fading channel (PEP analysis and codebook construction)

 \rightarrow conference paper published in IEEE SPAWC'2006

 \rightarrow conference paper submitted to IEEE ICASSP'2007

 \rightarrow journal paper in preparation for IEEE Trans. on Signal Processing

 \triangleright Future work

 \triangleright Contribution: design codebook when H deterministic, unknown and $\operatorname{vec}(E) \sim \mathcal{CN}(\mathbf{0}, \Upsilon)$ (colored noise)

Problem Formulation

▷ GLRT receiver:

$$\begin{split} \widehat{k} &= & \operatorname{argmax} \quad p(\boldsymbol{y}|\boldsymbol{X}_k, \widehat{\boldsymbol{g}}_k) \\ &= & 1, 2, \dots, K \\ &= & \operatorname{argmin} \quad ||\boldsymbol{y} - \widetilde{\boldsymbol{X}_k} \widehat{\boldsymbol{g}}_k||_{\Upsilon^{-1}}^2 \\ &\quad k = 1, 2, \dots, K \end{split}$$

$$\begin{split} \widetilde{\boldsymbol{X}_{k}} &= \boldsymbol{I}_{N} \otimes \boldsymbol{X}_{k}, \, \widehat{\boldsymbol{g}}_{k} = (\widehat{\boldsymbol{X}_{k}}^{H} \widehat{\boldsymbol{X}_{k}})^{-1} \widehat{\boldsymbol{X}_{k}}^{H} \Upsilon^{-\frac{1}{2}} \boldsymbol{y} \text{ (ML channel estimate),} \\ \widetilde{\boldsymbol{X}_{k}} &= \Upsilon^{-\frac{1}{2}} \widetilde{\boldsymbol{X}_{k}}, \, ||\boldsymbol{z}||_{\boldsymbol{A}}^{2} = \boldsymbol{z}^{H} \boldsymbol{A} \boldsymbol{z}, \, \boldsymbol{y} = \text{vec}(\boldsymbol{Y}) \end{split}$$

 \triangleright PEP analysis: it can be shown that (see [6]) for high SNR

$$P_{\boldsymbol{X}_{i} \to \boldsymbol{X}_{j}} = \mathcal{Q}\left(\frac{1}{\sqrt{2}}\sqrt{\boldsymbol{g}^{H} \boldsymbol{L}_{ij}\boldsymbol{g}}\right) \leq \mathcal{Q}\left(\frac{1}{\sqrt{2}}||\boldsymbol{g}||\sqrt{\lambda_{\min}(\boldsymbol{L}_{ij})}\right) \quad (1)$$

where $\boldsymbol{g} = \operatorname{vec}(\boldsymbol{H}^{H}), \ \boldsymbol{L}_{ij}(\boldsymbol{\mathcal{X}}) = \widehat{\boldsymbol{X}_{i}}^{H} \underbrace{\left(\boldsymbol{I}_{T} - \widehat{\boldsymbol{X}_{j}}\left(\widehat{\boldsymbol{X}_{j}}^{H}\widehat{\boldsymbol{X}_{j}}\right)^{-1}\widehat{\boldsymbol{X}_{j}}^{H}\right)}_{\Pi_{j}^{\perp}} \widehat{\boldsymbol{X}_{i}}$

Problem Formulation

 \triangleright Optimization problem: result (1) suggests the codebook merit function

$$\mathcal{X}^* = \arg \max_{\mathcal{X} \in \mathcal{M}} \underbrace{\min\{\lambda_{\min}(\boldsymbol{L}_{ij}(\mathcal{X})) : 1 \le i \ne j \le K\}}_{f(\boldsymbol{X}_1, \dots, \boldsymbol{X}_K)}$$
(2)

The problem in (2) is a high-dimensional, non-linear and non-smooth optimization problem!

e.g. for K = 256, T = 8, M = 2: $K(K - 1) = 65280 L_{ij}(\mathcal{X})$ functions and 2KTM = 8192 real variables to optimize

Codebook Construction

- \triangleright Two-phase methodology to tackle the optimization problem in (2)
- ▷ <u>Phase I</u>: solves a convex semi-definite programming (SDP) relaxation
- \triangleright Incremental approach: Let $\mathcal{X}_{k-1}^* = \{\mathbf{X}_1^*, ..., \mathbf{X}_{k-1}^*\}$ be the codebook at the $k 1^{\underline{th}}$ stage. The new codeword is found by solving

$$\boldsymbol{X}_{k}^{*} = \operatorname{arg\,max}_{1 \leq i \leq k-1} \{\lambda_{\min}(\boldsymbol{L}_{ik}), \lambda_{\min}(\boldsymbol{L}_{ki})\} \quad (3)$$

$$\operatorname{tr}(\boldsymbol{X}_{k}^{H}\boldsymbol{X}_{k}) = 1$$

for k = 2, ..., K

Codebook Construction - Phase I

 \triangleright The optimization problem (3) is equivalent to (see [6])

$$(\widehat{\boldsymbol{Y}}^*, \widetilde{\boldsymbol{X}}^*, t^*) = \arg \max t$$
 (4)

with the following constraints

 $\begin{bmatrix} \operatorname{tr}(\boldsymbol{N}_{i}\boldsymbol{A}_{1}\widehat{\boldsymbol{Y}}\boldsymbol{B}_{1}) - t & \cdots & \operatorname{tr}(\boldsymbol{N}_{i}\boldsymbol{A}_{MN}\widehat{\boldsymbol{Y}}\boldsymbol{B}_{1}) \\ \vdots & \vdots \\ \operatorname{tr}(\boldsymbol{N}_{i}\boldsymbol{A}_{1}\widehat{\boldsymbol{Y}}\boldsymbol{B}_{MN}) & \cdots & \operatorname{tr}(\boldsymbol{N}_{i}\boldsymbol{A}_{MN}\widehat{\boldsymbol{Y}}\boldsymbol{B}_{MN}) - t \end{bmatrix} \succeq \mathbf{0}, \\ \begin{bmatrix} \boldsymbol{M} & \boldsymbol{Z}_{i} \\ \boldsymbol{Z}_{i}^{H} & \boldsymbol{P}_{i} \end{bmatrix} \succeq \mathbf{0} \forall_{1 \leq i \leq k-1}, \boldsymbol{K}\widehat{\boldsymbol{Y}}\boldsymbol{K}^{H} = \widetilde{\boldsymbol{X}}, \operatorname{tr}(\widetilde{\boldsymbol{X}}) = 1, \\ \boldsymbol{f}\widehat{\boldsymbol{Y}}\boldsymbol{f}^{H} = 1, \widehat{\boldsymbol{Y}} = \widehat{\boldsymbol{Y}}^{H}, \widehat{\boldsymbol{Y}} \succeq \mathbf{0}, \operatorname{rank}(\widehat{\boldsymbol{Y}}) = 1 \\ \text{and } \widetilde{\boldsymbol{X}} = \operatorname{vec}(\boldsymbol{X}_{k})\operatorname{vec}^{H}(\boldsymbol{X}_{k}), b^{2} = 1, \ \widehat{\boldsymbol{Y}} = \boldsymbol{z}\boldsymbol{z}^{H}, \ \boldsymbol{z} = \begin{bmatrix} \operatorname{vec}^{T}(\widetilde{\boldsymbol{X}_{k}}) \ \boldsymbol{b} \end{bmatrix}^{T}, \\ \widetilde{\boldsymbol{X}_{k}} = \boldsymbol{I}_{N} \otimes \boldsymbol{X}_{k}. \\ \triangleright \text{ The matrices } \boldsymbol{M}, \ \boldsymbol{Z}_{i} - \text{ linear in } \widehat{\boldsymbol{Y}} \\ \triangleright \text{ The matrices } \boldsymbol{N}_{i}, \ \boldsymbol{P}_{i}, \ \boldsymbol{K}, \ \boldsymbol{f}, \ \boldsymbol{A}_{i} \text{ and } \boldsymbol{B}_{i} - \text{ constants, some depend on } \boldsymbol{\Upsilon} \\ \end{bmatrix}$

Codebook Construction - Phase 1

- Design of the codewords: high-dimensional difficult nonlinear optimization problem (rank condition in (4))
- \triangleright Relaxing the rank constraint leads to an SDP [7]
- > The $k^{\underline{th}}$ codeword is extracted from the output variable \widetilde{X} with a technique similar to [8]
- Initialization X₁^{*}: randomly generated, filling columns of the matrix with eigenvectors associated to the smallest eigenvalues of the noise covariance matrix,etc.

Codebook Construction - Phase 2

- ▷ Iterative algorithm, called GDA (geodesic descent algorithm)
- \triangleright Identify "active" pairs (i, j) that attain minimum
- ▷ Check if there is an ascent direction $d_k \in T_{\mathcal{X}_k} \mathcal{M}$ for all active (i, j) (consists of solving LP)
- \triangleright When d_k is found, perform Armijo rule along geodesic $\boldsymbol{\gamma}_k(t)$
- \triangleright If no d_k is found, the algorithm stops

		PACKING RADII (DEGREES)		
T	K	MB	JAT	Rankin
2	3	60	60	60
2	4	54.74	54.74	54.74
2	5	45.00	45.00	52.24
2	6	45.00	45.00	50.77
2	7	38.93	38.93	49.80
2	8	37.43	37.41	49.11
2	9	35.26		48.59
2	10	33.07		48.19
2	11	31.72		47.87
2	12	31.72		47.61
2	13	28.24		47.39
2	14	27.83	_	47.21
2	15	26.67	_	47.05
2	16	25.97	_	46.91

Table 1: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best configurations (MB) of K points in $\mathbb{P}^{T-1}(\mathbb{C})$ against the Tropp codes (JAT) and Rankin bound [4]. The packing radius of an ensemble is measured as the acute angle between the closest pair of lines. Minus sign symbol (-) means that no packing is available for specific pair (T, K).

		PACKING RADII (DEGREES)		
T	K	MB	JAT	Rankin
3	4	70.53	70.53	70.53
3	5	64.26	64.00	65.91
3	6	63.43	63.43	63.43
3	7	61.87	61.87	61.87
3	8	60.00	60.00	60.79
3	9	60.00	60.00	60.00
3	10	54.74	54.73	59.39
3	11	54.74	54.73	58.91
3	12	54.74	54.73	58.52
3	13	51.38	51.32	58.19
3	14	50.36	50.13	57.92
3	15	49.80	49.53	57.69
3	16	49.60	49.53	57.49
3	17	49.13	49.10	57.31
3	18	48.12	48.07	57.16

Table 2: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best configurations (MB) of K points in $\mathbb{P}^{T-1}(\mathbb{C})$ against the Tropp codes (JAT) and Rankin bound [4]. The packing radius of an ensemble is measured as the acute angle between the closest pair of lines. Minus sign symbol (-) means that no packing is available for specific pair (T, K).

		b		
		PACKING RADII (DEGREES)		
T	K	MB	JAT	Rankin
4	5	75.52	75.52	75.52
4	6	70.89	70.88	71.57
4	7	69.29	69.29	69.30
4	8	67.79	67.78	67.79
4	9	66.31	66.21	66.72
4	10	65.74	65.71	65.91
4	11	64.79	64.64	65.27
4	12	64.68	64.24	64.76
4	13	64.34	64.34	64.34
4	14	63.43	63.43	63.99
4	15	63.43	63.43	63.69
4	16	63.43	63.43	63.43

Table 3: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best configurations (MB) of K points in $\mathbb{P}^{T-1}(\mathbb{C})$ against the Tropp codes (JAT) and Rankin bound. The packing radius of an ensemble is measured as the acute angle between the closest pair of lines.

		PACKING RADII (DEGREES)		
T	K	MB	JAT	Rankin
5	6	78.46	78.46	78.46
5	7	74.55	74.52	75.04
5	8	72.83	72.81	72.98
5	9	71.33	71.24	71.57
5	10	70.53	70.51	70.53
5	11	69.73	69.71	69.73
5	12	69.04	68.89	69.10
5	13	68.38	68.19	68.58
5	14	67.92	67.66	68.15
5	15	67.48	67.37	67.79
5	16	67.08	66.68	67.48
5	17	66.82	66.53	67.21
5	18	66.57	65.87	66.98
5	19	66.57	65.75	66.77

Table 4: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best configurations (MB) of K points in $\mathbb{P}^{T-1}(\mathbb{C})$ against the Tropp codes (JAT) and Rankin bound. The packing radius of an ensemble is measured as the acute angle between the closest pair of lines.

		PACKING RADII (DEGREES)		
T	K	MB	Rankin	
6	7	80.41	80.41	
6	8	77.06	77.40	
6	9	75.52	75.52	
6	10	74.20	74.21	
6	11	73.22	73.22	
6	12	72.45	72.45	
6	13	71.82	71.83	
6	14	71.31	71.32	
6	15	70.87	70.89	
6	16	70.53	70.53	
6	17	70.10	70.21	
6	18	69.73	69.94	
6	19	69.40	69.70	

Table 5: PACKING IN COMPLEX PROJECTIVE SPACE: We compare our best configurations (MB) of K points in $\mathbb{P}^{T-1}(\mathbb{C})$ against Rankin bound. The packing radius of an ensemble is measured as the acute angle between the closest pair of lines.

Figure 4: Category 2 - spatially white - temporally coloured: T=8, M=2, N=1, K=67, $\Upsilon = I_{NT} \otimes \Sigma(\rho)$, $\rho=[1; 0.85; 0.6; 0.35; 0.1; zeros(3,1)]$. Solid curves-our codes, dashed curves-unitary codes, plus signed curves-GLRT receiver, square signed curves-Bayesian receiver.

Figure 5: Category 2 - spatially white - temporally coloured: T=8, M=2, N=1, K=256, $\Upsilon = I_{NT} \otimes \Sigma(\rho)$, $\rho=[1; 0.8; 0.5; 0.15; zeros(4,1)]$. Solid curves-our codes, dashed curves-unitary codes, plus signed curves-GLRT receiver, square signed curves-Bayesian receiver.

Figure 6: Category 2 - spatially white - temporally coloured: T=8, M=2, N=1, K=32, $\Upsilon = I_{NT} \otimes \Sigma(\rho)$, $\rho=[1; 0.8; 0.5; 0.15; \text{zeros}(4,1)]$. Solid curves-our codes, dashed curves-unitary codes, plus signed curves-GLRT receiver, square signed curves-Bayesian receiver.

Figure 7: Category 3 - $\Upsilon = \alpha \alpha^H \otimes \Upsilon_s + I_{NT} \otimes \Sigma(\rho)$: T=8, M=2, N = 2, K=32, s=[1;0.7;0.4;0.15;zeros(4,1)], $\rho = [1;0.8;0.5;0.15;zeros(4,1)]$, $\alpha = [-1.146 + 1.189i;1.191 - 0.038i]$. Solid curves-our codes, dashed curves-unitary codes, plus signed curves-GLRT receiver, square signed curves-Bayesian receiver.

Figure 8: Category 3 - $\Upsilon = \alpha \alpha^H \otimes \Upsilon_s + I_{NT} \otimes \Sigma(\rho)$: T=8, M=2, N = 2, K=67, s=[1; 0.8; 0.5; 0.15; zeros(4,1)], $\rho = [$ 1; 0.7; 0.4; 0.15; zeros(4,1)], $\alpha = [-0.453+0.007i; 0.4869+1.9728i]$. Solid curves-our codes, dashed curves-unitary codes, plus signed curves-GLRT receiver, square signed curves-Bayesian receiver.

Conclusions

- Codebook design for noncoherent setup
 - H deterministic, unknown
 - Colored noise: vec $(\boldsymbol{E}) \sim \mathcal{CN}\left(\boldsymbol{0}, \boldsymbol{\Upsilon}
 ight)$

 \triangleright Results

- outperform significantly unitary constellations for colored noise case
- provide good packings for complex projective space (M = 1) (near bound performance)
- small gain for white noise case
- for some cases actual Equiangular Tight Frames (ETF's)
- \triangleright Publications
 - conference paper published in IEEE ICASSP'2006
 - journal paper submitted to IEEE Transactions on Signal Processing

Part 2: Low SNR regime – random fading channel

 $\triangleright \boldsymbol{X}, \boldsymbol{E}: \ T \times N, \ \boldsymbol{S}: \ T \times M, \ \boldsymbol{H}: \ M \times N$

 $\triangleright \text{ Contribution: mutual information analysis for on-off and Gaussian signaling} when <math>\boldsymbol{H} = \sqrt{\frac{\rho}{M}} \boldsymbol{K}_t^{\frac{1}{2}} \boldsymbol{H}_w \boldsymbol{K}_r^{\frac{1}{2}}$ and $\text{vec}(\boldsymbol{E}) \sim \mathcal{CN}(\boldsymbol{0}, \boldsymbol{\Upsilon})$ (colored noise)

Mutual information: on-off signaling

▷ The on-off signaling: for any $\epsilon > 1$, $S = S_{on}\rho^{-\frac{\epsilon}{2}}$ w.p. ρ^{ϵ} ; S = 0 w.p. $1 - \rho^{\epsilon}$ ▷ At sufficiently low SNR

$$I(\boldsymbol{X};\boldsymbol{S}) = \frac{\rho}{M} \operatorname{tr} \left(\boldsymbol{\Upsilon}^{-1} \left(\boldsymbol{K}_r \otimes \boldsymbol{S}_{on} \boldsymbol{K}_t \boldsymbol{S}_{on}^H \right) \right) + o(\rho), \tag{5}$$

 \triangleright We maximize $I(m{X};m{S})$ in (5) w.r.t $m{S}_{on}$, $m{K}_t$ and $m{K}_r$

 \triangleright The maximum in (5) is attained by

$$\widehat{\boldsymbol{S}}_{on} = \sqrt{TM} \begin{bmatrix} \hat{\boldsymbol{s}} & \boldsymbol{0}_{T \times (M-1)} \end{bmatrix}, \ \widehat{\boldsymbol{K}}_{r} = N \hat{\boldsymbol{u}} \hat{\boldsymbol{u}}^{H}, \ \widehat{\boldsymbol{K}}_{t}(i,i) = M \delta_{i1}$$
(6)

where

$$(\hat{\boldsymbol{u}}, \hat{\boldsymbol{s}}) = \operatorname{arg\,max} \quad (\boldsymbol{u} \otimes \boldsymbol{s})^{H} \Upsilon^{-1} (\boldsymbol{u} \otimes \boldsymbol{s})$$
(7)
$$\boldsymbol{u} \in \mathbb{C}^{N}, ||\boldsymbol{u}|| = 1$$
$$\boldsymbol{s} \in \mathbb{C}^{T}, ||\boldsymbol{s}|| = 1$$

Mutual information: on-off signaling

- The optimization problem in (7) always admits a solution (maximization of a continuous function over a compact set)
- \triangleright For the choice in (6), the maximal mutual information (p.c.u) is equal to

$$\frac{1}{T}I(\boldsymbol{X};\boldsymbol{S}) = \rho N M \hat{\lambda} + o(\rho).$$

where $\hat{\lambda} = (\hat{\bm{u}} \otimes \hat{\bm{s}})^H \, \Upsilon^{-1} \, (\hat{\bm{u}} \otimes \hat{\bm{s}})$

▷ Conclusions:

- From (6) we see that both K_t and K_r should be of rank one
- Correlated Rayleigh fading channel is beneficial from capacity viewpoint. Gain of order M with respect to uncorrelated Rayleigh fading channel
- On-off signaling attains the known channel capacity
- Correlation in noise is beneficial too, $\hat{\lambda} \geq 1$

Mutual information: Gaussian modulation

▷ On-off signaling is unpracticable due to large peakiness of the input signal ▷ Let $s = vec(S) \sim CN(0, P)$. At sufficiently low SNR

$$I(\boldsymbol{X};\boldsymbol{S}) = \frac{\rho^2}{2M^2} \operatorname{tr} \left(\mathsf{E}[\boldsymbol{Z}^2] - (\mathsf{E}[\boldsymbol{Z}])^2 \right) + o(\rho^2)$$
(8)
where $\boldsymbol{Z} = \boldsymbol{\Upsilon}^{-\frac{1}{2}} \left(\boldsymbol{K}_r \otimes \boldsymbol{S} \boldsymbol{K}_t \boldsymbol{S}^H \right) \boldsymbol{\Upsilon}^{-\frac{1}{2}}$
We maximize $I(\boldsymbol{X};\boldsymbol{S})$ in (8) w.r.t \boldsymbol{P} , \boldsymbol{K}_t and \boldsymbol{K}_r

 \triangleright The maximum in (8) is attained by

$$\widehat{\boldsymbol{P}} = TM\boldsymbol{F}_1 \otimes \widehat{\boldsymbol{s}}\widehat{\boldsymbol{s}}^H, \ \widehat{\boldsymbol{K}}_r = N\widehat{\boldsymbol{u}}\widehat{\boldsymbol{u}}^H, \ \widehat{\boldsymbol{K}}_t(i,i) = M\delta_{i1}$$
(9)

where

 \triangleright

$$\begin{aligned} (\hat{\boldsymbol{u}}, \hat{\boldsymbol{s}}) &= & \arg \max \qquad (\boldsymbol{u} \otimes \boldsymbol{s})^H \, \boldsymbol{\Upsilon}^{-1} \, (\boldsymbol{u} \otimes \boldsymbol{s}) \\ \boldsymbol{u} \in \mathbb{C}^N, ||\boldsymbol{u}|| &= 1 \\ \boldsymbol{s} \in \mathbb{C}^T, ||\boldsymbol{s}|| &= 1 \end{aligned}$$

Mutual information: Gaussian modulation

- \triangleright The $M \times M$ matrix F_1 has all the entries equal to zero except the entry (1,1) which is one
- \triangleright For the choice in (9), the maximal mutual information (p.c.u) is equal to

$$\frac{1}{T}I(\boldsymbol{X};\boldsymbol{S}) = \frac{\rho^2}{2} N^2 T M^2 \hat{\lambda}^2 + o(\rho^2).$$

▷ Conclusions:

- From (9) we see that both K_t and K_r should be of rank one
- Correlated Rayleigh fading channel is beneficial from capacity viewpoint. Gain of order M^2N with respect to uncorrelated Rayleigh fading channel
- Correlation in noise is beneficial too, $\hat{\lambda} \geq 1$
- ▷ Publications
 - conference paper submitted to IEEE ICASSP'2007
 - journal paper in preparation for IEEE Trans. on Signal Processing

Part 2: Low SNR regime – deterministic fading channel

ho Data model: $oldsymbol{X} = oldsymbol{S}oldsymbol{H} + oldsymbol{E}$

 $\triangleright \ \pmb{X}, \pmb{E}: \ T \times N, \ \pmb{S}: \ T \times M, \ \pmb{H}: \ M \times N$

 $\triangleright \mathsf{Codebook}: \ \mathcal{S} = \{ \boldsymbol{S}_1, \boldsymbol{S}_2, ..., \boldsymbol{S}_K \} \text{ is a point in the manifold}$

$$\mathcal{M} = \{ (\boldsymbol{S}_1, \dots, \boldsymbol{S}_K) : \mathsf{tr}(\boldsymbol{S}_k^H \boldsymbol{S}_k) = 1 \}$$

 \triangleright Contribution: design codebook when H deterministic, unknown and $\operatorname{vec}(E) \sim \mathcal{CN}(\mathbf{0}, \Upsilon)$ (colored noise)

▷ GLRT receiver:

$$\begin{split} \widehat{k} &= & \operatorname{argmax} \quad p(\boldsymbol{x}|\boldsymbol{S}_k, \widehat{\boldsymbol{g}}_k) \\ & & k = 1, 2, \dots, K \\ &= & \operatorname{argmin} \quad ||\boldsymbol{x} - \widetilde{\boldsymbol{S}_k} \widehat{\boldsymbol{g}}_k||_{\Upsilon^{-1}}^2 \\ & & k = 1, 2, \dots, K \end{split}$$

$$\widetilde{S_k} = I_N \otimes S_k$$
, $\widehat{g}_k = (\widehat{S_k}^H \widehat{S_k})^{-1} \widehat{S_k}^H \Upsilon^{-\frac{1}{2}} y$ (ML channel estimate),
 $\widehat{S_k} = \Upsilon^{-\frac{1}{2}} \widetilde{S_k}$, $||\boldsymbol{z}||_{\boldsymbol{A}}^2 = \boldsymbol{z}^H \boldsymbol{A} \boldsymbol{z}$, $\boldsymbol{x} = \text{vec}(\boldsymbol{X})$

 \triangleright PEP analysis: it can be shown that at low SNR and $T \geq 2M$

$$P_{\boldsymbol{S}_i \to \boldsymbol{S}_j} \approx \operatorname{Prob}\left(Y > \boldsymbol{g}^H \ \boldsymbol{L}_{ij} \boldsymbol{g}\right),$$
 (10)

with $L_{ij} = \widehat{S}_i^{\ H} \Pi_j^{\perp} \widehat{S}_i$, $\Pi_j^{\perp} = I_{TN} - \widehat{S}_j \left(\widehat{S}_j^{\ H} \widehat{S}_j\right)^{-1} \widehat{S}_j^{\ H}$, and $Y = \sum_{m=1}^{MN} \sin \alpha_m \left(|a_m|^2 - |b_m|^2\right)$ where a_m , $b_m \overset{iid}{\sim} \mathcal{CN}(0, 1)$ for $m = 1, \dots, MN$. The angles α_m are the principal angles between the subspaces spanned by $\widehat{S}_i \left(\widehat{S}_i^{\ H} \widehat{S}_i\right)^{-\frac{1}{2}}$ and $\widehat{S}_j \left(\widehat{S}_j^{\ H} \widehat{S}_j\right)^{-\frac{1}{2}}$

Problem Formulation

 \triangleright PEP analysis: for M=1 and $\boldsymbol{\Upsilon}=\boldsymbol{I}_{TN}$, (10) becomes

$$P_{\boldsymbol{s}_{i}\to\boldsymbol{s}_{j}} = P\left(\sum_{n=1}^{N} \left(|a_{n}|^{2} - |b_{n}|^{2}\right) > ||\boldsymbol{h}||^{2} \sin \alpha_{ij}\right)$$
(11)

where $a_n, b_n \stackrel{iid}{\sim} CN(0, 1)$ and the angle α_{ij} is the acute angle between the codewords s_i and s_j

 \triangleright In our work [5] the expression for the PEP in the high SNR regime, M = 1 and $\Upsilon = I_{TN}$ is given by

$$P_{\boldsymbol{s}_i \to \boldsymbol{s}_j} = \mathcal{Q}\left(\frac{1}{\sqrt{2}} ||\boldsymbol{h}|| \sin \alpha_{ij}\right)$$
(12)

where $\mathcal{Q}(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$

- \triangleright Equations (11)-(12) confirm that the codewords s_i and s_j should be constructed as separate as possible
- The problem of constructing good codes corresponds to the very well known packing problem in the complex projective space [4]

Problem Formulation

 \triangleright From (10), an upper bound on the PEP is readily found

$$P_{\boldsymbol{S}_{i} \to \boldsymbol{S}_{j}} \leq \operatorname{Prob}\left(Z > ||\boldsymbol{g}||^{2} \lambda_{\min}\left(\boldsymbol{L}_{ij}\right)\right), \qquad (13)$$

where
$$Z = \sum_{m=1}^{MN} |a_m|^2$$
, $a_m \stackrel{iid}{\sim} \mathcal{CN}(0,1)$

 \triangleright The codebook design criterion in (13) is equivalent to the one for the high SNR regime

$$\mathcal{S}^* = \arg \max \min \{ \lambda_{\min}(\boldsymbol{L}_{ij}(\mathcal{X})) : 1 \le i \ne j \le K \}$$

 $\mathcal{S} \in \mathcal{M}$

Figure 9: M=1, T=2, K=8, SNR = 7 dB. Solid curve:our codes with our GLRT receiver. Dashed curve:Borran codes designed for SNR = 7dB with ML receiver [1].

Figure 11: T=2, M=1, SNR = 0 dB, Rate = 1 b/s/Hz. Solid curve-our 5 point constellation with unequal priors, dashed curve-Srinivasan's 5 point constellation with unequal priors [2], dash-dotted curve-our 4 point constellation with equal priors. Our and Srinivasan's 5 point constellations use *maximum a-posteriori* (MAP) receiver, our 4 point constellation uses GLRT receiver.

Figure 12: Solid curve-our codes for K = 16, T = 3, M = 1, dashed curve-Borran codes for K = 16, T = 3, M = 2.

Figure 13: Solid curve-our codes for K = 32, T = 4, M = 1, dashed curve-Borran codes for K = 32, T = 4, M = 2.

 \Box Category 1 - spatio-temporally white observation noise: Constellations with equal priors and $M\geq 1$

Figure 14: T=8, K=256, SNR = 0 dB. Solid curve-our codes for M = 1, dashed curve-our codes for M = 2, dash-dotted curve-our codes for M = 3. All codes use GLRT receiver.

Figure 15: T=6, SNR=-6dB, $\rho=[1; 0.85; 0.6; 0.35; 0.1; 0]$.

Conclusions

PEP analysis and codebook design in low SNR regime when *H* is deterministic and unknown

\triangleright Results

- outperform significantly state-of-art known solutions which assume equal prior probabilities
- also of interest for the constellations with unequal priors
- \triangleright Publications
 - conference paper published in IEEE SPAWC'2006
 - conference paper submitted to IEEE ICASSP'2007
 - journal paper in preparation for IEEE Trans. on Signal Processing

Part 3: Future work

- Influence of unperfect estimate of noise covariance matrix on the error performance
- ▷ Cooperative diversity
- Space-frequency signaling in MIMO-OFDM systems (frequency-selective fading)
- $\triangleright \mathsf{ETF's}$

.

 \triangleright Study of double scattering MIMO channels in the low SNR regime

THANK YOU

References

- M. J. Borran, A. Sabharwal and B. Aazhang, "On design criteria and construction of non-coherent space-time constellations," *IEEE Trans. Inform. Theory*, vol. 49, no. 10, pp. 2332-2351, Oct. 2003.
- [2] S. G. Srinivasan and M. K. Varanasi, "Constellation Design with Unequal Priors and New Distance Criteria for the Low SNR Noncoherent Rayleigh Fading Channel," *Conf. on Information Sciences and Systems, The Johns Hopkins University, Baltimore, MD*, Mar. 2005.
- [3] S. G. Srinivasan and M. K. Varanasi, "Code design for the low SNR noncoherent MIMO block Rayleigh fading channel," *IEEE Proceedings. Inform. Theory*, ISIT 2005, pp. 2218 - 2222, Sept. 2005.
- [4] J. A. Tropp, "Topics in sparse approximation", Ph.D. dissertation: Univ. Texas at Austin, 2004.
- [5] M. Beko, J. Xavier and V. Barroso, "Codebook design for non-coherent communication in multiple-antenna systems," IEEE ICASSP2006.
- [6] M. Beko, J. Xavier and V. Barroso, "Non-coherent Communication in Multiple-Antenna Systems: Receiver design and Codebook construction," *in preparation.*
- J. F. Sturm, "Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones (Updated for Version 1.05)," http://sedumi.mcmaster.ca
- [8] M. X. Goemans, "Semidefinite programming in combinatorial optimization," *Mathematical Programming*, Vol. 79, pp. 143-161, 1997.
- [9] T. L. Marzetta and B. M.Hochwald, "Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading," *IEEE Trans. Inform. Theory*, vol. 45, pp. 139-157, Jan. 1999.

- [10] B. M. Hochwald and T. L.Marzetta, "Unitary space-time modulation for multiple-antenna communication in Rayleigh flat-fading," *IEEE Trans. Inform. Theory*, vol. 46, pp. 543-564, Mar. 2000.
- [11] B. M. Hochwald, T. L. Marzetta, T. J. Richardson, W. Sweldens, and R. Urbanke, "Systematic design of unitary space-time constellations," *IEEE Trans. Inf. Theory*, vol. 46, no. 6, pp. 1962-1973, Sep. 2000.
- [12] A. Edelman, T. A. Arias, and S. T. Smith, "The geometry of algorithms with orthogonality constraints," SIAM J. Matrix Anal. Appl., vol. 20, no. 2, pp. 303-353, 1998.
- [13] J. H. Manton, "Optimization algorithms exploiting unitary constraints," *IEEE Trans. Signal Process.*, vol. 50, no. 3, pp. 635-650, Mar. 2002.