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Problem Formulation

⊲ Data model: X = SH + E

S

1

M

Tx h1N

h11

h12
hM1

hMN

1

2

N

Rx X

⊲ X, E: T × N , S: T × M , H: M × N

⊲ Contribution: mutual information analysis for on-off and

Gaussian signaling when H =
√

ρ

M
K

1

2 Hw and

vec (E) ∼ CN (0,Υ) (colored noise)
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Mutual information: on-off signaling

⊲ The on-off signaling: for any ǫ > 1,

S = Sonρ−
ǫ

2 w.p. ρǫ; S = 0 w.p. 1 − ρǫ

⊲ At sufficiently low SNR

I(X; S) =
ρ

M
tr

(
Υ

−1 (IN ⊗ Son) K

(
IN ⊗ S

H
on

))
+ o(ρ),

(1)
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Mutual information: on-off signaling

⊲ We maximize I(X; S) in (1) w.r.t Son and K

max

tr
(
SonS

H
on

)
≤ TM

K ∈ PMN

tr
(
Υ

−1
SonKS

H

on

)
(2)

where Pn = {Y : n × n matrix such that Y � 0, tr (Y ) = n}
and Son = IN ⊗ Son.
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⊲ The maximum in (1) is attained by

Ŝon = ivec(ŝon), K̂ = MN ûû
H , (3)

where

(û, ŝon) = arg max

||u|| = 1,

||son|| ≤
√

TM

s
H
onMonson (4)

with Mon = K
H
on

((
uu

H
)T ⊗ Υ

−1

)
Kon, u ∈ CMN and

son = vec (Son) ∈ C
TM . TMN2 × TM matrix Kon is such that

vec (IN ⊗ Son) = Konvec (Son)
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Mutual information: on-off signaling

⊲ The optimization problem in (4) always admits a solution

(maximization of a continuous function over a compact set)

⊲ For the choice in (3), the maximal mutual information (p.c.u) is

equal to

1

T
I(X; S) = ρ N Mλ̂ + o(ρ).

where

λ̂ = ŝ
H

K
H
on

((
ûû

H
)T

⊗ Υ
−1

)
Konŝ (5)

and ŝ = 1/
√

TM ŝon.
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Mutual information: on-off signaling

Fixed eigenvectors of K

⊲ In practice, by changing the antenna separation one can control

the eigenvalues of K, but not their eigenvectors.

⊲ In this case, the optimization problem defined in (2) becomes

(
Ŝon, Λ̂

)
= arg max

||Son|| ≤
√

TM

Λ ∈ DMN

tr
(
Υ

−1
SonUΛU

H
S

H

on

)
(6)

where Dn = {Y : n × n diagonal matrix such that Y � 0 and

tr (Y ) = n}, and UΛU
H is the EVD of K.
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Mutual information: on-off signaling

Fixed eigenvectors of K

⊲ The maximum in (6) is attained by

Ŝon =
√

TM ivec(smax), K̂ = MNui∗u
H
i∗ , (7)

where ui’s are the eigenvectors of K, smax is an unit-norm

eigenvector associated to the λmax

(
M

i∗

on

)
with

M
i∗

on = K
H
on

((
ui∗u

H
i∗

)T ⊗ Υ
−1

)
Kon (8)

and

i∗ = arg max

i = 1, 2, ..., MN

λmax

(
M

i
on

)
. (9)
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Mutual information: on-off signaling

Fixed eigenvectors of K

⊲ For the choice in (7), the maximal mutual information (p.c.u.) is

given by

1

T
I(X; S) = ρ N Mλmax

(
M

i∗

on

)
+ o(ρ).
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Mutual information: on-off signaling

⊲ Conclusions:

– From (3) and (7) we see that K should be of rank one

– Correlated Rayleigh fading channel is beneficial from

capacity viewpoint. Gain of order M with respect to

uncorrelated Rayleigh fading channel

– On-off signaling attains the known channel capacity

– Correlation in noise is beneficial too, λ̂ ≥ 1
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Mutual information: Gaussian modulation

⊲ On-off signaling is unpracticable due to large peakiness of the

input signal

⊲ Let s = vec(S)∼CN (0, P ). At sufficiently low SNR

I(X; S) =
ρ2

2M2
tr

(
E[Z2] − (E[Z])2

)
+ o(ρ2) (10)

where Z = Υ
−

1

2 SonKS
H

onΥ
−

1

2
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Mutual information: Gaussian modulation

⊲ We maximize I(X; S) in (10) w.r.t P and K

max

P ∈ HTM , K ∈ PMN

tr
(
E[Z2] − (E[Z])

2

)
(11)

where Hn = {P : n × n matrices such that P = P
H � 0 and

tr (P ) ≤ n}.
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Mutual information: Gaussian modulation

⊲ The maximum in (11) is attained by

P̂ = ŝonŝ
H
on, K̂ = MN ûû

H , (12)

where

(û, ŝon) = arg max

||u|| = 1,

||son|| ≤
√

TM

s
H
onMonson (13)
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Mutual information: Gaussian modulation

⊲ For the choice in (12), the maximal mutual information (p.c.u)

is equal to

1

T
I(X; S) =

ρ2

2
N2 T M2 λ̂2 + o(ρ2)

where

λ̂ = ŝ
H

K
H
on

((
ûû

H
)T

⊗ Υ
−1

)
Konŝ

and ŝ = 1/
√

TM ŝon.
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Mutual information: Gaussian modulation

Fixed eigenvectors of K

⊲ When the eigenvalues of K are fixed then the maximum of (11)

is attained by

P̂ = TM smaxs
H
max, K̂ = MNui∗u

H
i∗ , (14)

where ui’s are the eigenvectors of K, smax is an unit-norm

eigenvector associated to the λmax

(
M

i∗

on

)
with

M
i∗

on = K
H
on

((
ui∗u

H
i∗

)T ⊗ Υ
−1

)
Kon (15)

and

i∗ = arg max

i = 1, 2, ..., MN

λmax

(
M

i
on

)
. (16)



'

&

$

%

Mutual information: Gaussian modulation

Fixed eigenvectors of K

⊲ For the choice in (14), the maximal mutual information (p.c.u.) is

given by

1

T
I(X; S) =

ρ2

2
N2 T M2 λ2

max

(
M

i∗

on

)
+ o(ρ2).
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Mutual information: Gaussian modulation

⊲ Conclusions:

– From (12) and (14) we see that K should be of rank one

– Correlated Rayleigh fading channel is beneficial from

capacity viewpoint. Gain of order M2N with

respect to uncorrelated Rayleigh fading channel

– Correlation in noise is beneficial too, λ̂ ≥ 1
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