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Problem Formulation

> Data model: Y = XHY + E
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> Codebook : X = {®1,®2,...,xK } is a point in the manifold

M= {(x1,...,2x) : Tlx) =1}

> Contribution: PEP analysis and codebook design for M = 1 in low SNR
regime when H is deterministic and unknown \
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Problem Formulation

> GLRT receiver:

k = argmax p(Y|ewr, gx)
k=1,2,..., K
— argmin :@ - vmw@/w:
k=1,2,..., K

— —H
X =InQxk, g, = Xk Yy (ML channel estimate), y = vec(Y))
> PEP analysis: it can be shown that at sufficiently low SNR

N
Pr.—sw. =P lan|? — [bn|?) > ||R||? sina;;
i—a; > ( ;
n=1
where 9:_@:@.@ CN (0,1) and the angle a;; is the acute angle between the
codewords x; and x;
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Problem Formulation

> In our work [5] the expression for the PEP in the high SNR regime and
M =1 is given by

Prima, = (Il sina, ) @)
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where O(x %._.oo F e~ 5 dt

> Equations AC-ANV confirm that the codewords x; and x; should be
constructed as separate as possible

> The problem of constructing good codes corresponds to the very well known
packing problem in the complex projective space [4]
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Problem Formulation

> Optimization problem: result (1) suggests the codebook design problem

X* = argmax min{L;;(X):1<i#j <K} (3)
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> The problem in (3) is a high-dimensional, non-linear and non-smooth
optimization problem

where L;;(X) = HW:H,M_.H@ = sin? a;; with Hh,m._. =17 — SQHE

Example: for K =256, T =8, M =1: K(K —1) = 65280 L;,;(X) functions
and 2KT'M = 4096 real variables to optimize




Codebook Construction

> Two-phase methodology to tackle the optimization problem in (3)
(see [5]-[6])
> Phase I: solves a convex semi-definite programming (SDP) relaxation

> Incremental approach: Let X} | = {x],...,x}_,} be the codebook at the

k — 1t stage. The new codeword is found by solving

x; = arg max HAme\.IHAyB_:Ah%YyB_:AN:S.vw
o <

T, xp =1
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fork=2,.... K

(4)
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\ Codebook Construction - Phase |

> The optimization problem (4) is equivalent to (see [6])

(Y ,X ,t*) = argmax t

with the following constraints
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> The matrices M, Z; — linear in Y
/ > The matrices N;, P;, K, f, A; and B; — constants




Codebook Construction - Phase 1

> Design of the codewords: high-dimensional difficult nonlinear optimization
problem (rank condition in (5))

> Relaxing the rank constraint leads to an SDP [7]

> The kt: codeword is extracted from the output variable X with a technique
similar to [8]

> Initialization x7: randomly generated
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Codebook Construction - Phase 2

> Phase Il: optimizes a non-smooth function on a manifold




Codebook Construction - Phase 2

> Iterative algorithm, called GDA (geodesic descent algorithm)
> ldentify "active” pairs (i,) that attain minimum in (3)

> Check if there is an ascent direction dj, € Tx, M for all active (¢, j)
(consists of solving LP)

> When dj, is found, perform Armijo rule along geodesic ~; (%)

> If no dj. is found, the algorithm stops




[] Example:
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Computer Simulations

Constellations with equal priors

M=1,T =2, 8-point, SNR = 7 dB
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Figure 1: M=1, T=2, K=8, SNR = 7 dB. Solid curve:our codes with our GLRT

receiver. Dashed curve:Borran codes designed for SNR = 7dB with ML receiver [1].




[] Example:

Constellations with equal priors

M=1,T =2, 16-point, SNR =7 dB
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Figure 2: M=1, T=2, K=16, SNR = 7 dB. Solid curve:our codes with our GLRT
receiver. Dashed curve:Borran codes designed for SNR = 7dB with ML receiver [1].




[] Example: Constellations with unequal priors

T=2,M=1,SNR=0dB, Rate = 1 b/s/Hz
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Figure 3: T=2, M=1, SNR = 0 dB, Rate = 1 b/s/Hz. Solid curve-our 5 point constellation with

unequal priors, dashed curve-Srinivasan’s 5 point constellation with unequal priors [2], dash-dotted

curve-our 4 point constellation with equal priors. Our and Srinivasan’'s 5 point constellations use

maximum a-posteriori (MAP) receiver, our 4 point constellation uses GLRT receiver.




[] Example: Constellations with equal priors and M > 1
0 T=3,K=16, SNR=0dB
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Figure 4: Solid curve-our codes for K = 16, T' = 3, M = 1, dashed
codes for K =16, T = 3, M = 2.
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[] Example: Constellations with equal priors and M > 1
0 T=4,K=32,SNR=0dB
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Figure 5: Solid curve-our codes for K = 32, T' = 4, M = 1, dashed
codes for K =32, T =4, M = 2.
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[] Example: Constellations with equal priors and M > 1

T=8,SNR=0dB, K=256
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Figure 6: T=8, K=256, SNR = 0 dB. Solid curve-our codes for M = 1, dashed curve-
our codes for M = 2, dash-dotted curve-our codes for M = 3. All codes use GLRT




Conclusions

> PEP analysis and codebook design for M = 1 in low SNR regime
when H is deterministic and unknown

> Results

— outperform significantly state-of-art known solutions which assume equal
prior probabilities

— also of interest for the constellations with unequal priors
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