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Part 1: Low SNR regime — random fading channel
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Problem Formulation

> Data model: X =SH + F
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> Contribution: mutual information analysis for on-off and
1 1
Gaussian signaling when H = /& K/ H K and

vec (E) ~ CN (0,Y) (colored noise)




Mutual information: on-off signaling

> The on-off signaling: for any e > 1, § = 8,,p~2 w.p. p;
S=0w.p. 1—p°

> At sufficiently low SNR

Ebmvn % : ?L Tm ® mgﬂmm&vv +g§

> We maximize I(X;S) in (1) w.r.t S,,, K; and K,

> The maximum in (1) is attained by

e~ e~

= VTM |3 PS@TL K, = Naa K,(i,i) = Mo,
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arg max (u®s)" Yl (u®s) (3)
u € CV, [[ul| =1
seChls|| =1




Mutual information: on-off signaling

> The optimization problem in (3) always admits a solution
(maximization of a continuous function over a compact set)

> For the choice in (2), the maximal mutual information (p.c.u) is
equal to

1 .
WNANWMV =pN MM+ o(p).

where A = (4 ® 8)" Y71 (4 @ 8)
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> Conclusions:

— From (2) we see that both K; and K, should be of rank
one

— Correlated Rayleigh fading channel is beneficial from
capacity viewpoint. Gain of order M with respect to
uncorrelated Rayleigh fading channel

— On-off signaling attains the known channel capacity

A

— Correlation in noise is beneficial too, A > 1
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Mutual information: Gaussian modulation

> On-off signaling is unpracticable due to large peakiness of the
input signal

> Let s = vec(S)~CN (0, P). At sufficiently low SNR

2

1(X;8) = i tr (E[2%] = (E[2))°) + o(s?) (4)

where Z — Y% Tb ? m?mmv Y3

> We maximize I(X;S) in (4) w.rt P, K; and K,

> The maximum in (4) is attained by

—

P=TMF,®38" K, = Naa", K,(i,i) = Mé; av\
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Mutual information: Gaussian modulation

> The M x M matrix F'; has all the entries equal to zero except
the entry (1,1) which is one

> For the choice in (5), the maximal mutual information (p.c.u) is

equal to

| 2 )
—I(X; ) = W N2T M2 52 + o(p?).
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> Conclusions:

— From (5) we see that both K; and K, should be of rank
one

— Correlated Rayleigh fading channel is beneficial from
capacity viewpoint. Gain of order M?N with
respect to uncorrelated Rayleigh fading channel

A

— Correlation in noise is beneficial too, A > 1
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Part 2: Low SNR regime — deterministic fading channel
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Problem Formulation
> Data model: X =SH + FE
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> X, E: TxN,S: TxM,H: M xN
> Codebook : § ={S51,S85,...,Sk} is a point in the manifold

M = AAMT .. .im.mmv : ﬁ_\Amw‘mwv = Hw

> Contribution: design codebook when H deterministic, unknown

and vec (E) ~ CN (0,T) (colored noise)
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> GLRT receiver:

F=  agmax  p(e|Sk.8)
k=1.2... K

= argmin | — S1rgl|5-
k=1,2... K

—~H 1
mw|N2®Mw.©w|Amw mwv fm.w Y 2y A_/\__l channel
estimate), S, = Y28, ||z||% = 27 Az, & = vec (X)

\




~

> PEP analysis: it can be shown that at low SNR and T" > 2M

w_m.@.lm.u. ~ Prob A%‘ > .Qm .N.\S.Qv ; Amv

. ~H_ |~ ~H ~\"1 ~H
with N.\@. =5, HH,Q. S, HH@. =Irn — m Am S v m,u. , and

Y =S MY ginan, (|am|? — |bm]?) where ap,, by CA (0, 1)
form=1,..., MN. The angles Qi are the b::n%m\ angles
between the mc_um_umnmm spanned by m and m
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Problem Formulation J

> PEP analysis: for M =1 and ¥ = Iy, (6) becomes

N
Ps,_s, =P MU (Jan]® = [b|?) > ||R]|? sin ay; (7)
n=1

where @:b:w@ CN (0,1) and the angle o5 1s the acute angle

between the codewords s; and s;

> In our work [5, 7] the expression for the PEP in the high SNR
regime, M =1 and X = Iy Is given by

1
P, ... = 9 —=||h|| sinq;; 8
e = @ 5lnll sinay) 5)
where Q(z) = [ —L e~ % di

\
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> Equations (7)-(8) confirm that the codewords s; and s; should
be constructed as separate as possible

> The problem of constructing good codes corresponds to the very
well known packing problem in the complex projective space

[4, 7]




Problem Formulation

> From (6), an upper bound on the PEP is readily found
Ps,_.s, < Prob (Z > ||g]|” Amin (Lij)) ,

where Z = SN a2, am eN(0,1)

> The codebook design criterion in (9) is equivalent to the one
for the high SNR regime [7]

S" = argmax min{Apnin(Li;(X)) 1 <i# 5 < K}
SeM




Computer Simulations




R Category 1 - spatio-temporally white observation noise:

Constellations with equal priors
0 M=1,T =2, 8-point, SNR =7 dB
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_H_mc_\m 1: M=1, T=2, K=8, SNR = 7 dB. Solid curve:our codes with our GLRT receiver.
Dashed curve:Borran codes designed for SNR = 7dB with ML receiver [1].




[] Category 1 - spatio-temporally white observation noise: Constellations with

equal priors
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_H_mc_\m 2: M=1, T=2, K=16, SNR = 7 dB. Solid curve:our codes with our GLRT receiver.
Dashed curve:Borran codes designed for SNR = 7dB with ML receiver [1].




R Category 1 - spatio-temporally white observation noise:

Constellations with equal priors

T=8,SNR=0dB, K=256
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GLRT receiver, M =1
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codes for M = 3. All codes use GLRT receiver.
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_H_m: re 3: Category 1 - spatio-temporal white observation noise: T' = 8, K = 256, SNR = 0
dB. Solid curve-our codes for M = 1, dashed curve-our codes for M = 2, dash-dotted curve-our




[] Category 1 - spatio-temporally white observation noise: Constellations with equal priors

T=8,SNR=-6dB
10 T T T T T ]
—— GLRT receiver, M =1, K=32 |{
N : -6 GLRT receiver, M =2, K =32 |]
< ~ — — GLRT receiver, M =1, K=67 |{
> = GLRT receiver, M =2, K = 67 |
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_H_mc re 4: Category 1 - spatio-temporal white observation noise: T' = 8, SNR = -6 dB. Solid
curve-our codes for M = 1 and K = 32, dashed curve-our codes for M = 1 and K = 67,
solid-circled curve-our codes for M = 2 and K = 32, dashed-circled curve-our codes for M = 2
and K = 67. All codes use GLRT receiver.




[] Category 1 - spatio-temporally white observation noise: Constellations with equal priors

0 SNR=0dB
10 T T T T T T T T T
B —©— Our codes, K=16, T =3, M =1, GLRT receiver |]
SS - —O— Borran codes, K =16, T =3, M = 2, ML receiver ||
RN —— Our codes, K =32, T=4,M=1, GLRT receiver ||
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_H_mc re 5: Category 1 - spatio-temporal white observation noise: Solid signed curve-our codes
for K = 32, T = 4, M = 1, dashed signed curve-Borran's codes for K = 32, T' = 4, M = 2,
solid circled curve-our codes for K = 16, T' = 3, M = 1, dashed circled curve-Borran’'s codes for
K=16,T =3, M = 2.




[ Category 1 - spatio-temporally white observation noise: Constellations with unequal priors

T=2,P=0.5, rate = 1 b/s/Hz

0
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10 -
—— MAP receiver, our 5—point constellation, single beam, rank(Kt) =1, M = 3
—©- MAP receiver, Srinivasan’s 5—point constellation, single beam, rank(Kt) =1, M =3
— — MAP receiver, our 5—point constellation, single beam, Kt = eye(M), M =3
—O- MAP receiver, Srinivasan’s 5-point constellation, single beam, Kt = eye(M), M = 3
S L= GLRT receiver, our 4—point constellation, M = 1
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_H_mc_\m 0: K, = Ipn. Correlated Rayleigh fading: solid curve-our 5 point single beam
constellation with unequal priors for M = 3 and rank(K:)=1, solid circled curve-Srinivasan's 5
point single beam constellation with unequal priors [2] for M = 3 and rank(K{)=1. Uncorrelated
Rayleigh fading: dashed curve-our 5 point single beam constellation with unequal priors for M = 3
and K; = I, dashed circled curve-Srinivasan's 5 point single beam constellation with unequal
priors for M = 3 and K; = I ;. Dash-dotted curve-our 4 point constellation for M = 1.




[] Category 2 - spatially white - temporally colored: Y = In7T ® X(p)

T=8,K=67,SNR =-10dB, p=[1; 0.85; 0.6; 0.35; 0.10; zeros(3,1) ]

10 T T T T T T
~| — GLRT receiver, M = 1, codes adapted to p = [ 1; 0.85; 0.6; 0.35; 0.10; zeros(3,1) ] |
S| ©- GLRT receiver, M = 2, codes adapted top = [ 1; 0.85; 0.6; 0.35; 0.10; zeros(3,1) ] |4
— — GLRT receiver, M = 1, codes adapted top =[ 1; zeros(7,1) ] 1
—O— GLRT receiver, M = 2, codes adapted top =[ 1; zeros(7,1) ]
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_H_m:_\m (. Category 2 - spatially white - temporally colored: T' = 8, K = 67, SNR = -10
dB, p=[ 1; 0.85; 0.6; 0.35; 0.1; zeros(3,1) ]. Solid curve-our codes for M = 1 adapted to p=[ 1;
0.85; 0.6; 0.35; 0.1; zeros(3,1) ], solid-circled curve-our codes for M = 2 adapted to p=[ 1; 0.85;
0.6; 0.35; 0.1; zeros(3,1) |, dashed curve-our codes for M = 1 adapted to p=[ 1; zeros(7,1) ],
dashed-circled curve-our codes for M = 2 adapted to p=[ 1; zeros(7,1) ].




[] Category 2 - spatially white - temporally colored: Y = In7T ® X(p)

T=8,K=32,SNR=-10dB, p=[1;0.8;0.5; 0.15; zeros(4,1) ]

10" T T T T T T
N - —— GLRT receiver, M = 1, codes adapted top =[ 1; 0.8; 0.5; 0.15; zeros(4,1) ] |]
SN\ '~ .| &~ GLRT receiver, M = 2, codes adapted top = [ 1; 0.8; 0.5; 0.15; zeros(4,1) ] |1
— — GLRT receiver, M = 1, codes adapted top = [ 1; zeros(7,1) ] 1
—O— GLRT receiver, M = 2, codes adapted top =[ 1; zeros(7,1) ]
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Figure 8: T =8, K =32, SNR =-10 dB, p=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ]. Solid curve-our
codes for M = 1 adapted to p=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ], solid-circled curve-our codes for
M = 2 adapted to p=[ 1; 0.8; 0.5; 0.15; zeros(4,1) ], dashed curve-our codes for M = 1 adapted
to p=[ 1; zeros(7,1) ], dashed-circled curve-our codes for M = 2 adapted to p=[ 1; Nm«OmQ_H:.\




R Category 2 - spatially white - temporally colored:

Y =Inr ®X(p)

10 T

T=6,SNR=-6dB, p=[1;0.85; 0.6; 0.35; 0.1, 0

T

T T T T T
—— GLRT receiver, K=8, M=1, codes adapted top =[ 1; 0.85; 0.6; 0.35; 0.1; 0]
GLRT receiver, K=8, M=2, codes adapted top =[ 1; 0.85; 0.6; 0.35; 0.1; 0]
— — GLRT receiver, K=8, M=3, codes adapted top =[ 1; 0.85; 0.6; 0.35; 0.1; 0]
—+— MAP receiver, K=17, M=1, codes adapted top =[ 1; 0.85; 0.6; 0.35; 0.1; 0]
+ GLRT receiver, K=8, M=1, codes adapted top = [ 1; zeros(5,1) ]
—O— MAP receiver, K=17, M=1, codes adapted to p =[ 1; zeros( 5,1) ]
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Figure 9: T=6, SNR=-6dB, p=[ 1; 0.85; 0.6; 0.35; 0.1; 0 |.




[] Category 2 - spatially white - temporally colored: Y = In7T ® X(p)

P=0.1, T=6, rate =0.5 b/s/Hz, p =[ 1; 0.85; 0.6; 0.35; 0.1; 0 ], MAP receiver
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— M = 3, single beam, 8—point codes adapted to p, equal priors, Kt = eye(M) ]
— - M =3, single beam, 17—point codes adapted to p, unequal priors, Kt = eye(M) |4
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Figure 10:

constellation with unequal priors for M

N (Number of receive antennas)

3 and rank(K)=1, dash-

20

Correlated Rayleigh fading: dotted plus-signed curve-our 17 point single beam

dotted curve-our 8 point

single beam constellation with equal priors for M = 3 and rank(K ;)=1. Uncorrelated Rayleigh

fading: dashed curve-our 17 point single beam constellation with unequal priors for M
K, = I, solid curve-our 8 point single beam constellation with equal priors for M

K; = I,;. All codes use MAP receiver.
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(] Category 3 - E = sa” + Eiwemp

ﬁ 8,N=2,K= wm $=[1;0.7;0.4;0.15;zeros(4,1)],p= _H_o.m_o.m_opm zeros(4, 5_ o=[-1. Emi Bo_ 1.191-0.038i]

T T
— _<_ 2, ooamm adapted 8 colored so_wm O_.m._. receiver |]
L=< — - M =1, codes adapted to colored noise, GLRT receiver |]
koo —~ — - M =1, codes adapted to white noise, GLRT receiver
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Figure 11: T =8 N =2, K =32, s = [1;0.7;0.4;0.15;zeros(4,1)], p = [1;0.8;0.5;0.15;ze-
ros(4,1)], o = [-1.146 + 1.189i;1.191- 0.038i]. Solid curve-our codes for M = 2 adapted to
colored noise, dashed curve-our codes for M = 1 adapted to colored noise, dash-dotted curve-our
codes for M = 1 adapted to white noise. All codes use GLRT receiver.




(] Category 3 - E = sa” + Eiwemp

0

T=4,N=2,K=16, s=[1,0.7;0.4;0], p=[1;0.8;0.5;0], a = [-0.433 + 0.125i;-1.665 + 0.288i]
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—— M =2, codes adapted to colored noise, GLRT receiver |7
— - M =1, codes adapted to colored noise, GLRT receiver |]
— M =1, codes adapted to white noise, GLRT receiver
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Figure 12: T =4, N =2, K = 16, s = [1;0.7;0.4;0], p = [1;0.8;0.5;0], o = [-0.433
+ 0.125i;-1.665 + 0.288i]. Solid curve-our codes for M = 2 adapted to colored noise, dashed
curve-our codes for M = 1 adapted to colored noise, dash-dotted curve-our codes for M = 1

adapted to white noise. All codes use GLRT receiver.




o T=4,M=1N =2, s=[1;0.7;0.4;0], p=[1,;0.8;0.5;0], a=[-0.4326 + 0.1253i;-1.6656 + 0.2877i]
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o —©- K =17, codes adapted to colored noise, MAP receiver |]
—= < - —+— K =8, codes adapted to colored noise, ML receiver
Y S —— K =8, codes adapted to colored noise, GLRT receiver |4
Sx N -O- K =17, codes adapted to white noise, MAP receiver
N —+— K = 8, codes adapted to white noise, ML receiver
N — - K =8, codes adapted to white noise, GLRT receiver
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Figure 13:

noise (use MAP receiver), plus-signed solid curve-our 8 point codes with equal priors adapted to

Solid-circled curve-our 17 point codes with unequal priors [2] adapted to colored

colored noise (use ML receiver), solid curve-our 8 point codes with equal priors adapted to colored
noise (use GLRT receiver), dashed-circled curve-our 17 point codes with unequal priors adapted
to white noise (use MAP receiver), plus-signed dashed curve-our 8 point codes with equal priors
adapted to white noise (use ML receiver), dashed curve-our 8 point codes with equal priors adapted

white noise (use GLRT receiver).
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Conclusions

> PEP analysis and codebook design in low SNR regime when H
is deterministic and unknown

> Results

— outperform significantly state-of-art known solutions
which assume equal prior probabilities

— also of interest for the constellations with unequal priors

\
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