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ABSTRACT

The 3D object recognition from a single or multiple 2D
images is a very important problem in the computer vision
field with a wide range of real applications. Considering the
affine camera model, the main issue in solving this problem is
the matching process between the object’s 3D points and their
2D projections. In this work, we tackle the 3D-2D matching
problem. It is formulated as a finite set of independent lin-
ear programs, solved efficiently. The 2D-2D and 3D-3D are
also discussed. To show the validity of the proposed method,
synthetic and real experiments are performed.

Index Terms— Correspondence problem, matching, ob-
ject recognition

1. INTRODUCTION
Nowadays, recognizing 3D rigid objects from a single or mul-
tiple 2D views is a very important topic in the image process-
ing field and a fundamental task for a large number of appli-
cations. Assuming an affine camera model, we show how to
find, in a very efficient way, a global and exact solution for
the matching problem between two point clouds: the object’s
(3D) and the image’s (2D). The solution can be obtained by
solving a finite set of linear programs and imposing a known
fixed number of matches.

Unlike the recent invariant permutation methods [1, 2] de-
veloped for 2D-2D recognition, the correspondence problem
becomes the central issue in 3D-2D object recognition tasks.

In general, image based recognition/matching methods
can be classified in two different classes: appearance and
feature based. The first approach hinges on image correlation
[3] and due to this, small motion variations between images
should be assumed. To overcome this limitation, a global
and more general assumption is used by several algorithms -
rigidity. To deal with this intrinsic feature of the model, an
optimization problem is formulated and different methods are
applied to solve it: graph search [4], randomized search [5],
dynamic programming. In [6], the authors propose a global
n-frame correspondence solution solving an optimization
problem with a non-linear cost function. Such as in [7], con-
vergence is not guaranteed and the obtained solution depends

Fig. 1. 3D Object Recognition from 2D views:Image points
(W) result from a projection of a permuted shape matrix.
Correct object has minimum projected error|W− AiSiP|
on the initial point.

In this paper, we define the general principles under which
a unique optimal solution is obtainable for the 3D-2D corre-
spondence problems. Unlike [7], these principles allow us
to built a convex optimization problem (without local mini-
mae). The solution has a lower computational cost than [5],
because the constraint has linear formulation and the simplex
or interior-point methods can be used. At this point we do not
deal with outliers. Even though the computational aspect is
relevant, the main issue in this paper is the theoretical state-
ment about the solution’s uniqueness and optimality charac-
ter. So far we have only been able to produce such a statement
regarding permutation matrices. To consider outliers we have
to impose rank constraints on the matrices turning the task
much harder (though some algorithmic tweaks could be set).

1.1. Problem Formulation
As figure 1 shows, we know the object’s 3D shape and one
image with unsorted 2D projections. To recognize the ob-
ject in this 2D view, we must compute correspondences be-
tween the two sets of features (3D object - 2D projections).
Even though this figure suggests the existence of a search
process (in the shape domain), we concentrate only on the



shape-image (shape-shape or image-image) correspondence.
Given the 3D shape composed by N points, S ∈ R3×N ,

and a set of N 2D projections W ∈ R2×N , resulting from
a linear transformation(translation can be removed by center-
ing the data), the correspondence problem can be solved by
computing the N × N permutation matrix P such that

A︷ ︸︸ ︷[
a11 a12 a13

a21 a22 a23

] S︷ ︸︸ ︷⎡⎣x1 x2 · · · xN

y1 y2 · · · yN

z1 z2 · · · zN

⎤⎦ =

=

W︷ ︸︸ ︷[
u1 u2 · · · uN

v1 v2 · · · vN

]
P (1)

where A is an unknown transformation. In other words, ma-
trix P permutes columns of W such that WP lies in the
range(S). Equation (1) is equivalent to

S⊥PWT = 0 (2)

where S⊥ represents a base in the orthogonal space to
range(S) and 0 is a matrix of zeros. In summary, we seek
the correct sorting of image points that satisfies the projection
model. As we will see in the following section, this problem
has straightforward solutions in the noiseless case but leads
to combinatorial (very hard) problems if noise is present. In
other words, with noisy data, state of the art algorithms either
require a close initial estimate or simply do not converge to
the global optimum. It turns out, that the global optimum can
be computed efficiently. As we will see, the global solution
of problem (eq 2) is solved by a linear program (or a finite set
of linear programs).

2. FINDING CORRESPONDENCES

In the noiseless case, matrix A (1) is computed knowing 3
correct matches [5]. Through this, matrix P can be also cal-
culated. The 3 matches are found by exhaustive search in
O(N3) and the other assignments through a linear program
solved in O(N3) (ex the Hungarian method). However, in a
real case (noisy data and approximate camera model), find-
ing the globally optimal solution of problem (1,2) becomes
a combinatorial problem. The method presented in [5] finds
a local solution depending on 4 chosen points. In [6, 7], a
global solution is found, but the convergence of both algo-
rithms is not guaranteed, such as we mentioned before.

To deal with these limitations, we propose a new approach
to find a global solution to (1) by a set of N convex programs
(without local minimae).

2.1. The proposed method
With noisy data equation (2) must be solved in least error
sense. One possible solution results from solving the follow-
ing optimization problem:

Problem 1
(P̂)∗ = argminP

∣∣∣∣S⊥PWT
∣∣∣∣

1
s.t. P ∈ P

where P represents the set of permutation matrices. Prob-
lem 1 is an integer optimization program and there is no ef-
ficient way to optimally solve it. One way of avoiding brute
force is to use a non-optimal method [5] or changing the orig-
inal problem to a different domain such as the convex-hull of
the set of permutation matrices. This is the set of the doubly-
stochastic matrices DS [6, 7], defined by the following con-
straints: ∑N

i=1 Pij = 1,
∑N

j=1 Pij = 1 (3)

Pij ≥ 0, ∀i = 1, ..., N, ∀j = 1, ..., N (4)

After some elementary matrices manipulations, the cost
function of Problem 1 is rewritten and the relaxed version of
this problem is given by

Problem 2
(p̂)∗ = argminp ||Gp||1

s.t. P ∈ DS

where G = S⊥ ⊗ W and p is vec(P)1. The symbol
⊗ is the Kronecker product. The relaxed version (Problem
3), though nonlinear, can be solved by linear programming
recurring to the epigraph technique [8], leading to

Problem 3
(p, t̂)∗ = argmint t

s.t.

−t ≤ Gp ≤ t

P ∈ DS
t ≥ 0

The new variable t is called slack variable. This last problem
is a linear one (linear cost function and linear constrains) and
can be solved by linear programming. To compute the solu-
tion with standard solvers, we convert the Problem (3) in the
canonical form, given by

Problem 4
(p̂)∗ = argminx cTx

s.t.

⎡⎢⎢⎣
G I1 0
G −I1 0
B 0 I2

B 0 −I2

⎤⎥⎥⎦
︸ ︷︷ ︸

D

⎡⎣p
t1
t2

⎤⎦
︸ ︷︷ ︸

x

≤

⎡⎢⎢⎣
0
0
1
1

⎤⎥⎥⎦
x = ≥ 0

where B represents equations (3) in matrix form and I1 and
I2 identity matrices, t =

[
t1 t2

]
and cost vector c is given

by

c =
[
0 c1 c2

]
1vec() stacks the columns of its argument into a single column.



where c1 and c2 coefficients correspond to the variables t1 and
t2, respectively. Note that c1 and c2 should be greater than 0.

Even though Problem 4 is in linear form, an integer so-
lution is not guaranteed. In other words, we avoid the com-
binatorial nature by relaxing to the continuous domain (the
convex hull of the set of permutation matrices) but, since the
constraints’ matrix D is not unimodular [9] (due to terms
S⊥ ⊗ W), the vertices of the polytope are not necessarily
integer.

We discovered conditions under which the solution of that
same problem is guaranteed to be a permutation matrix and
unique. Summarizing the main idea behind the scheme, we
have the following general principles:

• In case we know the 3D shape of the object and one 2D
image, we will need prior knowledge of one matched
3D-2D pair (or N linear programs) leading to the
sought solution.

• In case we have 3D-3D point matching (say two views
from a moving laser scanner), or 2D-2D point matching
(two images of planar objects) the solution of problem
4 (or a slight modification of it) is guaranteed to be in-
teger and unique.

The solution for Problem 4 is unique and therefore integer,
if we know 2 matched pairs (in 3D-2D case) or 1 matched pair
(in 3D-3D or 2D-2D cases). In both cases, one of the needed
matched pair can be obtained without computational cost us-
ing a simple trick: adding new (synthetic) features Ss to the
original shape S and computing its (synthetic) image projec-
tions. In Problem 4, S and W are replaced by the following
expressions

S′ =

[
SsCs Ss

(
1

Ns
1Ns1

T
N

)
S

(
1
N 1N1T

Ns

)
SC

]
(5)

W′ =
[
AsA

]
S′ (6)

where matrices C = I − 1
N 1N1T

N and Cs are centering ma-
trices, A the unknown affine camera model and 1m is a m
column vector of ones. Matrix As, defined by the user, is the
synthetic affine transformation, which allows us to obtain the
projections of the synthetic shape Ss.

The success of the approach rests on the fact that the so-
lution of Problem 4 is integer. This is so because the equation
system given by

S′⊥
[
I 0
0 P0

]
W′T = 0,P0 ∈ DS (7)

has a unique solution. Of course, we know that if only one so-
lution exists it must be the sought permutation matrix. Note
that the Identity matrix (I in eq. 7) represents the known cor-
respondences.

This statement hinges on the proof that the intersection
between Birkhoff polytope and the given affine subspace

(constraints of Problem 4) is one single point (for details, see
[10]).
2.2. LAMP - The Algorithm
In this section, we propose a simple way to implementing our
solution, consequently easily benchmarked. Due to the in-
tuitive syntax, we use Yalmip interface [11]. To solve the
formulated linear program, the user can choose one lp solver
for Matlab (ex lp solve). We illustrate here the more complex
situation of matching a set of 2D points (image) to a known
3D model (object). In this case it is required the knowledge of
one matched point (the first column of W and the first column
of S should match). Algorithm 1 shows how to implement the
solution to the 3D-2D correspondence problem2.

Algorithm 1 Implementation of LAMP
Require: Shape matrix S and Image data W.
Ensure: The value of P

1: P = sdpvar(N+size(Sa,2),N+size(Sa,2),’full’);
2: constraints = [sum(P,1) ≤ 1,

sum(P,2) ≤ 1,
P(1:(size(Sa,2)+1),1:(size(Sa,2)+1)) ==

eye(size(Sa,2)+1),
P(:) ≥ 0];

3: costFunction = norm(null(S’)’*P*W’,1);
4: solvesdp(constraints,costFuntion)
5: P = double(P)
6: P̂ = Hugarian(-P)

In the last step of Algorithm 1, we obtain an integer solu-
tion P̂ computing the closest permutation matrix to P through
the Hungarian method (obtainable at Matlabcentral). For low
noise, truncating P with an high threshold is enough to obtain
a permutation matrix.

3. EXPERIMENTS
To evaluate the algorithm’s performance under noisy condi-
tions, we present here synthetic and real experiments. In the
synthetic case, we benchmark LAMP against the algorithm
proposed in [5] (SZB), performing 200 independent experi-
ments per each 5 different noise levels. The 3D object is com-
posed of 25 randomly generated points. In each experiment,
we used two different sets: a 3D object (S) and one 2D image
(W), generated by an orthographic projection. The gaussian
noise (N (0, σ2)) was added to all points’ projections and an
higher perturbation (N (0, 20σ2)) to one or two projections.
Due to the difference of noise’s power, the last points can be
called by ”very noisy” points. It is important to refer that the
affine transformation is computed using 4 correspondences
[5] and one of them is the outlier point.

In figure 2, we show the noise standard deviation (σ - X
axis) in pixels whereas image size is 1000 × 1000. If the
noise level is below than 15 pixels, LAMP achieves a better

2To better benchmark our method, the Matlab script is available at
http://users.isr.ist.utl.pt/˜manuel
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Fig. 2. Synthetic experiments: LAMP(blue squares) Vs.
SZB(red triangles). Performance in Solid Line contains one
very noisy point in the data set. Dashed line- two very noisy
points. Because LAMP acts globally the influence of these
points has less impact. In SZB one bad choice can jeopardize
the search.

performance than the algorithm suggested in [5]. With an
increasing of the projections with an high perturbation, our
method keeps a good performance unlike the other algorithm
whose results can be catastrophist.

To evaluate our method with real data, we used the Hotel
sequence3. In the considered dataset, the 3D object has 106
points and the sequence is composed by 182 2D images.
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Fig. 3. Left: Histograms of the
(
P � P̂

)
values: solid line

- correct matches dashed line - wrong matches Right: best k
(k = 1, ..., 106) matches Vs. % of correct matches

Using this data, 60 experiments were performed selecting
5 (out of 182) 2D images randomly selected in each experi-
ment. The object’s shape (S⊥ in 2) is computed from 4 im-
ages using Tomasi Kanade shape-from-motion algorithm, and
the other one is used as a 2D test image (W).

When the solution is not the desired one (step 6 of Alg.
1), a lot of matches are correct. To avoid wrong matches,
the proposed optimization problem (Problem 4) allows us to
obtain a suboptimal solution, considering only the higher val-
ues of P (a square partial-permutation solution), instead of
calculating the permutation matrix P̂ (see algorithm 1). This

situation happens because the values
(
P � P̂

)
ij

of correct

and wrong matches are not uniformly distributed (� repre-
sents the Schur product), as figure 3 (Left) shows. According

3http://vasc.ri.cmu.edu//idb/html/motion/long-hotel/index.html

to experiments, the 30 highest values of P correspond to cor-
rect matches (see figure 3 - Right) and due to that reason these
matches can be used to estimate the affine transformation A
and consequently, matrix P.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an efficient way to compute
a solution for the 3D-2D correspondence problem, a crucial
step in 3D object recognition from 2D views. Imposing a
general constraint, the solution is found by solving one (or a
finite set) of linear programs. Because of the formulated op-
timization problem is convex, the proposed method allows us
to compute the desired solution and does not need an initial-
ization. On the other hand, handling outliers is still an open
issue.
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