
 

Introduction 

Rotation averaging is a non-convex optimization problem which 
seeks the absolute rotations that optimally explain a set of 
measured orientations between them. We formulate it as 

 
 

and make a twofold contribution: a primal-dual method and a closed-
form solution for stationary points in cycle graphs. 

 

Primal-dual method 
The update rules for our method are derived from the stationarity KKT 
and the sufficient optimality conditions (Eriksson et al.). Respectively, 

                             

For noise-free measurements , where  is the degree 
of the i-th node. We set the initialization for the dual variable as 
                                     , 
where  is the graph degree matrix.


Closed-forms in cycle graphs 
Define the cycle error as   and the set of the n-th roots 
of  as  where . The 
stationary points verify  and the spectrum of  is 
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Conclusion 

minimize ∑
i∼j

∥R̃i,j − RiR⊤
j ∥2
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(Λ − R̃)R = 0, Λ − R̃ ⪰ 0.
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σ(R̃) = {1 + 2 cos(∠(Ek)}k=0,…,n−1 ∪ {1 + 2 cos(2kπ/n)}k=0,…,n−1
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Fig. 4 3D reconstruction using 
the closed-form solution for cycle 
graphs computed in 70 .μs

Fig. 2 Global optimum in cycle graphs via redistribution of the cycle error. 

Fig. 1 Rotation averaging graph example.

R1, …, Rn ∈ SO(3)n

Fig. 3 Convergence of the 3 smallest eigenvalues of  to machine-precision, for two 
pose graph optimization datasets, Cubicle and Sphere, taking a total of 0.46s and 0.36s, 
respectively.
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