
UNIVERSIDADE TÉCNICA DE LISBOA
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meu trabalho com sucesso. Nesse mesmo sentido, o Instituto Superior Técnico (IST) e a Fundação
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Resumo

A Reconstrução Tridimensional de uma cena a partir de imagens é um dos desafios identitários

da Visão de Computador. Neste âmbito, esta tese aborda, separadamente, dois problemas: 1)

reconstrução tridimensional a partir de imagens com dados omissos e 2) correspondência entre duas

nuvens de pontos. As soluções propostas para ambos os problemas assentam sobre uma premissa

genérica sobre a cena observada - a sua rigidez - e o modelo de câmera assumido é o afim/ortográfico.

Os algoritmos existentes para resolver o primeiro problema baseiam-se na caracteŕıstica da

matriz dos dados. Os dados omissos são estimados impondo a restrição do número de vectores

linearmente independentes. Este trabalho mostra que essa restrição não é suficiente quando, por

exemplo, há imagens onde é viśıvel apenas uma superfice planar do objecto. De modo a lidar com

este tipo de dados degenerados, propõe-se uma nova factorização onde a variedade intŕınseca do

movimento é imposta aos dados.

Relativamente à correspondência entre conjuntos de pontos, provou-se a unicidade de solução,

num espaço convexo, para o emparelhamento entre duas nuvens de pontos de igual tamanho -

Subspace Matching theorem. Aplicando este teorema, é posśıvel formalizar este problema como

uma minimização convexa e lidar com um grande número de dados, recorrendo às ferramentas

de optimização existentes. Apesar do teorema garantir solução única quando os conjuntos têm o

mesmo número de pontos, os resultados mostram que esta metodologia pode ser usada em casos

mais genéricos.

Palavras-Chave: Reconstrução Tridimensional, Factorização, Emparelhamento de Pontos, Op-

timização Convexa
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Abstract

The 3D Reconstruction of a scene from images is one of the challenges that defines the Computer

Vision field. In this context, this thesis addresses two issues, separately: 1) 3D reconstruction from

images with missing data and 2) correspondence between two point clouds. The proposed solutions

for both problems are based on a generic assumption about the observed scene - its rigidity - and

we assume the affine/orthographic camera model.

The solutions for the first problem offered by the state-of-the-art algorithms are based on the

rank of the matrix data. The missing data is estimated by imposing the rank constraint. This work

shows that the rank condition is not enough when, for example, there are images which one single

planar surface of the object is visible. In order to deal with this type of degenerate data, we propose

a new factorization where the intrinsic motion manifold is imposed on the data.

Regarding the correspondence between sets of points, we proved the uniqueness of the solution,

in a convex space, for matching between two point clouds of the same size - Subspace Matching

Theorem. Applying this theorem, we can formalize this problem as a convex minimization and

deal with large-scale data, using the optimization tools available. Although the theorem ensures a

unique solution when the sets have the same number of points, the experimental results show that

this methodology can be used in more general cases.

Keywords: Structure from Motion, Factorization, Point Matching, Convex Optimization
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Chapter 1

Introduction

1.1 Overview

One of the greatest ambitions of the Computer Vision community is to devise data processing

mechanisms to build up 3D models of the world from a set of photos in an automatic, easy and

quick way. Such a powerful tool would have a huge impact in several distinct areas like architecture,

civil engineering, robotics and the entertainment industry (e.g. movies and video games).

Using photos or video as input data to this new tool, civil engineers and architects could obtain

the blueprints of existing buildings quite easily. On the other hand, the use of visual information can

Figure 1.1: The 3D Vision problem: estimating 3D shape from a 2D image set

1



2 CHAPTER 1. INTRODUCTION

improve the precision of current GPS-based localization systems, as well as provide content-based

capabilities. In the film industry, the creation of a movie background on images of the real world

could be a much easier and faster process than it is today. The gaming and computer industry

could provide more accurate real world-based scenarios for their favorite games. And finally, easy

and fast computation of real scenarios can offer a great improvement in the quality of life of the

general population, especially for the elderly and disabled people.

Figure 1.2: The matching problem: knowing a 3D model built offline/batch, we aim to compute a
quick online match to an image captured by the device

Today, some systems exist that are able to do 3D reconstructions of large-scale scenarios

[Agarwal 09], but they require massive computation to process the huge amount of data. Instead of

using a data center and one day of processing time, our algorithms aim to do a 3D reconstruction

(and 3D-2D identification) of a scene using low-power devices, like cell phones or tablets in fractions

of a second. Figure 1.2 illustrates the concept: knowing a 3D model built offline/batch we wish to

obtain a quick online match to an image captured by the device.

Knowing 2D images only, two problems have a crucial role in whole process: the 3D shape

estimation of the viewed object/scene and the 3D shape recognition from a single 2D image, such
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as Figure 1.1 shows. This thesis proposes computationally efficient methods to solve these two

important issues. One desirable feature is the ability to deal with large amounts of data. In order

to comply with this request without significant loss of generality, intrinsic geometric properties of

the world, such as rigidity, are coded hinging on simplified observation models such as affine or

scaled-orthographic cameras.

1.2 A Framework for Structure-from-Motion

The data representation and the underlying mathematical model are very important issues in de-

signing a methodology. As Figure 1.3 suggests, the algorithms proposed in this thesis do not use

all image pixels. Instead, we will rely on some relevant features (e.g. corners) that can be reliably

detected. Considering a sequence, the measurement matrix of frame f Wf is represented by

Wf =






uf1 uf2 · · · ufN

vf1 vf2 · · · vfN




 ∈ R

2, (1.1)

where ufn and vfn are the image projection of point n.

The 3D reconstruction of a scene can be performed from one single 2D image (Figure 1.1) or

from a set of images, like a video sequence. Reconstructing the 3D world from one single image,

can only be done if some specific prior knowledge is available. Some examples of prior knowledge

could be geometric relations between parts, known 3D coordinates of a few anchor points or global

properties (e.g. planar object). On another perspective, if more images of the scene are available,

the full 3D model of the object can be estimated without any prior knowledge.
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Figure 1.3: The input data: Given a 2D image only the features points locations (e.g. corners) are
considered as input data

Assuming an affine/orthographic camera, the data is modeled by the following bilinear relation












W1

W2

...

WF












︸ ︷︷ ︸

W

=












M1 t1

M2 t2

...
...

MF tF












︸ ︷︷ ︸
[

M t

]






S

1T




 ∈ R

2F×N , (1.2)

where W is the measurement matrix, M the motion matrix and t the translation vector. The shape

matrix S is composed of N 3D points as the following equation shows:

S =









x1 x2 · · · xN

y1 y2 · · · yN

z1 z2 · · · zN









∈ R
3×N (1.3)
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The world 3D shape S can be computed from a set of 2D images W using a well-known fac-

torization method proposed by [Tomasi 92]. This approach recovers the shape matrix in a two step

fashion. First, the mean subtracted measurement matrix is factorized subject to rank 3. Then, an

affine map of shape is computed by imposing the orthogonality properties of motion matrix M (see

Appendix B).

Many computer vision problems have reliable solutions rooted in this model (1.2). That is the

case of the factorization method [Tomasi 92], multi-body segmentation [Costeira 97], structure-from-

motion with uncertainty [Anandan 02] and non-rigid motion [Del Bue 06]. A recent work extended

this framework to manage with deformable surfaces [Ferreira 09]. The same bilinear data model is

used for other purposes: eigenfaces [Turk 91], shape from shading [Prados 05], style and content

[Tenenbaum 00], structure from sound [Thrun 05] and photometric stereo [Basri 07], to name a few.

Although this bilinear model is a fundamental tool in the computer vision field, it is not the

most accurate model. The affine or orthographic cameras modeled by (1.2), though an approximate

solution of perspective cameras, enable simple and computationally efficient algorithms. Given the

simplification assumed by these camera models, the approaches proposed in this thesis are valid

when the object size is small compared to its distance to the camera (see details in [Hartley 03b]).

1.3 Problem Formulation

As we referred to earlier, our 3D reconstruction approach requires a set of several 2D images, where

the considered object can be viewed from different viewpoints. In many real situations, the factor-

ization method [Tomasi 92] does not provide the solution because the input images have missing

data due to self-occlusion, occlusion by other objects and errors of feature detection. Another issue

to consider, which naturally arises when more than one image is used, is a correspondence problem

between points of different images.
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A Global View:

Although we will consider 3D reconstruction with missing data and point matching as different

problems, the following optimization problem shows that both problems share the same structure.

Shape, motion and point correspondences are the minimizers of the following optimization problem,

(S,Mf ,Pf
pf , tf )

∗ = argmin
S,Mf ,P

f
pf

,tf ,D
f ,pf

∑F
f=1

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

W
f
Pf

pf −






[

Mf tf
]






S

1T









⊙Df

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

2

2

s.t.
P1

p1
,P2

p2
, . . . ,PF

pF
∈ Ppf

M1,M2, . . . ,Mf ∈ S

(1.4)

where the unknown variables Pf
pf belong to the set of N × pF partial permutation matrices Ppf ,

S is a generic set1 and the symbol ⊙ is the Hadamard (elementwise) product. The value pf is the

number of possible (correct) correspondences between image f and 3D shape S. The matrix W
f
is

a permuted version of Wf . The matrix Df , which is called mask matrix of frame f , indicates if a

3D point on the considered shape is visible in image f , i. e.

Df

[1,i] = Df

[2,i] =







1, if 3D point i of S is visible

0, otherwise

.

Problem (1.4) is clearly an ill-posed problem but puts in evidence the similar structure of the

two main issues we wish to address. In conclusion, we will tackle the 3D reconstruction with missing

data and point cloud correspondence as two different subproblems. These subproblems result from

breaking down Problem (1.4) and including some additional constraints.

1Depending on the context, S can be the set of affine matrices or the stiefel manifold.
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1.4 Contributions

In this thesis, we propose new methodologies to address the following questions:

1. How to estimate the 3D shape of a generic scene from image sequences with partial views?

2. How to match 3D and 2D objects from one single image? How can object pose be computed

from this single image?

As we said before, our answers to both questions are framed as optimization problems derived

from expression (1.4), assuming some variables are known. If Df and Pf
pf matrices are known, the

3D shape can be computed from sequences of images with missing data by solving the following

problem

(S,M, t)∗ = argmin
S,M,t

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣




W′ −

[

M t

]






S

1T









⊙D

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

2

2

s.t. M ∈ M

(1.5)

where W′ is a data matrix where its entries are equal to W if the correspondent points are visible.

The set M is the motion manifold and a matrix belongs to it if is composed by a stack of stiefel

matrices. In order to solve the first question, our main contributions are:

• An iterative algorithm to compute the 3D shape from missing data with generic pattern

(Chapter 2).

• A new factorization method that imposes the orthogonality constraints to the motion matrix

(Section 2.2.1 Appendix A).

Both solutions are rooted in a newmotion projection (Appendix A.2). The new factorization method

enables the reconstruction of a 3D object from one single pair of images, assuming the orthographic

model (Appendix B).
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Figure 1.4: The Matching/Pose problem: given a model and an image, the goal is to find the pose
[
M t

]
and the correspondence between model and image points

After estimating the 3D shape of an object or a scene, the shape recognition from a single 2D and

the camera orientation estimation, as Figure 1.4 suggests, can be computed solving the following

problem:

(M,Pf , tf )∗ = argmin
M,Pf ,tf

∑F
f=1

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

W
f
Pf −

[

Mf tf
]






S

1T






∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

2

2

s.t.
P1,P2, . . .PF ∈ P

M ∈ S

(1.6)

This optimization problem has a similar structure to (1.4) but, instead of the set of the partial

permutation set, the solution belongs to the set of permutations matrices P. In this case, the shape

S is known and all its points and projections are visible (the mask matrix D disappears because we

do not consider missing data in the matching problem).
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The main challenges of a generic correspondence problem are its combinatorial nature and the

large number of variables. In order to face these issues, our contributions are:

• A theorem2 that guarantees a unique solution for the correspondence problem if the data is

modeled by a linear subspace (Chapter 3 and Appendix D). Using this theorem, we are able

to find the correspondence between two set of points through convex optimization (Section

3.2.1).

• A computationally efficient implementation for the correspondence problem based on the

gradient projection framework (Chapter 4 and Appendix E).

• A guided search mechanism to speed up the convergence rate, increase the resilience to outliers

and deal with clutter points. This approach is based on the affine transformation between the

two point clouds, which can be defined by a small set of correspondences (Section 4.3).

1.5 Structure of the Thesis

The document is organized as follows:

• In Chapter 2, the 3D reconstruction with missing data problem is discussed. A large number

of state-of-the-art methods use the rank as the constraint of the motion matrix. When we have

degenerate data, this model is not able to reconstruct a 3D shape. To cope with degenerate

data, new constraints are used and a new factorization method is presented. The performance

of our methodology is evaluated with synthectic and real experiments.

• In Chapters 3 and 4, we tackle the correspondence problem. Based on a theoretical principle,

we propose, in Chapter 3, a new formulation that allows us to compute the optimum matching

between two point clouds belonging to the same subspace. The solution can be found by

solving a convex optimization problem.

2The proof (Appendix D) was derived in collaboration with Marko Stošić and published in [Stosic 11].
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• Due to the huge number of variables, a minimization process of the convex program is proposed

in Chapter 4. The followed strategy builds upon a state-of-the-art minimization algorithm and

an EM-scheme based on the affine transformation between the two point clouds. According

to the experiments presented in this chapter, the developed method increases the convergence

rate significatively.

• Chapter 5 draws the conclusions and discusses some future research directions to cope with

outliers. Possible ways to improve the performance of geometric-based methods using photo-

metric information are also discussed.



Chapter 2

3D Reconstruction with Missing Data

As we referred to earlier, the mathematical formulation of 3D Reconstruction with missing data

problem can be given by the following optimization problem:

Problem 1
(S,M, t)∗ = argmin

S,M,t

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣




W′ −

[

M t

]






S

1T









⊙D

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

2

2

s.t. M ∈ S

, where the mask matrix D, the translation vector t, which result by concatenating similar entities

from 1.4, and W′ are given by:

D =












D1

D2

...

DF












, t =












t1

t2

...

tF












,

W′ = W ⊙D.

The projection setM, themotion manifold, is defined as {M ∈ M : ∀f Mf
(
Mf

)T
= αf I, αf ∈

R}. Note that W′ has N columns and no visible features are replaced by zeros.

11
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As we will show, several methods have been proposed to solve Problem 1, which recover the

shape and motion matrices. But when we are in the presence of degenerate data, these state-of-

the-art approaches do not guarantee the correct solution because the assumed data model does not

cope with degeneracies. In this chapter, we discuss this phenomenon and propose an approach to

cope with this type of data.

2.1 State-of-the-Art

The Tomasi-Kanade factorization method [Tomasi 92] fired an enormous body of work in the area

of structure-from-motion. After the initial developments focused mainly on the 3D reconstruction

algorithms, two key challenges received great attention in the past years:

• Reconstruction with missing data : Designing structure-from-motion algorithms that handle

partial views of the objects

• 3D reconstruction from sequences with degenerate motion and/or degenerate shapes.

To compute the 3D shape from missing data, some approaches have been proposed in the last

two decades. According to the orthographic camera model, matrix W has rank 4 and this fact

is used to estimate the unknown data. In the original factorization method [Tomasi 92], authors

suggested that the missing data could be sequentially replaced using complete subsets of the data.

But, the problem of finding the largest sub-matrix with missing elements is NP-hard [Jacobs 97].

This first approach does not solve a generic missing data problem, as proved by Jacobs. This means

that the imputation algorithm proposed in [Tomasi 92], solves the problem only for a subset of

possible missing data pattern configurations (matrix D Problem 1).

Matrix completion with rank constraints

The factorization method hinges on the rank 4, constraint of the data. This constraint is widely

used in the state-of-the-art and constitutes the most relevant criterion behind recent developments.

In one of the earliest works [Jacobs 97], Jacobs proposes a non-iterative and sub-optimal algo-

rithm where the measurement matrix verifies the rank constraint. The completion results from the
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intersection of affine subspaces generated by the missing entries in collections of 4 columns (rank

4). In the same way as Jacobs’, there are several algorithms known as batch algorithms[Guilbert 06,

Martinec 05, Tardif 07, Triggs 97], because the solution (sub-optimal in presence of noise) is found

in one global step. In [Rao 10], the missing data entries of a matrix are estimated through sparse

reconstruction of subspaces. Subspace projections are computed using the ℓ1 norm approximation

to the ℓ0 norm.

In order to refine the solution obtained by batch algorithms, iterative algorithms play an impor-

tant role, namely alternation algorithms. These last algorithms are based in the fact that if M or

S are known, there is a closed-form solution for the other such that Problem 1 is minimized. This

can be seen as an EM scheme [Roweis 97].

Alternation algorithms seek a better solution (a lower value for the cost function of Problem 1)

than the first ones. The Wiberg algorithm proposed in [Wiberg 76] solves the factorization problem

with missing data through an alternation scheme. Extensions to this approach were presented in

[Shum 95], where the mask matrix D can have arbitrary weighting values as well as in [Hartley 03a],

where authors suggest adding a normalization step between the two factors updates. A generaliza-

tion of the Wiberg algorithm is presented by [Eriksson 10], allowing us to solve this missing data

problem with outliers. In order to cope with outliers, this method uses a common optimization

technique and reformulates a ℓ2 norm problem into a ℓ1 problem, such as [Ke 05]. The Guerreiro

and Aguiar approach [Guerreiro 03] is similar to Aanaes [Aanaes 02], since both algorithms, at each

iteration, project the data in a rank-4 subspace using the ℓ2 norm. The convergence of the referred

methods is initially good but it is very susceptible to flatlining. The Buchanan and Fitzgibbon work

[Buchanan 05] proposed a Newton method to improve convergence, and it is today one of the most

accurate and robust rank-constrained algorithms.

Recently, several new approaches present closed-form solutions or convex approximations to the

rank constraint, allowing precise and efficient computation of global optimum estimates. If the

missing data pattern form a Young diagram and if the completion criterion to be minimized is the

kth singular value, [Aguiar 08] shows that the optimum estimate can be computed in closed form.
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Having in mind the rank constraint, [Cai 10] uses the matrix nuclear norm as an approximation

to its rank, thus attaining a global optimum. Several methods combine nuclear and ℓ1 norms in a

similar fashion in order to estimate the missing data. Finally, by noting that the data matrix can be

generated by a low rank model added to a sparse error matrix, Candes and Wu [Candès 11, Wu 11]

developed convex programs using simultaneously the above approximations to the rank and sparsity.

Thus a low rank factorization is obtained in data sets contaminated with outliers.

It is important to note that all these algorithms use à priori knowledge about the rank of the

measurement matrix (in this case rank 4) to estimate the completion. However, the rank constraint

is not adequate to obtain a correct estimate when images in the sequence have all visible points

belong to 1D or 2D subspaces (lines and planes). Gross errors happen because the optimization

Problem 1 has infinite minimae.

Handling degeneracies in SfM

Since the data model is constrained by its rank, in situations where the motion or the object

shape are of lower rank, most of the above algorithms become ambiguous. Some works try to solve

this ambiguity by including more à priori information. In [Sparr 98], the planar surfaces of the

object are known and due to this they impose these constraints to the object’s shape. On the other

hand, if motion does not span all degrees of freedom (e.g. rotation around one axis), observations

will lye on lower dimensional spaces, thus producing ”degeneracies”. In [?, Vidal 02] planar motion

degeneracies are handles by explicitly enforcing the degenerate model. Another approach considers

a smooth camera trajectory [Guilbert 06, Tardif 07]. If the missing data matrix D is a block-

diagonal matrix, we can find the best model (planar or non-planar) to explain each part of the

object [Kanatani 98]. Recently, [Ferreira 09] proposed a general framework in order to reconstruct

planar and deformable surfaces.

In summary, the state-of-the-art handles occlusion in 3D reconstruction recurring to the rank as

the criterion to fill the missing entries. On the other hand, degeneracies are handled by explicitly

coding them in the algorithms. If both events occur, as we will show, no method exists guaranteeing

a acceptable reconstructions.



2.2. DEGENERATE DATA 15

In this chapter, we will present a methodology that tackles both issues simultaneously, allowing

the reconstruction of 3D objects from degenerate sequences. Very recently, [Del Bue 10] generalized

this framework to any bilinear model using Augmented Lagrangian Multipliers.

2.2 Degenerate Data

A correct solution for the 3D shape estimation from a generic missing data pattern is not achieved

using the mentioned strategies. The used constraints by rank-based methods are not enough to

obtain a correct reconstruction and the latter methodologies need some à priori information about

camera motion or shape attributes. We will show that the 3D shape can be computed by solving

Problem 1 and constraining camera motion to comply with the rigidity constraints. To illustrate

the relevance of the problem, consider the simple synthetic example depicted in Figure 2.1.
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Figure 2.1: Sequence of images of a rotating cube (3 samples). Features are the visible vertices.
The frontal view of the middle image is degenerate.

In this case, the considered object is a cube and feature points are its vertices. We generated

an artificial sequence of 10 images of a rotating cube. One of the images is a frontal view where

visible features belong to the one single face of the cube. Figure 2.2 shows the resulting shape (in

red), after completing the missing vertices with one of the state-of-the-art algorithms. The green

cube is the result of our algorithm totally coincident with ground truth (no noise). Note that the

completed observation matrix was rank 4.

For a better reader’s understanding about this issue, we will describe the general framework
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Figure 2.2: The reconstruction with a rank-based algorithm (red) vs. the proposed algorithm (blue)

of rank-based methods and the reasons why imposed constraints are not enough to estimate the

(correct) 3D shape. In the end, we present an approach to fix it.

All rank-based works mentioned above propose different algorithms to find a solution for the

following problem:

(M,S)∗ = argmin
M,S

||(W′ −MS)⊙D||2F

s.t. M,S ∈ R4

(2.1)

where Rn is the space of matrices with rank equal to n.

Using this framework, the solution obtained is unique if it exists, at least, one image where

the known points are in the same 1D or 2D subspace (degenerate images). This happens because

problem (2.1) has an infinite number of solutions, that is, the non-zero values of W′ (the visible

features) can be obtained from different rank 4 matrices M and S.

To verify this fact, consider the translation vector as a zero vector and let W′
c be given by

W′
c = MS⊙D
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Figure 2.3: Features in frame f : the known points in frame f are represented by red circles and the
unknown points by green stars

, where W′
c ∈ R3. Suppose that the first m points belong to a 2D flat surface and that the known

points of the image f are precisely these points (see fig. 2.3). The object’s shape is known and we

can calculate a matrix Mf such that the plane z = 0 contains the first m points.






(W′
c)[2f−1,1] · · · (W′

c)[2f−1,m] ? · · · ?

(W′
c)[2f,1] · · · (W′

c)[2f,m] ? · · · ?






︸ ︷︷ ︸

W
′f
c

=






a b c

d e f






︸ ︷︷ ︸

Mf

A (2.2)

A−1









S11 · · · S1m S[1,m+1] · · · S1N

S21 · · · S2m S[2,m+1] · · · S2N

0 · · · 0 S[3,m+1] · · · S3N









︸ ︷︷ ︸

S

This particular parametrization just makes it completely clear that the submatrix of the first m

columns of S is singular (the planar surface). Equation (2.2) is equivalent to the equation system
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given by







(W′
c)[2f−1,1] = aS11 + bS21

(W′
c)[2f,1] = dS11 + eS21

... =
...

(W′
c)[2f−1,m] = aS1m + bS2m

(W′
c)[2f,m] = dS1m + eS2m

(2.3)

In the system of equations (2.3) we can clearly verify that Problem 1 has two degrees of freedom,

variables c and f . Then, the unknown image points projection in frame f have not two solutions,

but infinite. This fact does not allow us to recover the original motion and shape matrices because

the method can add an error to the known points’ projections in this frame. In other words, there

can be a large error in the image position (due an arbitrary c and f parameters) and yet the

(completed) observation matrix will be rank 4 and not conformal with the orthographic camera

model. In real situations with noise and other distortions these estimated projections can be quite

far from reality. As it is common in real situations, there are large sets of degenerate images and

the total error can be significant. In summary, regardless of the algorithm we may use to fill the

missing values, there are two free variables which will distort the track matrix and thus distort the

shape and the motion.

This situation can be easily overcome by imposing the orthogonality constraints for each camera

matrix. In our case, the camera matrix Mf (2.2) has its entries constrained as follows:







a2 + b2 + c2 = α2

d2 + e2 + f2 = α2

ad+ be+ cf = 0

(2.4)

where α is the scale factor for that frame. Adding the orthogonality constraints (2.4) to the equation
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system (2.3), variables c and f have only the two following solutions :

c = ±
√

1

2

(

−a2 − b2 + d2 + e2 +
√

gh
)

(2.5)

f = ∓
√

1

2

(

a2 + b2 − d2 − e2 +
√

gh
)

(2.6)

where g = d2 + 2db+ b2 + e2 − 2ea + a2 and h = d2 − 2db+ b2 + e2 + 2ea+ a2.

As expected the rank ambiguity is resolved and the solution is rigid. For further details see

Appendix A. The two algebraic solutions correspond to a reflection on the image plane which are

compatible with the scaled-orthographic model.

2.2.1 Proposed Method

As stated before, the degenerate data phenomenon does not depend on the used optimization al-

gorithms but have deeper roots: the optimization problem formulation and more precisely the

admitted camera model. Checking equations (2.3), we easily conclude that there are infinite solu-

tions because the affine camera model is accepted by the rank methodology. Due to this reason, we

replace Problem 1 by the following one, redefining the camera constraints.

Problem 2

(M, t)∗ = argmin
M,t

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣




W′ −

[

M t

]






S

1T









⊙D

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

2

F

s.t.

M1
(
M1

)T
= α1I

...

MF
(
MF

)T
= αF I

αf ∈ R
+, ∀f

Note that this last problem is exactly that of equation (1.5). In this case, we explicit the motion

manifold M in the optimization problem constrains. Instead of the infinite number of solutions, only

two solutions (the original solution and the reflected one) comply to the orthographic constraints.

To find a solution for Problem 2 we propose the algorithm described below.
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Algorithm 1 Rigid Factorization with Missing Data

1. Initializations: W′
0 = W, k = 0

2.Estimate translation (centroid).

tk =
[
1
P

∑

i (W
′
1i)k . . . 1

N

∑

i

(
W[2f,i]

)

k

]

(W′
c)k = W′

k − tk Remove translation
k = k + 1

3. Estimate Mk and Sk Using Rigid Factorization
4. Update data matrix

W′
k = (MkSk + tk−11[2F,N ])⊙ D̄

︸ ︷︷ ︸

Missing data estimate

+ W′ ⊙D
︸ ︷︷ ︸

Known data

D̄ - 2’s complement of D i.e. D̄ = 1[2F,N ] −D

5. Verify if ||W′
k −W′

k−1|| < ǫ.
If not verify go to step 2 and k = k + 1.

Our optimization method is very similar to some rank-based approaches (e.g. [Guerreiro 03]).

In step 1 (Initialization), the entries missing in data matrix W′ are initialized with random values

in the range of the known entries. In each iteration, the translation vector is composed by the mean

point of each frame1.

The main difference between Algorithm 1 and rank-based methods is in step 3, concerning to

the computation of M. In our case, the orthographic camera model is fully imposed by solving, at

each iteration, the optimization problem expressed by

Problem 3

(M)∗ = argmin
M

∑F
f=1 ||W

′f
c −MfS||2F

s.t.

M1
(
M1

)T
= α1I

...

MF
(
MF

)T
= αF I

αf ∈ R
+, ∀f

and can be solved using the following algorithm

1If one point is visible in whole video sequence, the translation vector is not estimated.
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Algorithm 2 Rigid Factorization

1. Initializations:
(factorize W′

c using any factorization (e. g. SVD)
W′

c = AB, R = A, M0 = A, S0 = B
k = 1

2. Project R into the manifold of motion matrices
Mk = argminX

∑

f ||Rf −Xf ||2F
s. t. XfXfT = αf I ∀f

α ∈ R
+

3. Sk = M+
k W

′
c, M+

k - Moore-Penrose pseudoinverse
4. R = W′

cS
+
k

5. Verify if ||Mk −Mk−1|| < ǫ.
If not, go to step 2 and k = k + 1.

6. M = Mk and S = Sk

Note that here there is no missing entries. Given a data matrix Wc, the Rigid Factorization

computes matrices A and B such that Wc = AB and A is a piecewise Stiefel matrix. Note that

the projection of each matrix R
f on the Stiefel manifold (step 2) has closed-form (see details in

Appendix A).

Solving Problem 3, we are able to estimate the 3D shape from two images without missing data,

as opposed to the Tomasi-Kanade algorithm [Tomasi 92] which requires, at least, three images (see

Appendix B).

Since the proposed algorithm for 3D shape estimation with missing data is iterative, conver-

gence is an essential topic while evaluating its performance. We did some synthetic experiments to

illustrate the algorithm’s behavior in different situations. The obtained results are presented in the

following section.
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(a) Feature tracks (b) Degenerate frames
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Figure 2.4: Hotel sequence: features and degenerate data

2.3 Experimental Results

2.3.1 Hotel Experiment

Benchmark tests were performed against the state-of-the-art method, using Buchanan & Fitzgib-

bon’s Matlab code2. To prevent a full match between the data and our model we only used real

2This package is available in www.robots.ox.ac.uk/˜abm
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data. We modified the known hotel sequence3, selecting all 106 feature points and 18 equally spaced

frames from the total of 180. A random pattern of missing features was generated with only 14%

missing features (Figure 2.5). Two of those frames were artificially made degenerate with only 24

features visible, all lying on a planar surface (the rightmost wall of the hotel, shown in Figure 2.4b).

0 20 40 60 80 100

0

10

Feature

Im
ag

e

Figure 2.5: Hotel sequence: pattern of missing points. First 2 images are degenerate

Since there is no ground-truth, we used the object’s shape computed using Tomasi-Kanade’s

factorization method with full observation matrix (no missing data), as the reference shape (Figure

2.4c).

In Figures 2.6 and 2.7 we show the performance of our (rigid factorization) algorithm against

4 state-of-the-art methods: BF-Buchanan&Fitzgibbon’s Damped Newton method [Buchanan 05],

PF-power factorization [Hartley 03a, Vidal 04], GA-Guerreiro&Aguiar EM (alternate) algorithm

[Guerreiro 03], Aanaes-Aanaes et al [Aanaes 02]. To avoid graphical clutter, in Figure 2.6 we show

the reconstruction of two methods (GA and BF), the “ground-truth” (TK) and our method (RF).

Note that an Euclidean upgrade was performed to all matrix completion algorithms to obtain a 3D

reconstruction. The figure was generated from a top view so that the 3 planes of the hotel walls can

be perceived clearly. Recall that GA and BF are quite different in nature (an alternate algorithm vs.

a Newton algorithm). Since both methods seek the best rank 4 matrix they reach similar solutions,

both inadequate. As expected by enforcing rigidity constraints the reconstruction is quite close to

3http://vasc.ri.cmu.edu/idb/html/motion/index.html
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the reference. All other methods behaved in much the same way, and this is reflected in the error

plot shown in the graph of Figure 2.7. Here, each bar represents the percentage of shape error

(
∑ |Si − Stk

i |)/(max(Stk) − min(Stk)), where Ŝi is the shape estimate for point i and Stk
i is the

reference shape for that point. Of course the absolute value of the error depends on the particular

shape, but the relevant aspect is that all other methods obtain estimates that are at least one order

of magnitude above our method, and this happens with only 14% of data missing.
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Figure 2.6: Reconstruction results of several methods by showing a top view of the hotel’s 3D
shape. Besides the reference shape (TK), we show the proposed method (RF) and two others (BF
and GA).

Rank-based methods produce large errors because the degeneracy is not addressed explicitly.

Since they assume data modeled as W = AB they try to estimate independently all values of A and

B. In this way, they are estimating values c and f in equation (2.2), when these variables should be

assigned by the orthogonality constraint (2.4).
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Figure 2.7: The relative error of several methods: the graph shows that none of the rank-based
methods (Aanaes, BF, GA and PF) can compute shape adequately.

2.3.2 Dinosaur Experiment

In the second experiment with real data, the proposed algorithm was tested with another well-

known sequence - the dinosaur sequence4 (Figure 2.8). In the opposite direction from the hotel

sequence, this one, which is composed by 36 images, does not contain any image with degenerate

data and the measurement matrix is sparse with only 28% of known data (see Figure 2.8).

The dinosaur sequence was used to evaluate the the performance of our “rigid factorization”

algorithm with highly sparse data sets. Since the complete matrix is not available, we will compare

our algorithm against the most accurate algorithm for this type of problem. To our knowledge,

the Damped Newton algorithm of Buchanan&Fitzgibbon [Buchanan 05] produces the least recon-

struction error (it is optimal for this criterion). The error measure is the root mean square error of

the known data, that is ǫ = ||(W −MS)⊙D||2/
√
N1. Here N1 represents the number of observed

points. In Figure 2.9 we show the position of the reprojection of the visible points (wi = mi ∗ S)

for one particular image of the sequence. The total Root Mean Square (RMS) error for the whole

4www.robots.ox.ac.uk/˜abm
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(a) Two images of the sequence
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Figure 2.8: Dinosaur’s sequence

sequence is 1.3705, though some points have a considerably high deviation. These points are shown

in the right picture of Figure 2.9.

As both pictures show, except for peripherical areas, the majority of points are estimated with a

reasonably low error. The fact that our algorithm exhibits larger error is an expected result due to

the extra constraints imposed on the fitting model. Since we impose rigidity, there are less degrees

of freedom to adjust to the error. For a qualitative evaluation, Figure 2.10 shows the dinosaur’s

shape.

2.3.3 Full reconstruction with largely scaled images

In the third experiment, we present a real life example using the rigid factorization with missing

data. The aim is to produce a 3D reconstruction of one building from a set of uncalibrated images.

We searched on Google for images depicting the building (search “casa da musica”) from a quite

diverse set of viewpoints. The image scale is also quite diverse, since there are images taken from

a pedestrian capturing one window together with far off aerial views from an airplane. Resolution
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Figure 2.9: The left picture shows the original image points and their re-projections both for the
proposed algorithm and the state-of-the-art. The RMS error is 1.3705 pixels, higher than the “best”
value of 1.0847. Maximum error was 21 pixels, as the right figure shows.
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Figure 2.10: The dinosaur’s 3D shape

ranged from 3 Megapixel to a 60 Kilopixel and perspective effects were quite large in some of them.

Image features were tracked by hand and were basically the vertices of the building and windows’

corners. In Figure 2.11 we show some of the 19 images with the features superimosed. Features

are missing due to occlusion but also because we did not insert all visible points. Close up views

with a large depth range produce strong perspective, therefore we just inserted points that were in

a small depth range compared to the distance to the camera. Even though it favors the camera

model adequacy it generates high volumes of (possibly degenerate) missing data.



28 CHAPTER 2. 3D RECONSTRUCTION WITH MISSING DATA

Figure 2.11: An image sequence of Casa da Musica in Oporto - a “piecewise planar” building. Blue
dots represent feature location.

A triangulation was computed to convey the shape in a more natural way. The blue surfaces

are windows. As Figure 2.12 shows, the reconstruction is quite faithful. However perspective effects

are noticeable, especially in the large front window. Nevertheless, in our opinion, this is quite a

hard set of images for any 3D reconstruction algorithm and remember that no prior knowledge is

used. For more precise applications this can be a good starting point for perspective factorization

algorithms such as [Heyden 99, Sturm 96].

2.3.4 An Urban Modeling Example

In the last experiment, the scenario was also 3D building reconstruction (Figure 2.14). But in this

case, the goal is very hard to achieve due to the few images available and to the high percentage of

missing data. In this case, the object is composed of 21 features and there are 7 images available

(Figure 2.13).

As the pattern of missing data in Figure 2.13 shows, the missing data is almost 60% and image

4 (bottom-right image in Figure 2.14) and image 5 are degenerate. Another relevant fact in this
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Figure 2.12: Reconstruction of Casa da Musica in Oporto

Figure 2.13: Pattern of missing points of the urban modeling

experiment is that features 7 and 8 only appear twice in the whole sequence (the minimum number)

and feature 21 only 3 times.

Despite the difficulties mentioned above, we obtain quite a good result (Figure 2.15). In the top

images of Figure 2.15, we can clearly see that the feature 8 is the only one in a wrong 3D position:

it is not aligned with features 2 and 5 as it was expected (remember that feature point 8 appears 2

times only). This artifact disappears in the bottom images because the presented 3D reconstruction

only uses the faces’ corners of the building.

Through this example, we can verify that the presented method is a very useful tool for obtaining

3D reconstructions from few images of the considered object and a large percentage of missing data.
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Figure 2.14: A typical example of urban modeling. From left-right and up-bottom, images #7-2-1-4
of the sequence. Top-left image has feature number superimposed.

2.4 Conclusions

In this chapter, we have presented a new factorization algorithm that computes the optimal motion

shape and scale estimates (scaled orthography) from a feature track matrix. We also introduced

an iterative algorithm that produces the same estimates when feature points are missing and the

known points are degenerate, the most general and realistic situation.
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Figure 2.15: Top graphs show the 3D point reconstruction (shape). In the bottom figure, the image
is mapped on a piecewise planar model, created with the corners of each plane.
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Chapter 3

The Subspace Matching Theorem:

Uniqueness Conditions for

Correspondence between Point Clouds

The method for 3D reconstruction with missing data discussed in Chapter 2 assumed that points in

several frames were put to correspondence. It required an ordered data matrix W, such that each

column represents the trajectory of one point in all frames and each row the coordinates of all points

in one frame. Finding the correspondence between two images or one image and a 3D model is thus

fundamental to scene understanding. Considering we observe a set of 2D sparse and unsorted points

and known 2D/3D shape models, the main goal is to identify the object and compute its pose. In

this chapter, we discuss the conceptual and theoretical aspects. The implementation issues, such as

convergence rate and large-scale data, are topics of Chapter 4.

The scenario is defined by the following assumptions:

• We depart from a set of N points (2D or 3D) for which we must search for the correspondences.

• There are N points to be matched in both images (or 3D model) - the relation between the

two sets is thus one-to-one.

33
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Figure 3.1: Subspace matching problem: Finding the correct permutation matrix P such that the
resorted observed feature vector WP lies on the subspace S generated by the model. Note that the
subspace can be computed from the 3D shape or from several image correspondences.

• We consider an affine camera model.

As we referred in the Introduction (Chapter 1), the point matching problem (Figure 1.4) can be

casted by minimizing the “backprojection error function”

(M1, . . . ,MF ,P1, . . . ,PF )∗ = argmin
M1,...,MF ,P1,...,PF

∑F
f=1

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
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∣
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2

2

s.t.
P1,P2, . . .PF ∈ P

Mf ∈ S

(3.1)

where Mf and tf are the camera matrix a translation vector of frame f . The matrix W
f
is an

unsorted version of the measurement matrix of frame f , Wf , and Pf is a permutation matrix,

Wf = W
f
P.

Solving optimization problem (3.1), we obtain the sorted projections and the camera matrix of

F images given a known shape. Because model S is a prior knowledge, the problem is decoupled in
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F independent optimization subproblems, each one given by

(Mf ,Pf )∗ = argmin
Mf ,Pf

∣
∣
∣

∣
∣
∣W

f
Pf −MfS

∣
∣
∣

∣
∣
∣

2

F

s.t.
Pf ∈ P

Mf ∈ S

(3.2)

In the considered scenario, by centering the data the translational vector can be discarded. As it

will be seen in Section 3.1, we propose an alternating scheme to find a solution for expression (3.2),

splitting this optimization problem into two subproblems (w.r.t Pf and Mf ). Finding permutation

matrix Pf hinges on a theoretical principle presented in Sections 3.2, 3.2.2 and Appendix D.

3.1 A Framework for Correspondence and Pose Estimation

Even though the methodology, presented in this section, is general for bilinear models, we will focus

on designing solutions for two relevant computer vision problems: Image-to-image matching and

image to 3D-model matching. In other words, we seek an efficient algorithm that is capable of:

• Putting to correspondence a large set of points in two images

• Putting to correspondence a large set of image points and its known 3D shape

In this chapter, we will provide sufficient conditions to solve the matching problems mentioned

above, using convex programming and assuming an affine camera model. Simplifying the notation,

(3.2) can be written as

Problem 4
(P,M)∗ = argmin

P,M

∣
∣
∣
∣WP−MS

∣
∣
∣
∣
2

F

s.t. P ∈ P

where we replace W
f
, Pf and Mf by W, P and M, respectively.
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Invoking the definition of Frobenius norm, we have

(P,M)∗ = argmin
P

trace
(

PTW
T
WP− 2PTW

T
MS+ STMTMS

)

s.t. P ∈ P
(3.3)

This is a mixed integer quadratic problem, very hard to solve. A common way of finding a

solution for Problem 4 is reformulating it into two subproblems, resulting from either the camera

or the assignment matrix is known:

• with known assignment, M is computed by a pseudo-inverse

• with known camera matrix, the assignment P can be computed efficiently using linear pro-

gramming and/or branch and bound or the Hungarian method ([Veenman 01], [Maciel 03],

[Fitzgibbon 03]).

Based on these two problems, an alternating sheme would be an intuitive way to solve Problem

4. If we have Mk at iteration k, solving (3.3) in order to P, the cost function is invariant to the first

and third terms. The latter term is a constant. Since P is a permutation matrix, we have PPT = I

and the first term is also a constant. Thus, knowing matrix Mk, we obtain P solving the following

expression

P∗ = argmax
P

trace
(

PTW
T
MkS

)

s.t. P ∈ P
(3.4)

Note that (3.4) has an intuitive meaning: our goal is to find P such that the projection of WP on

the subspace spanned by MS is maximum1. With the new estimate Pk, Mk+1 is the solution of a

Least-Squares problem.

This cyclic coordinates approach is highly dependent of the initialization, due to the integer

nature of the problem. There are few approaches in the literature that tackle Problem 4, the most

1If M is a rotation matrix, subspaces spanned by MS and S are equivalent.
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notable one being the ICP algorithm [Besl 92]. Since the solutions provided by this methodology

are not globally optimal and depending on the initialization, there is no guarantee that it may

even reach a reasonable solution (e.g. strong rotation and scale in ICP). If the first assignment is

poor, it leads to wrong motion solutions, feeding back error which becomes catastrophic in the next

assignment. Likewise a wrong motion, most likely, will lead to poor assignments driving the process

towards the same behavior. To circumvent this fact, we redefine our optimization criterion. Instead

of using “back-projection error” to estimate the correspondence between two sets of points, we can

obtain matrix P from the following M invariant equation

WPΠ⊥
S = 0 (3.5)

where 0 is a matrix of zeros and Π⊥
S the projector into the orthogonal space to range(S). The

operator is given by matrix

Π⊥
S = IN − ST

(
SST

)−1
S,

As we will see in next section, in noise-free conditions, Problem 4 and (3.5) have the same

solutions.

3.2 Designing a Unique Solution for the Correspondence Problem

In noisy conditions, equation (3.5) will not be satisfied in general. The intuitive way of coping with

this, is to define some criterion by which that equality is approximated, for example, in the least

square error sense. Then a solution is found by solving the problem given by

P∗ = argmin
P

∣
∣
∣
∣WPΠ⊥

S

∣
∣
∣
∣
2

F

s.t. P ∈ P
(3.6)
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Taking into account that Π⊥
SΠ

⊥
S

T
= Π⊥

S and replacing Π⊥
S by its expression, the above cost

function has the following form:

∣
∣
∣

∣
∣
∣WPΠ⊥

S

∣
∣
∣

∣
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2

F
= trace

(

WPPTW
T −WPST

(
SST

)−1
SPTW

T
)

(3.7)

= trace
(

WPPTW
T −WPST

(
SST

)−1
SSTMT

)

(3.8)

assuming that PTW
T
= STMT (noiseless case).

Since P is a full permutation, the first term of the cost function is constant and thus we obtain

the following optimization problem,

P∗ = argmax
P

trace
(
WPSTMT

)

s.t. P ∈ P
(3.9)

which is equal to (3.4). So, in noise-free conditions, Problem 4 is equivalent to (3.6). However both

approaches suffer from the same drawback: the search space is not convex.

As referred before, P is the set of permutation matrices. This set is defined as the set of matrices

with elements 0 or 1, and which rows and columns sum to 1, that is:

P ∈ P ⇔ ∑N
i=1Pij = 1 (3.10)

∑N
j=1Pij = 1 (3.11)

Pij ∈ {0, 1} (3.12)

The combinatorial nature of the problem can be circumvented by relaxing the domain (P), to

its convex hull, the set of doubly stochastic matrices (Ds). Being compact, this set is convex thus

suggesting a better way to design efficient algorithms to seek the optimum. Mathematically, this set

is obtained by replacing the non-convex constraint (3.12) in the above definition by the “convex”

one Pij ≥ 0. In simple words, we relax the {0,1} constraint. The main problem here is that the

solution is not guaranteed to be unique, and possible solutions may not even be permutations.
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In fact, there are infinite solutions, resulting from the intersection of the polytope represented by

equations (3.10,3.11) and Pij ≥ 0, known as the Birkhoff polytope [Wolsey 99], and the linear

subspace spanned by the shape matrix S.

The surprising fact is that there exists conditions under which the above relaxation can be done,

leading to a unique solution, that is to say, leading to the correct permutation. This fact converts

what we thought to be a very hard problem into a clearly solvable and computationally simple one.

For clarity purposes we will be using current notation and focus on the particular case of 3D-2D

matching. Considering the shape matrix S ∈ R3×N and the image points (observation matrix)

W ∈ R2×N , we state the following

Theorem 1 Subspace Matching Theorem If there are at least two known correspondences be-

tween 3D points and their 2D image projections, which for simplicity we define to be the first 2

coordinates, the solution of

W






I2×2 0

0 P0




Π⊥

S = 0 (3.13)

with P0 ∈ Ds, is unique and consequently P0 is a permutation matrix.

In general, if the model has dimension N × r and observations have dimension N × k, the

knowledge of r − k + 1 correspondences is required. We will introduce one simple “trick” by which

one known correspondence can be dropped. For the considered case (3D-2D), we need to know only

one correspondence. Alternatively, we can simply solve N equations such as (3.13).

Applying theorem 1, we solve the described matching problem through the following convex

program instead of a high-complex integer problem (3.6).

Problem 5

P∗ = argmin
P
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Finally, remark that some degenerate cases exist, mostly inherent to the representation. In

particular, if one row of S is expressed by a convex linear combination of 2 others there will be a

doubly stochastic row which also generates the image point. However, most notably in the noisy

case, these degenerate cases do not affect the solution globally. In other words, if a small set of

entries are degenerate, this only affects the corresponding elements of the permutation matrix.

3.2.1 A Computational Framework

In view of the above formulation, the correspondence problem can be solved by well-known op-

timization techniques. Taking the particular case of the ℓ1 norm and recurring on the epigraph

technique [Bertsekas 99] leads to the following linear program:

(p, t)∗ = argmin
t

∑

i ti

s.t.
−t ≤ Gp ≤ t

P ∈ Ds, t ≥ 0

(3.14)

where G =
(
S⊥ ⊗W

)
, p is vec(P)2 and t is the vector of slack variables. Also the ℓ∞ norm could

be formalized in the same way, leading to an even smaller linear program. These formulations can

be easily transposed to general purpose solvers or packages.

3.2.2 A Geometric Interpretation

Before we present a proof of the Subspace Matching Theorem, we will explain intuitively the main

idea of Theorem 1 and why it can be used to find an integer solution through a convex set. Imposing

the known points, we change the linear space spanned by the shape matrix (S) into an affine subspace

(revealed algebraically by the 2×2 identity matrix), as Figure 3.2 shows. Instead of a linear subspace

which intersects the search space in non-vertex points, the intersection of such an affine subspace

with the Birkhoff polytope is proved to be one vertex which is, by definition, a permutation matrix.

2vec() stacks the columns of its argument into a single column.
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Figure 3.2: Subspace Matching: The yellow plane represents the convex-hull of permutation ma-
trices, the gray one a linear subspace and the red line an affine subspace. The Subspace Matching
theorem guarantees a unique solution because the affine subspace intersects the solution space (yel-
low plane) in one single point unlike the linear subspace, whose intersection with the solution is a
line (a black one)

3.2.3 Subspace Matching Theorem: a Summary of the Proof

Here we will present a brief proof of the theorem, highlighting the 2D-3D case. The extended proof

is in Appendix D.

Let N , r and k be positive integers, such that r ≥ k, and N ≥ r + k. Let

C =






a1 a2 · · · ak

X1 X2 · · · Xk




 ∈ R

N×k,

be a matrix where ai ∈ R
(r−k+1)×1 and Xi ∈ R

(N−r+k−1)×1, i = 1, . . . , k are given vectors. Also let

S be a prescribed r-dimensional vector subspace of RN , such that the columns of C belong to S.
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Then we have the following:

Theorem 2 For generic matrix C and subspace S we have the following: if M ∈ R
(N−r+k−1)×(N−r+k−1)

is a doubly-stochastic matrix such that all vectors






ai

MXi




, i = 1, . . . , k, belong to S, then M is

the identity matrix.

In the case we are interested in, we have k = 2 and r = 2, or k = 2 and r = 3, while N is

large number. Here we just sketch the main ideas of the proof for k = 2 - the general case is done

analogously.

Sketch of the proof for k = 2:

Our main goal is to find a vector v which is a linear combination of the vectors X1 and X2 such

that

Mv = v. (3.15)

Having this relation we use the doubly-stochastic property of M , to obtain strong restrictions on v.

This relies heavily on the Perron-Frobenius theorem for nonnegative matrices.

First of all, there exists a permutation matrix P such that PMP T has the form:

PMP T =












M1 0 · · · 0

M21 M2 · · · 0

...
...

. . .
...

Ml1 Ml2 · · · Ml












,

where M1, . . . ,Ml, are irreducible, i.e. cannot be further split in this way. Moreover, since M is a

non-negative matrix, with row and column sums equal to 1, we have that all off-diagonal blocks are
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equal to zero. So, from now on, we may assume that is in the block-diagonal form:

PMP T =












M1 0 · · · 0

0 M2 · · · 0

...
...

. . .
...

0 0 · · · Ml












(3.16)

with all blocks being irreducible.

Moreover, we have the following lemma:

Lemma 1 If N is an irreducible doubly-stochastic matrix, and w is a vector such that Nw = w,

then all entries of w are equal, i.e. there exists c ∈ R, such that w = c[1, . . . , 1]T .

Proof of lemma:

Every row-stochastic matrix has as an eigenvector the vector [1, . . . , 1]T , with the eigenvalue 1.

On the other hand, by Geršgorin theorem (see below), all real eigenvalues of row-stochastic matrix

are less than or equal to 1. Since N is an irreducible nonnegative matrix, by Perron-Frobenius

theorem (see below), the multiplicity of its dominant eigenvalue (which as we have proved is 1), is

equal to 1, i.e. it has only one linearly independent eigenvector corresponding to the eigenvalue 1.

As we saw, this one is [1, . . . , 1]T , as wanted.

Geršgorin theorem: Let A = [aij ] ∈ R
n×n be a square matrix. For every i = 1, . . . , n, denote

by di the sum of absolute values of all non-diagonal entries of the i-th row, i.e.

di =
∑

j 6=i

|aij |.

Then all (complex) eigenvalues of A lie in the union of discs with centers in aii with radius di, for

all i = 1, . . . , n.
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(Part of) Perron-Frobenius theorem: Let A = [aij ] ∈ R
n×n be a nonnegative square

matrix, i.e. such that aij ≥ 0, for every i and j. Then A has a real nonnegative eigenvalue λ

corresponding to the eigenvector with all entries nonnegative, and such that all other eigenvalues µ

of the matrix A, are such that |µ| ≤ λ.

If in addition A is irreducible, then λ has multiplicity 1.

Now, to find a vector v that satisfies (3.15), we do the following: Denote by Σi, i = 1, 2, the

space of all vectors of the form






ai

Y i




, where Y i runs through R

(N−r+1)×1, which belong to S.

Since the space of all vectors






ai

Y i




 has the dimension N − r+1 and S has the dimension r, then

their intersection, Σi, (in generic case) has dimension 1. Moreover, Σ1 and Σ2 are parallel lines,

and hence they determine a plane Σ.

Denote by p ⊂ Σ the line determined by






a1

X1




 and






a2

X2




, and by q ⊂ Σ the line determined

by






a1

MX1




 and






a2

MX2




. If they are parallel, then we have that MX2 − MX1 = X2 −X1,

i.e. we can take v = X2 −X1.

Otherwise they intersect at some point T , and since Σ1 and Σ2 are parallel, we have that for

some λ ∈ R we have the following:

T = (1− λ)






a1

X1




+ λ






a2

X2




 ,

T = (1− λ)






a1

MX1




+ λ






a2

MX2




 ,

and so in this case we have Mv = v, for v = (1− λ)X1 + λX2.



3.3. SUMMARY 45

Finally, with the obtained tools, we can prove that M = IN−r+1. First of all, put M in the

block-diagonal form (3.16), with all blocks Mi being irreducible of size di. If all di are equal to 1,

we are done. Otherwise, split the vectors PX1, PX2 and Pv in the blocks of the corresponding

dimensions di: PXi = [xi1, . . . , x
i
l ]
T , Pv = [v1, . . . , vl]

T . Then we have that for all i = 1, . . . , l:

Mivi = vi,

and so by Lemma 1 there exists ci ∈ R such that vi = ci[1, . . . , 1]
T ∈ R

1×di . Thus we would have

that the vectors x1i , x
2
i and [1, . . . , 1]T are linearly dependent, which generically is not satisfied.

Thus M = I, as wanted.

3.3 Summary

This chapter tackled the problem of finding correspondences between feature vectors when prior

knowledge existed about their geometric properties. In particular, if data is constrained to a linear

subspace, feature matching is the process by which the feature vector entries are sorted such that

it lies on the known subspace. Under noisy conditions, this is a very hard combinatorial problem

to solve.

In this chapter, we proved that the original integer problem has a unique solution in a convex

set. This theoretical result has great importance because the matching problem, typically of a

combinatorial nature, can be solved by convex optimization tools, namely, linear programming.

However as we will see in Chapter 4, this implementation is not the most efficient because its

structure explodes in size, in particular the constraint matrix G. In conclusion, specially designed

algorithms are in order here. This issue is the subject of the next chapter.
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Chapter 4

Designing Optimal Search Algorithms

for Large Scale Point Correspondence

In this chapter, we will show a global framework for finding the correspondence between models

and data in a real scenario (in the presence of outliers and clutter points). This new framework

allows us to incorporate, in a natural way, local and diverse information with geometric (global)

constraints which is imposed by Theorem 1 and presented in Chapter 3. Related with Computer

Vision challenges, our methodology solves, in a global way, the 2D-2D, 3D-3D and a more difficult

problem: the correspondence between 3D model and its 2D projections. In these cases, the method

combines geometric constraints with local feature descriptors, like photometry.

4.1 State-of-the-Art

Looking at the aforementioned subjects, several algorithms have been used to solve the object

recognition problem from single images - feature/appearance and geometric approaches. Unlike the

2D-2D recognition problem [Rodrigues 08], a common strategy to recognize a 3D object from one

single 2D image is solving a matching problem between two points clouds. Successful methodologies

in point matching tend to place their strategies in two main classes of algorithms:

47
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• those that rely on very robust local image descriptors which turn the matching stage much

simpler (e.g. Nearest Neighbor)

• those algorithms that solve efficiently a class of combinatorial problems but with a limited

scope due to strong modeling (assumptions)

Figure 4.1: Shape Context, an example of 2D-2D shape matching approach. This method uses a
log-polar histogram to build up a shape descriptor that measures similarity between 2D shapes.
The matching is solved through a linear assignement problem.

In the first case, there is an extensive list starting with David Lowe’s SIFT [Lowe 99], Shape

context by Belongie et al. [Belongie 02] or [Berg 05], where feature descriptors and geometric

constraints (like proximity) are combined with optimization strategies that lead to a somehow

“mixed” scheme. Usually geometric information (rigidity, homography) is used to validate the

matching, which is inherently suboptimal. In [Belongie 02], the shape context descriptors are used

to compute the two sets correspondence, using linear programming. These local descriptors attach to

each point a histogram of the orientation and distance between itself and all other points. The SIFT

algorithm [Lowe 99] gives a feature vector for each image 2D point, based on the Gaussian filters’

output at these 2D points. In the first stage, this strategy selects automatically the candidate

points to be matched and the correspondence is performed by minimizing the distance between

feature vectors of points in different images. Based on the SIFT descriptors, several methods were
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proposed recently, such as [Morel 09]. The work presented in [Berg 05] allows us to compute the

match between two 2D views of a 3D object using appearance information (feature descriptors)

and geometric constraints, e.g. proximity between points. Smooth motion is required and the

algorithm’s convergence is not guaranteed because the solution is found by solving a linearized

version of an integer quadratic problem.

Instead of the referred methods above, the second class of algorithms lies on geometric and

global constraints. The work presented in [Lowe 87] recognizes a 3D object from a single 2D image

by making line-to-line and point-to-point correspondences. To compute the solution (camera pa-

rameters and all features matches), this method needs to know a priori a set of correspondences. In

[Torresani 08], the authors build a cost function based on geometric and appearance information and

find the solution through graph-cuts. To compute the correspondences between two 2D and 3D sets,

[Gold 98] proposes a highly non-convex optimization problem, which is solved using deterministic

annealing. This approach requires a rough alignment between the two sets. The matching between

two sets of 3D points is estimated by ICP-like algorithms [Besl 92, Fitzgibbon 03]. In [Fitzgibbon 03]

the 2D case is also discussed and the Levenberg-Marquardt algorithm is used to find the solution.

An EM-type algorithm is proposed in [David 04], but like [Besl 92, Fitzgibbon 03], the convergence

is not guaranteed and some solutions can correspond to local minima. A quadratic optimization

problem is suggested in [Pires 08] to find the 2D-2D matching solution. Such as [Lowe 87], the

authors of [Pires 08] use a Newton-based algorithm to minimize the cost function, but a global min-

imum may not be found. A global solution for the 3D-3D correspondence can be found through a

branch-and-bound algorithm [Li 07], a similar strategy used in [Breuel 03, Olsson 08]. In [Olsson 08],

the proposed RANSAC-based approach is a computationally expensive method. Imposing rank

constrains through a linear program [Oliveira 05] is another approach to reach the global optimum.

However, similar to some mentioned methods, the solution given by the algorithm depends critically

on the initial estimate. A linearized version of a non-convex problem can be built by a successive

convexification process and allows us to compute the matching solution using linear programming

[Jiang 07], but a smooth camera motion is required.
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Another way to obtain the match is evaluating the eigenvalues spectrum of an affinity matrix

[Leordeanu 05], by solving linear programs. As in descriptor based approaches, a priori information

about the similarity between each pair of features is required.

Our approach belongs definitely to the second class of methods but, in our view, we follow a

more general framework. We model the assignment problem in the natural way - a 0-1 optimization

problem - but we developed slightly different reformulations allowing convex relaxations that lead

to “easy” problems with the same exact minimizer.

One may argue that most of the matching and registration systems have in their intimate core

the two simplest algorithms: ICP [Besl 92] and RANSAC [Fischler 81]. The former is quite efficient

computationally but very unreliable when two clouds of points are far off registration, becoming

highly dependent on the initialization. The latter is highly robust to most settings but can be highly

inefficient, especially if used in a point matching context.

Our framework is easily adapted to recent projected gradient algorithms (Nesterov [Nesterov 03],

Barzilai-Bowein [Barzilai 88]) which provably converge, sometimes with a superlinear convergence

rate. These algorithms can cope with millions of variables and are quite insensitive to the initial-

ization. Therefore, the methodology presented in the paper allows us to obtain solutions that are

both robust to initial conditions and computationally efficient. Though the theoretical core guar-

antees the correct solution for the 1-to-1 correspondence problems only, such as [Li 07, Wang 09],

we developed an optimization procedure nicknamed “Guided Search Consensus (GUISAC)” due to

the resemblance to the RANSAC algorithm. The roots of GUISAC approach are on the experi-

mental evidence that a small set of points converges much faster towards the correct match. Due

to the intrinsic characteristics of the matching criterion, this strategy speeds up significantly the

optimization algorithm’s convergence and is able to deal with outliers and clutter points.

4.2 A Large-Scale Formulation

In Chapter 3, we have shown a theoretical result enabling the formulation of the matching problem

between two point clouds as a convex problem. In this section, we reformulate Problem 5 in
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order to deal with a large number of variables (the number of variables are N2, where N is the

number of points). Several minimization methods can satisfy this requirement but a particular type

of algorithm, the projected gradient algorithms, deals with a large amount of data featuring low

computational cost and high convergence rates.

Though the projected gradient methods are applicable to a generic convex program, this strategy

performs better if the estimation of the points projection on the constraints set is computationally

simple. In our case, the natural constraint set is Ds, the set of doubly-stochastic matrices. However,

there is no closed-form solution for projecting a matrix in this set. Devising an algorithm to finding

the closest doubly-stochastic matrix to a given matrix has a similar degree of complexity to solving

Problem 5.

In order to promote all capabilities of the projected gradient methods, we must redraw our

optimization scheme, replacing Problem 5 with

Problem 6

P∗ = argmin
P

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

W






Ir−k+1 0

0 P




Π⊥

S

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

2

F

+ c
2 ||P1− 1||2F + c

2

∣
∣
∣
∣PT1− 1

∣
∣
∣
∣2

F

s.t. Pij ≥ 0

where 1 is a column vector of 1’s. Moving the equality constraints to the cost function as a penalty

leads to a problem that can easily be framed in any projected gradient method: Projecting a matrix

into the set of matrices with non-negative entries boils down to replacing negative entries with 0,

that is Proj(X) = {∀i, j Xij = max(Xij , 0)}. In the noiseless case Problems 5 and 6 are equivalent.

In noisy conditions, the doubly stochastic solution is attained by duality theory. The dual problem

has a similar structure to Problem 6 but with additional complexity without increased precision in

all practical situations considered.

Being an efficient implementation of the theoretical core, Problem 6 greatly increases the ap-

plicability range of Subspace Matching theorem (Chapter 3 and Appendix D). The next section

proposes additional constraints to deal with more difficult scenarios like outliers and clutter points,

keeping the same computational complexity. Note that these new features are not covered by the
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theorem. Unlike Problem 6, the optimization programs listed below have an infinite number of

solutions, if we consider solely the rigidity constraint.

4.2.1 Clutter Points

Figure 4.2: Correspondences with elimination: In this case, the wide partial permutation matrix P
has one column of zeros. Each full column with zeros eliminates one row from the data matrix W.
The remaining columns perform the required permutation.

So far, the presented theorem and its implementation solely admits the same number of points in

the two used sets: S and W. However, in a more realistic scenario, these numbers can be different.

Consider a very common situation: image W has M 2D points and the 3D model is composed

by N points, M > N . This difference M − N is the number of clutter points. Our goal is to

estimate the matching between image and model points, discarding these clutter points. We have

to redefine Problem 6 to cope with the difference in dimensions.

A natural way to extend the problem is considering P as partial doubly-stochastic DM−N
s ,

{P :
∑

iPij ≤ 1,
∑

j Pij = 1,Pij > 0}. In other words, our variable P is a wide matrix, instead of

a square matrix, where the columns corresponding to clutter point must sum to zero, as Figure 4.2

shows. However, following this approach, we add an unnecessary complexity to the optimization

process because the inequality constraints
∑

i Pij ≤ 1.
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To keep each iteration as simple as possible, we define the following problem

P∗ = argmin
P
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(4.1)

Such as Problem 6, variable P is also a square matrix with dimensions M ×M (instead of N ×N).

The image points selected as clutter (M −N columns of P) do not influence the value of the cost

function because the null space was extended with zeros.

4.2.2 Adding a Priori Knowledge

The rigidity assumption about the world is a general constraint that enables solving the matching

problem without any prior information. However, in some real applications (i. e. tracking), local

properties, such as maximum displacement or feature descriptor similarity may help increasing

precision, speed and reliability. Our approach can naturally incorporate this local information by

adding an extra (linear or quadratic) term to the cost function of Problem 5, leading to the general

problem

Problem 7

P∗ = argmin
P
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s.t. Pij ≥ 0

where α is a penalty constant. Each element of matrix C (cij) represents the cost of assigning

point i in the image to the model’s point j (3D model), based on local feature information, e.g.

color, brightness, feature descriptors, such as Figure 4.3. Values cij can be distances on the feature

descriptor’s manifold (SIFT, cross-correlation, distance of histograms). Thus, when two points

have the same local descriptor we have cij = 0. If the local information implies discarding some
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Figure 4.3: Including non-geometric costs - Using local information, each element of matrix C
may express the dissimilarity between any two points: brightness, feature, color, displacement
smoothness. Also, support constraints like maximum disparity allowed can be easily coded with
this term by setting Cij = {0,∞}.

assignments (cij = ∞), thus making C a support matrix (imposes some pij = 0). This hard a priori

decision cuts the search space heavily. Spatial penalties like maximum disparity can also be coded

by this framework. It is important to note that this new term does not increase the computational

complexity of the minimization algorithm (see Appendix D).

4.3 Guided Search Consensus

After discussing the method’s extensions to deal with clutter points and prior knowledge in Sections

4.2.1 and 4.2.2, we will address a cross-cutting issue to any iterative algorithm: the convergence

rate. Based on empirical evidence, we propose a strategy to achieve a more computationally efficient

search.

The speed of convergence may be dramatically increased if we explore specific knowledge. As a
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consequence of the models explained earlier, object pose can be computed if at least 4 correspon-

dences are known. Thus, using 4 hypothetical matches, the camera model can be instantiated and

the 3D object shape backprojected to the image. Using the simplest matching heuristic (Closest

Point), a new set of correspondences can be computed and the model checking performed to measure

the quality of the fit. This is the general framework of RANSAC where the hypothetical matches

have to be selected randomly. Exploiting the fact that we have a convex problem, and that the

convergence is smooth towards an integer minimizer - a permutation matrix -, we devised a guided

search strategy, called GUISAC, with a model checking step, described in Algorithm 4.3.

Algorithm 4.3: Guided Search Consensus (GUISAC)
Searching for P∗ = argmin{f(P)}, s.t.pij ≥ 0

1 - Initialize P, k = 0
While ErrorCriteria(Pk) > Thresh
2 - Compute Pk+1 performing an iteration of projected gradient method
3 - If at least 4 ”reliable” matches exist

Compute pose M and project model onto the image, MS
Using NearestNeighbours get new match PNN

4- If f(PNN ) < f(Pk+1)
then Pk+1 = PNN

end
end
k = k + 1

end

This procedure naturally fits any optimization algorithm.

In order to show the speed improvement, we compare GUISAC with two other variations of this

methodology, namely

• Projected Gradient: Pure gradient algorithm, iterating until the error is below a chosen

threshold.

• PG w/ Projection: Projected Gradient with Projection is exactly like Algorithm 4.3 but

doing projection on the set of Permutation matrices instead of choosing 4 points as GUISAC

suggests. Every other m iteration, the closest permutation matrix to the current estimate is
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calculated using the Hungarian method. This new point is admitted only if the cost function

value is smaller than the previous one.

Both strategies and GUISAC use Nesterov’s projected gradient as minimization algorithm. The

main challenge is in computing the parameters needed to implement the projected gradient algo-

rithm (see Appendix E).

As Figure 4.4a shows, by exploring the intrinsic characteristics of the matching problem, we

are able to find the correct solution much faster than a gradient algorithm. Comparing the two

truncation methods mentioned before, we verify that the proposed algorithm is computationally

cheaper than a projected gradient with projection on the set of permutation matrices. Since the

minimization algorithm tends to establish correct correspondences for some points much sooner

than the rest, computing an affine transformation with a subset of points substantially increases

the convergence velocity. The error curves, shown in Figure 4.4a, were obtained from one example

with 100 points.

We performed a set of random experiments with increasing dimensionality to test how the three

variations scale up with the number of points. Figure 4.4b highlights the virtues of GUISAC: its

complexity scales up very smoothly, unlike the other two strategies.

4.4 Experimental Results

To evaluate and measure the response of our method under noisy conditions, we will present several

synthetic and real experiments. The first type of experiment is done with synthetic data and will

allow us to measure the algorithm’s robustness to noise. The clear advantage of its global nature is

highlighted when comparing it against a local approach [Sudhir 97].
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Figure 4.4: Evaluation of the GUISAC convergence speed against two different approaches. Notice
the sharp downward slope of the few initial iterations vs the slow convergence towards the optimum.
GUISAC leverages on the former advantage and avoids the latter inconvenient. Graph (b) shows
the very low increase in computational load as the problem scales up. Complexity stays low and
for more than 200 points, other algorithms are not applicable.
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In the second part of this section, several 2D-2D and 2D-3D real experiments will be shown.

Some experiments are very challenging to any correspondence algorithm due to repetitive patterns

in the images of the object models. We use real data also to evaluate the resilience of GUISAC to

clutter and outliers.

In order to better capture the algorithm’s behavior, we use two error measures:

1. The projection error: the error between original data Worig and estimated data P∗W,

||Worig−P∗W||
N

.

2. The number of wrong matches ||P−P∗||
2 . This measure counts the number of 1’s off their

correct position in the estimated permutation matrix1

For both type of errors, we compute the reference error which represents the concept of ground-

truth. The reference projection error uses the original permutation matrix P used in the error

function, instead of P∗. For the second error measure, we compute the optimal assignment between

the noise-free (Worig) and the noisy data matrices (W). This measure sets the reference number

of wrong matches.

4.4.1 Synthetic data

Two type of experiments were performed to measure the algorithm’s robustness to noise. In the first

experiment, we defined 9 different noise levels, and for each of them, 200 independent experiments

were run. The 3D object is composed of 40 randomly generated points. In each experiment, we

used two different sets: a 3D object (S) and one 2D image (W), generated by an orthographic

projection with added gaussian noise (N (0, σ2)).

In this first experiment, we compare two possible implementations of our approach which differ

on the final computation of permutation matrix.

• Our approach 1: The estimated permutation results from the minimum error between all

estimated points WP∗ and all original points Worig. It is computed using the Hungarian

1Note that each wrong match counts as two 1’s: the wrong position of the 1 and the 0 left in the correct position
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method.

• Our approach 2: The estimated permutation is calculated from an affine transformation com-

puted using the n “best” matches. 2
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Figure 4.5: Comparing two matching approaches. Note that for σ > 5 pixels the image is so
distorted that the shape matching paradigm is meaningless.

In Figure 4.5, we show the noise standard deviation in pixels whereas image size is 1000× 1000.

If σ = 3 pixels (3σ = 9) the percentage of wrong matches is clearly below 5% (Figure 4.5a) and the

projection error is negligible comparing with the reference solution as Figure 4.5 illustrates. For

higher noise levels (ex. σ = 10), we obtained 90% of correct matches. Note that with such level of

noise, 1% of the points may have up to 100 pixels deviation in an image of size 1000 × 1000.

According to the pictures of Figure 4.5, we obtained the best performance with the second

approach. This strategy is similar to GUISAC: when the found solution is not the totally correct

one, we can improve the estimative using the n “best” matches. Due to the best performance, we

use the second approach from now on.

As Figure 4.6 shows, we benchmark our method (red dots) against the algorithm proposed in

[Sudhir 97] (SZB) (blue triangles), performing 200 independent experiments per each 9 different

2In the presented experiments we use n = 5.
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noise levels. The 3D object is also composed of 40 randomly generated points. Comparing this

experiment with the former, the main difference is a higher perturbation (N (0, 20σ2)) added to

one (solid line) or two (dashed-line) projections. Due to the difference of the noise’s power, the

last points can be classified as outliers. It is important to refer that the affine transformation is

computed using 4 correspondences [Sudhir 97] (blue triangles) and one of them is the outlier point.

In Figure 4.6, we show the noise standard deviation in pixels whereas image size is 1000× 1000.

Considered the range of noise between 0.1 and 50 pixels, our algorithm achieves a better perfor-

mance than the algorithm suggested in [Sudhir 97]. Because the proposed method acts globally, the

influence of outliers has less impact instead of SZB where one bad choice can jeopardize the search.
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(b) Projection error

Figure 4.6: Comparing the proposed global method against a local approach: our method (red dots)
Vs. SZB[Sudhir 97] (blue triangles). Solid line contains one outlier point in the data set and dashed
line two outlier points. Because the proposed approach acts globally the influence of these points
has less impact unlike the local strategy SZB.

Comparing the graphs of Figures 4.5 and 4.6, we verify, for the same level of noise, a slightly

better performance in the first case. This is the expected behavior because, in the latter experiment,

we had one or two outliers. Nevertheless, when the variance of noise is below 3 pixels, the projected

error achieved by our approach was very similar to the reference.

As the synthetic experiments showed, the theoretical principle presented in this thesis can be
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applied in noisy conditions. Considering acceptable noisy levels (σ ≤ 3), the performance of our

implementation is identical to the reference, mainly when we compare the projection error.

4.4.2 Real data

In order to evaluate the method’s behavior with real data, several data sets were used. In the

first experiment, we used the Hotel sequence3. The 3D object has 106 points and the sequence is

composed of 182 images (Figure 4.7a).

Using this data, 200 experiments were performed randomly selecting 5 (out of 182) images in

each experiment. The object shape S is computed from 4 images using Tomasi-Kanade shape-from-

motion algorithm, and the other one is used as a test image W. By observing Figure 4.7b, we can

see that the algorithm obtained the correct solution almost 35% of the time.

Although the percentage of “completely” correct solutions is not high (Figure 4.7b), a wrong

solution does not imply a gross mistake, as it was underlined in the synthetic case. Evaluating the

histograms of Figures 4.7b and 4.7c, we can check that the mean projection error is below 6 pixels

when the algorithm output can have 16 wrong matches. Comparing the first part of histogram, we

clearly see the fact that several wrong matches can not be always connected with gross mistakes.

When the wrong matches of the obtained solution are less than or equal 6, the mean projection

error is less than 1 pixel. As shown in Figure 4.8, common mistakes occur because neighboring

points are switched.

Such as Figure 4.7d clearly shows, the error function value of the expected and estimated

solutions are almost the same however they are numerically different in more than 65% of the time.

This happens because sometimes the images selected to compute the shape are almost degenerate

(the frames are very close in time). In others words, the Hotel’s model, a 3D subspace, is not

the most adequate one because the model computed from 4 images can be well described by a 2D

subspace (a degenerate case).

The following experiments allow us to verify the performance our methodology in the presence

3http://vasc.ri.cmu.edu/idb/html/motion/long-hotel/index.html
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(a) Sequence with image tracks
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(b) Histogram of wrong matches
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(c) Histogram of mean projection error
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(d) Distribution of the error function

Figure 4.7: Performance of the matching algorithm with real data:(a) shows the data set. We used
the hotel sequence to generate the shape matrix. Images were randomly selected and matched
against the 3D data. (b) Shows the histogram of the % of wrong matches for the whole range of
experiments. Notice the very low frequency of high errors (17 in 106 points). However the impact
of wrong matches is quite small as shown in (c): More than 80% of the trials had less than one
pixel average error. (d) Even with errors, the error difference between the estimated permutation
and the correct permutation is negligible.

of outliers and clutter points: one 2D-2D (image-to-image matching) case and two 2D-3D (image-

to-model) matching will be shown. In all these cases, a repetitive pattern with salient corners (a

grid) is used due to two main reasons:
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Figure 4.8: Common error: This figure illustrates the most common error. The two features are
very close in the model and in the image. Quite often swapping decreses the value of the error
function. Though accounted as an error it has no impact on real applications.

• the photometric-based algorithms’ performance are poor because a large set of features are

indistinguishable between them

• the features (corners) are easily detected by the standard corners detectors

The N feature coordinates shown in Figure 4.9 define a 2D object model - a N -dimensional rank

3 subspace. Observing the pictures of Figure 4.10, the smooth convergence of the algorithm can

be checked, noticing that all points go fast and monotonically to the desired location. Note that

points are initialized in the center of the image (green cloud). This is a surprising behavior since

originally we had a 0-1 assignment problem. Here we are observing the evolution in a continuous

domain and each iteration provides an estimate of point coordinates instead of a matching decision

(only viable when the global optimum is reached - a permutation matrix). This fact explains the

enormous gain of introducing the model-checking step (step 3 in Algorithm 4.3).

The next experiment demonstrates the whole potential of the methodology in tackling a problem

of pose and correspondence determination. In more realistic situations data has outliers, sometimes

with very large deviations. In the left picture of Figure 4.11, there are 4 data points in this situation.
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Figure 4.9: Image-to-Image matching: The green points show the 2D model. Points in other images
are matched against this set.

The green squares represent data and red dots the estimated point locations (WP). Note also that

since it is a N-to-N matching, every data point must have a corresponding model point. In this case,

the algorithm was always able to provide a quite accurate estimate for the location of the outliers.

Note the detail in the right picture of Figure 4.11 where the estimated points are very close to the

correct location even if some data points (green squares) are not close to the corners. This is quite

interesting because the algorithm is not affected by a few gross mistakes despite its global nature.

Put in another way, there is empirical evidence that the algorithm has a much better convergence

behavior for a subset of points, notably the most accurate ones. In this situation the minimizer is

not a permutation since the outliers do not follow the model. However, the final P has almost 1 in

the correct points (order of 0.97) and for the outliers the convex combination provides an accurate

position.

This robustness is exhibited in an even more difficult case, where we added 20% more clutter

points. In other words, besides the correct points in the image we randomly spread 20% more points

(15 in a total of 70 inliers).

Figure 4.12a shows the spatial distribution of the data points: green squares are inliers, red
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Figure 4.10: The trajectories show the convergence of the algorithm. Points were initialized in the
central green cloud. After a few iterations their estimated coordinates exhibit a smooth and fast
convergence in the direction of the correct position.

are clutter points and blue dots are the estimated feature positions WP. We initially sorted the

points such that the initial 70 × 70 submatrix should be an identity matrix. Due to the noise

and clutter the identity matrix is not exact but, as Figure 4.12b shows, it is very approximate.

Most importantly, the P matrix is block diagonal with pij = 0 if point i and j are image/model

incompatible. The “redish” values are closer to 1 and the “blueish” closer to 0. Note that the lower-

right 15 × 15 submatrix is not integer at all. These results enforce the usefulness of the GUISAC

strategy since it is noticeable that there are enough points with a correct assignment, thus allowing

the model-checking step which solves the problem in one step.
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Figure 4.11: 2D-3D matching with outliers: Left - green squares represent data and red dots the
estimated point locations (WP). Right - A detail of 2 outliers. The green squares should be on the
corners. However the estimated point is very close to the correct location.
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(a) Image data - green and red squares. Blue dots are estimated point coordinates

(b) The resulting P (permutation) matrix after a few iterations

Figure 4.12: 2D-3D matching with clutter points: (a) - The squares are the data: green are inliers
and red are clutter points. Blue dots are the estimated feature positions WP. (b) - The “redish”
values are closer to 1 and the “blueish” closer to 0. Notice the 2 blocks forming an identity-like
submatrix corresponding to the assignment of inliers.
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Chapter 5

Conclusions

This thesis is composed by two main parts, addressing the following key challenges in Computer

Vision:

• Estimating the 3D shape from an image sequence with missing data

• Finding the correspondence between two point sets, assuming that images are generated by

an affine camera.

In both problems, the proposed algorithms explore the same foundational principle: world

rigidity.

In spite of the same roots and similar structure, we considered the two problems separately:

in the first one, point correspondences are known and we seek the 3D shape of the scene. In the

second part, we compute the point matching, assuming known shape.

We showed and proved that, if the data contains degenerate frames, the rank-based algorithms

are not able estimate 3D shape. Instead of a unique solution, the rank constraint leads to an

infinite number of minimum error solutions. In order to avoid this situation, we imposed the full

scaled-orthographic model to the data, thus replacing the rank constraint by the motion manifold.

Besides allowing computing the 3D shape with missing and degenerate data, this new con-

straint makes possible to compute the 3D shape with only two images (without missing data),
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instead of the three required by factorization-based approaches, following Tomasi-Kanade’s frame-

work [Tomasi 92].

In the second part of the thesis, we introduced a new methodology to solve correspondence

problems. Assuming an affine camera model, we demonstrated the conditions in order to obtain a

unique solution for correspondence between two sets with the same number of points - the Subspace

Matching Theorem. Based on this theoretical principle, we designed convex programs to find the

global solution for matching problems rather than going thru combinatorial search. These convex

problems were drawn such that the most recent gradient algorithms could be used.

Even though the theorem does not guarantee a unique solution when clutter points exist, the

results show a high degree of resilience to these perturbations. This reslience is further increased

because our approach can handle multiple matching criteria (or even support). By merging global

geometric constraints with other matching measures (feature similarity, maximum disparity, smooth-

ness) our method can seamlessly deal with clutter and outlier points.

We also developed a new strategy to speed up the minimization process, named GUISAC due to

the resemblance with RANSAC procedure. Exploiting the intrinsic nature of the matching problem,

this strategy consists of an automatic selection of a small set of correspondences, anticipating the

estimation of the affine transformation. Due to the initial fast convergence, this early estimation of

the global mapping allows accurate assignments for all points in a fraction of the time, making this

method suitable for real time application.

5.1 Discussion and Future Work

Since all developments were done in the context of affine/orthographic cameras, a straightforward

upgrade is to extend our theoretical results and algorithms to incorporate the perspective camera

model. However, from our point of view, this would not have a major impact. From the content of

this thesis, we showed that our algorithms are able to provide acceptable initial points at a small

computational cost, which can be further refined by perspective methods.

More significantly, in the context of the matching problem, if our approach could deal with
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occlusion, outliers and clutter points, the scope of applicability increases exponentially. In the

former two issues there is a correspondence problem with partial data and in the latter, a decision

problem between inliers and outliers arises.

The most challenging issue to our formulation seems to be the inclusion of occluded and outlier

points. This is due to our theory requiring all model points have one corresponding data point.

Such a requirement is tightly coupled to the global signature of the model (a projection onto a

linear subspace), thus, changing it may modify the deep structure of the problem. In our view,

considering partial data as valid input would require a major restructuring of the theory and even

its objectives: the definition of matching is ambiguous since defining a unique solution depends on

how we treat the “non-matched” points. For example, if the number of requested matches is not

specified, further regularization is needed to prevent trivial null solutions.

Within the scope of our theory, we foresee a clear extension of our formulation to cope with

clutter points. As we showed in Chapter 4, selecting and matching inliers from cluttered data is

reliably done through common convex optimization tools. The experimental results show that our

framework is able to deal with this type of artifacts. One relevant direction of future research

would be the embedding of this non-modeled data in the theoretical core. Because the uniqueness

of the solution is not guaranteed, one possible way to tackle this issue is to discover new geometric

constraints without reshaping the formulation from its roots. Appending these new geometric

constraints to the optimization problem, the uniqueness of the solution may be guaranteed, avoiding

the hard decision of discarding points. Alternatively, this question would be answered if we could

prove that as experimental data suggests, the resulting minimizer is always block diagonal where

each block, rather than matching points, segments inliers from outliers uniquely.

Another important topic to develop in the future is the design of optimization algorithms for

matching problems in a convex framework. Based on the fact that some points converge much faster

than others, speed up can be achieved by intrinsically coding this knowledge rather than using a

model-checking approach (like GUISAC).

Finally, and returning to Chapter 1, closing the loop between the reconstruction and matching
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processes would be quintessential in order to solve the 3D Vision problem. Figure 1.1 and expression

1.4 shed some light into it: reconstruct the shape with unknown correspondences or, in other words,

match the data to the model without knowing the latter.



Appendix A

The motion manifold projection

A.1 Rigid factorization

Mk−1

Mk

R

Figure A.1: Point R is projected on the motion manifold

Algorithm 3 is an iterative algorithm which projects a matrix into the motion manifold, as

Figure A.1 suggests.

This algorithm is a version of the power method [Hartley 03a] where in each iteration a motion

matrix is calculated (step 2) independently. The procedure of step 2 projects the left factor of W′
c

onto the manifold of motion matrices (matrices with pairwise orthogonal rows). This projection has

a similar derivation to the Procrustes problem [Golub ] (see A.2) Specifically, we seek the matrix
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Algorithm 3 Rigid Factorization

1. Initializations:
(factorize W′

c using any factorization (e.g. SVD)
W′

c = AB, R = A, M0 = A, S0 = B
k = 1

2. Project R into the manifold of motion matrices
Mk = argminX

∑

f ||Rf −Xf ||2F
s. t. XfXfT = αf I ∀f

α ∈ R
+

3. Sk = M+
k W

′
c, M+

k - Moore-Penrose pseudoinverse
4. R = W′

cS
+
k

5. Verify if ||Mk −Mk−1|| < ǫ.
If not, go to step 2 and k = k + 1.

6. M = Mk and S = Sk

with pairwise orthogonal rows (not orthonormal) which is closest to the left factor of W′
c, that is:

Mk = argmin
X

||R−X||2F =
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= argmin
X

∑

f

||Rf −Xf ||2F (A.1)

s. t.Xf
(

Xf
)T

= αf I ∀f, α ∈ R
+

Mf
k = αfUf

(

V f
)T

,where Rf = Uf






σ1 0

0 σ2






(
V f

)T

and αf = (σ1 + σ2)/2

Even though step 2 is solved F times in each iteration, the computational cost is irrelevant

because, as (A.1) shows, it has a closed-form solution and is unique (details in A.2). In step 3, the

estimate of the object’s shape is given by a Least-Square solution.

It is important to refer that matrix Rk, used in step 2 and calculated in step 4, is not an

algorithm’s output, but an auxiliary matrix. This is used to adapt matrix Sk to Mk.
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In terms of complexity, we need to compute two pseudo-inverses and a set of eigen vectors in

closed-form (in R3).

A.2 The projection into scaled-Stiefel matrices

Considering the optimization problem given by

Problem 8
(X, α)∗ = argmin

X,α

||A− αX||2F

s.t. XXT = I

Applying the Forbenius norm definition, we have

(X, α)∗ = argmin
X,α

trace
(
AAT − 2αAXT + α2XXT

)

s.t. XXT = I

(A.2)

Since the first term of the cost function is a constant and using the constraint in the third term,

Problem 8 is equivalent to

(X, α)∗ = argmin
X,α

trace
(
−2αAXT + α2I

)

s.t. XXT = I

(A.3)

Solving (A.3) in order to X and recurring to the Singular Value Decomposition of A and X,

A = UAΣAV
T
A and X = UXΣXV

T
X, (A.3) implies

(UX,ΣX,VX)∗ = argmax
UX,ΣX,VX

trace
(
αUAΣAV

T
AVXΣXU

T
X

)

s.t. UXΣXV
T
XVXΣXU

T
X = I

(A.4)

Using some proprieties of the trace and the Von Neumann’s trace inequality [Mirsky 75], the

maximum value of (A.4) is attained when UX = UA, VX = VA and ΣX = I. Given the solution

X∗ = UXVT
X, the correspondent value of the cost function (A.4) is 2αΣA.
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Returning to (A.3), we have

α∗ = argmin
α

trace
(
−4αΣA + α2I

)
(A.5)

Since trace (ΣA) = λ1 + λ2, α
∗ is given by

α∗ =
λ1 + λ2

2
(A.6)

In summary, the global optimum of Problem 8 can be written as

X∗ = UAVT
A (A.7)

α∗ =
λ1 + λ2

2
(A.8)



Appendix B

A 3D reconstruction from two images

Before we present our method to recover 3D shape from only two images, we will describe the com-

mon framework for sequences. The well-succeeded Tomasi-Kanade factorization method [Tomasi 92]

allows us to estimate the 3D shape from an image stream under the orthographic camera model. If

a factorization of the data matrix W is available (e.g. Singular Value Decomposition), we have

W = AB (B.1)

where A and B are rank 3 matrices (AB ∈ R3). In order to compute the 3D shape S, the

factorization [Tomasi 92] imposes the camera model to the data through a global map Q such that

each row pair of AQ complies with the orthographic model. This map is the solution of the following

optimization problem

(Q)∗ = argmin
Q

F∑

f=1

∣
∣
∣
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∣
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∣
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2
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∣
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∣
2

2
(B.2)

where Af is composed by the rows 2f − 1 and 2f of A and αf is the scale factor of image f . Note

that the sequence has F images.
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Considering G = QQ−1, we obtain a Least-Squares solution given by


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



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g

α2

...

αF












=
(
KKT

)−1
Kb (B.3)

where g is vec(G) and b is (almost) a zero vector, except in the first and fourth positions. In these

positions, it is equal to 1. Matrix K can be divided in two parts as the equation shows.

K =

[

F αv
2 . . . αv

F

]

Vectors αv
f are also composed by zeros except in the cells 2f +1 and 2f +4 where it is -1. The

first part of K, matrix F, is given by

F =









A1 ⊗A1

...

AF ⊗AF









(B.4)

Each matrix Af is equal to the rows 2f − 1 and 2f of A. If only two images are available

this methodology does not work because we have less constraints than variables to estimate: 8

constraints, each image generates 4 constraints (B.4), and 6 variables (G is a 3 × 3 symmetric

matrix). Since
(
KKT

)
does not have an inverse matrix, the solution expressed by (B.3) is not

computable.
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So in order to accomplish the task stated in the title of this section, we replace the optimization

problem (B.2) by the following one

(M)∗ = argmin
M

∑F
f=1 ||W −MfS||22

s.t.

M1 (M1)
T = α1I

...

MF
(
MF

)T
= αF I

αf ∈ R
+, ∀f

Instead of the Tomasi-Kanade algorithm which imposes the orthographic constraints in a global

way, our methodology acts locally in the motion estimation. We set the rigid model for each motion

matrix individually, as the constraints of problem (B.5) show.

Figure B.1: A 3D reconstruction from two images: the used images. Note that the images’ viewpoint
is different
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The non-convex optimization problem is efficiently solved by the algorithm described in Ap-

pendix A.1. To verify the performance of this method, we estimated the 3D Hotel shape from two

images of the dataset (Figure B.1).

(a) General view (b) Frontal view

Figure B.2: A 3D reconstruction from two images: different views of the estimated shape

Checking the pictures of Figure B.2, we can verify that the proposed allows us to obtain a

reasonable shape reconstruction. As expected, the reconstruction performed from two images is

more dependent of slight pixel deviations than a reconstruction from the whole sequence. This

can be verified in Figure B.3 where the reconstruction from two images (blue squares) exhibits a

considerable error comparing with the ground-truth (black dots or red circles).
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Figure B.3: A 3D reconstruction from two images: Comparing with reconstruction performed from
the whole image sequence. Black dots - Tomasi-Kanade from the whole sequence. Red dots - Rigid
Factorization from the whole sequence. Blue squares - Rigid Factorization from two images. The
reconstructions computed by Tomasi-Kanade and Rigid Factorization from the whole sequence can
be considered as ground-truth
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Appendix C

The orthographic solutions

Considering the shape matrix known and rank constraints, we have the following system of equations






(W′
c)[2f−1,1] · · · (W′

c)[2f−1,m] ? · · · ?

(W′
c)[2f,1] · · · (W′

c)[2f,m] ? · · · ?






︸ ︷︷ ︸

W
′f
c

=






a b c

d e f






︸ ︷︷ ︸

Mf

A (C.1)

A−1









S11 · · · S1m S[1,m+1] · · · S1N

S21 · · · S2m S[2,m+1] · · · S2N

0 · · · 0 S[3,m+1] · · · S3N









︸ ︷︷ ︸

S

From (C.1) the variables a, b, c and d are calculated, instead of e and f which have infinite

solutions. To make the solutions space smaller, the orthogonality constraints, given by the following

equations, are added.







a2 + b2 + c2 = α2

d2 + e2 + f2 = α2

ad+ be+ cf = 0

(C.2)
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Note that only e and f are variables because a, b, c and d are determined by (C.1). Considering

only the first two equations of (C.2), we can write







a2 + b2 + c2 = d2 + e2 + f2

ad+ be+ cf = 0

(C.3)

In order to obtain c and f , the last equation is solved for both variables,







c′2 +
(
a2 + b2 − d2 − e2

)
c′ − a2d2 − b2e2 − 2adbe = 0

f ′2 +
(
−a2 − b2 + d2 + e2

)
f ′ − a2d2 − b2e2 − 2adbe = 0

(C.4)

To simplify the notation, it is important to note that these 2nd order equations (C.4) were

obtained by the following change of variables: c′ = c2 and f ′ = f2. Due to the similarity between

the equations, the following steps aim to calculate c, because f is obtained in the same way. Then,

the roots of first equation are

c′ =
1

2

(

−a2 − b2 + d2 + e2 ±
√

gh
)

where g = d2 + 2db + b2 + e2 − 2ea + a2 and h = d2 − 2db+ b2 + e2 + 2ea+ a2. Because of c′ = c2

and c ∈ R, c′ is, necessarily, 0 or a positive value. Due to this we consider the first root. Then, the

value of c is given by

c = ±
√

1

2

(

−a2 − b2 + d2 + e2 +
√

gh
)

(C.5)
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Through an analogous way, f is given by

f = ∓
√

1

2

(

a2 + b2 − d2 − e2 +
√

gh
)

(C.6)

Instead of an infinite number of solutions allowed by the affine camera model, only two solutions

are according to orthogonality constraints.

As Figure C.1, these two solutions correspond to the correct one, and the reflection of the camera

over the plane (shape). This reflection produces the same image (it is intrinsic to orthography).

Even though motion can be “reflected”, the computed shape will always be correct, up to the

ambiguity of an orthogonal transformation, inherent to the orthographic model. This means both

that the Motion and Shape matrix fit the known data and also that the Motion matrix satisfies the

orthogonality constraints. Note that, if the known data is over a line (the known part of shape is

rank 1), there will be infinite solutions for motion. However, this will not affect the shape either

(orthography is valid).
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Figure C.1: Two solutions: the known points in frame f are represented by red circles and the
unknown points by green circles. Bottom Left - 2D projections in image 1. Bottom Right - 2D
projections in image 2.



Appendix D

The subspace matching theorem

Let x1, . . . , xN ∈ Rk. And let

D =

[

x1 · · · xN

]T

∈ RN×k. (D.1)

Let S be a subspace of RN , with rankS = r, where r ≥ k.

Consider the following problem:

Problem 1 Suppose that there exists a permutation matrix Π such that the columns of ΠD belong

to S. Find the matrix Π.

Also, it is related to the classical correspondence problem of finding a permutation that trans-

forms one collection of points in Rk into another one (see Section D).

For large N (which is a standard case in the applications), this problem is very hard to resolve.

Because of that, we shall consider its important particular case. In fact, from now on we shall

87
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consider permutation matrix Π to be of the following form

Π :=






Ir−k+1 0

0 Π′




 , (D.2)

where now Π′ ∈ R(N−r+k−1)×(N−r+k−1) is a permutation matrix.

We can now formulate our main problem:

Problem 2 Suppose that there exists a permutation matrix Π of the form (D.2), such that the

columns of ΠD belong to S. Find the matrix Π.

Moreover, in Section D, we shall discuss how the solution of Problem 2 gives an algorithm for a

solution of the general case (Problem 1).

Without loss of generality, we are going to study these problems in a generic case. In particular,

we have certain generic conditions on matrix D and on subspace S (precise conditions are given in

Section D).

Our approach to Problem 2 is to study doubly-stochastic matrices, instead of permutation

matrices.

Let

M ′ :=






Ir−k+1 0

0 M




 , (D.3)

where M ∈ R(N−r+k−1)×(N−r+k−1) is a doubly-stochastic matrix. Now, the analogous problem to

Problem 2, for doubly-stochastic matrices is the following one:

Problem 3 Suppose that there exists a doubly stochastic matrix M ′ of the form (D.3), such that

the columns of M ′D belong to S. Find the matrix M ′.

The last problem can be resolved quickly and efficiently, see e.g. [Marques 09]. So the goal of

this paper is to use the solution of Problem 3 to resolve Problem 2. In fact, we prove the following:
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Let Π be a permutation matrix of the form (D.2), such that the columns of ΠD belong to S.

If M ′ is a doubly-stochastic matrix of the form (D.3), such that the columns of M ′D belong to

S, then M ′ = Π.

This is the main result of the paper given in Theorem 2 from Section D. The proof relies on

the Perron-Frobenius theorem applied for the special case of doubly-stochastic matrices. This the-

orem gives the uniqueness of the permutation matrix Π with the wanted properties in the set of all

doubly-stochastic matrices.

Notation and auxiliary results

In this section we recall some of the properties of doubly-stochastic matrices that will be essential

for the rest of the paper. These are classical results that are based on the theory of non-negative

matrices and the Perron-Frobenius theorem [Minc 88], applied to the particular case of doubly-

stochastic matrices.

Let M be a doubly-stochastic matrix, i.e. a non-negative square matrix whose row and column

sums are all equal to 1. There exists a permutation matrix P such that PMP T has the following

lower block-triangular form:

PMP T =












M1 0 · · · 0

M21 M2 · · · 0

...
...

. . .
...

Ml1 Ml2 · · · Ml












,

where M1, . . . ,Ml, are square irreducible matrices. Moreover, since M is a non-negative matrix,

with row and column sums equal to 1, we have that all off-diagonal blocks are equal to zero, i.e. all
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block Mij with i > j are zero matrices. So we have that for the doubly-stochastic matrix M , the

matrix PMP T has the block-diagonal form:

PMP T =












M1 0 · · · 0

0 M2 · · · 0

...
...

. . .
...

0 0 · · · Ml












(D.4)

with all blocks being irreducible.

The following lemma is classical and it is an application of the Perron-Frobenius theorem for

irreducible doubly-stochastic matrices. It will be essential in the proof of the main result.

Lemma 2 If M is an irreducible doubly-stochastic matrix, and w is a vector such that Mw = w,

then all entries of w are equal, i.e. there exists c ∈ R, such that

w = c












1

1

...

1












.

Generic conditions

Let N , r and k be positive integers, such that r ≥ k, and N ≥ r + 2(k − 1). Let

D =






a1 a2 · · · ak

X1 X2 · · · Xk




 ∈ R

N×k, (D.5)

be a matrix where ai ∈ R
(r−k+1)×1 and Xi ∈ R

(N−r+k−1)×1, i = 1, . . . , k are given vectors. We also

denote

X =

[

X1 X2 · · · Xk

]

∈ R
(N−r+k−1)×k. (D.6)
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Let S be a prescribed r-dimensional vector subspace of RN , such that the columns of D belong

to S. Then S is the span of some r linearly independent vectors:

S = 〈






e1

f1




 ,






e2

f2




 , . . . ,






er

f r




〉, (D.7)

where ei ∈ R
r−k+1, f i ∈ R

N−r+k−1, i = 1, . . . , r. We denote by B the corresponding matrix:

B =






e1 e2 · · · er

f1 f2 · · · f r




 ∈ R

N×r. (D.8)

We shall assume that the matrix D and the subspace S, satisfy the following two conditions:

Condition 3 The projection of S onto the (r − k + 1)-dimensional subspace of RN , formed by the

first r − k + 1 coordinates, is surjective. In other words, the matrix

[Ir−k+1 0]B = [e1, . . . , er],

is of full row-rank, i.e. has rank r− k+1. By reordering, without loss of generality, we can assume

that the vectors e1, e2, . . . , er−k+1 are linearly independent, i.e. that the matrix

Q :=
[

e1 e2 · · · er−k+1
]

,

is invertible.

Moreover, let v1, . . . , vk−1 be vectors defined by:

vi := f r−i+1 −
[

f1 · · · f r−k+1
]

Q−1er−i+1, i = 1, . . . , k − 1. (D.9)

We furthermore require that all submatrices of the matrix [v1 . . . vk−1] formed by any k − 1 of

its rows have rank k − 1.
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Condition 4 Let T be the set of all (N − r + k − 1) × (N − r + k − 1) matrices R, such that

all entries of R are 0’s and 1’s, with exactly one 1 in each row. We require that for all matrices

R ∈ T and every d such that k ≤ d ≤ N − r + k − 1, we have the following: for arbitrary

1 ≤ i1 < i2 < · · · < id ≤ N − r + k − 1, the submatrix of [X R] formed by the rows i1, i2, . . . , id has

the rank k + p, where p is the number of the nonzero columns in the submatrix of R formed by the

rows i1, i2, . . . , id, whenever d ≥ k + p.

Since the set T has finitely many elements, it is straightforward to see that generic matrix D

and subspace S satisfy the Conditions 3 and 4. In other words, the sets of matrices D and B that

do not satisfy Conditions 4 and 3, respectively, are of measure zero.

Main result

Before proving the main result, we give a solution to the following theorem:

Theorem 5 Let D ∈ R
N×k be a matrix (D.5) and let S be a r-dimensional subspace of RN (D.7)

containing the columns of D, such that D and S satisfy the Conditions 3 and 4. Then we have the

following:

If M ∈ R
(N−r+k−1)×(N−r+k−1) is a doubly-stochastic matrix such that all vectors






ai

MXi




,

i = 1, . . . , k, belong to S, then M is the identity matrix.

Proof:

Our first and main goal is to find a vector w which is a nonzero linear combination of the vectors

X1,X2, . . . ,Xk such that

Mw = w. (D.10)

Having this relation, by using Lemma 2 we shall obtain strong restrictions on w.
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In order to find a vector w that satisfies (D.10) we do the following: denote by Σj , j = 1, . . . , k,

the space of all vectors of the form






aj

Zj




, where Zj runs through R

(N−r+1)×1, which belong to

S, i.e.:

Σj =












aj

Zj




 |Zj ∈ R

N−r+k−1







∩ S.

Let j ∈ {1, . . . , k} be fixed. We have that






aj

Zj




 ∈ S if and only if there exists αj

i ∈ R,

i = 1, . . . , r, such that 




aj

Zj




 =

r∑

i=1

αj
i






ei

f i




,

i.e. such that

aj =

r∑

i=1

αj
i e

i, (D.11)

Zj =

r∑

i=1

αj
if

i. (D.12)

Since S satisfies the Condition 3, the matrix

Q =
[

e1 e2 · · · er−k+1
]

is invertible. Then (D.11) becomes

aj =
[
e1 e2 · · · er

]









αj
1

...

αj
r









= Q









αj
1

...

αj
r−k+1









+

r∑

l=r−k+2

αj
l e

l,
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and so 







αj
1

...

αj
r−k+1









= Q−1aj −
r∑

l=r−k+2

αj
lQ

−1el. (D.13)

By replacing this in (D.12) we obtain that

Zj =
[
f1 f2 · · · f r

]









αj
1

...

αj
r









=
[

f1 · · · f r−k+1
]









αj
1

...

αj
r−k+1









+
r∑

l=r−k+2

αj
l e

l =

=
[

f1 · · · f r−k+1
]

Q−1aj +
r∑

l=r−k+2

αj
l

(

f l −
[

f1 · · · f r−k+1
]

Q−1el
)

.

In (D.9) we defined the vectors v1, . . . , vk−1 ∈ R
N−r+k−1 as

vi = f r−i+1 −
[

f1 · · · f r−k+1
]

Q−1er−i+1, i = 1, . . . , k − 1. (D.14)

Then we have that Zj belongs to the affine subspace spanned by v1, . . . , vk−1. Finally, since





aj

Xj




 ∈ S, we have:






aj

Zj




 ∈ S ⇔ Zj = Xj +

k−1∑

i=1

cjivi, for some cji ∈ R. (D.15)

Note that the vectors vi, i = 1, . . . , k − 1 are independent on j, and hence all Σ1, . . . ,Σk are

parallel.
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Now, let M be a doubly-stochastic matrix such that






aj

MXj




 ∈ S, for all i = 1, . . . , k. Then

by (D.15) there exist real numbers cji ∈ R, j = 1, . . . , k, i = 1, . . . , k − 1, such that

MXj = Xj +

k−1∑

i=1

cjivi, j = 1, . . . , k. (D.16)

Denote

V :=

[

v1 v2 · · · vk−1

]

∈ R
(N−r+k−1)×(k−1),

cj :=









cj1
...

cjk−1









∈ R
(k−1)×1, j = 1, . . . , k,

C :=

[

c1 c2 · · · ck
]

∈ R
(k−1)×k.

Then (D.16) becomes

MXj = Xj + V cj , j = 1, . . . , k. (D.17)

Moreover, since the number of rows of the matrix C is k− 1, we have that rankC ≤ k− 1 < k, and

so the equation

C









β1
...

βk









= 0,

has a nonzero solution









β1
...

βk









. Thus these βi’s satisfy:

k∑

i=1

βic
i = 0. (D.18)
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Now let

w :=
k∑

i=1

βiX
i.

Then from (D.17) and (D.18) we obtain

Mw = w +
k∑

j=1

βjV cj = w + V





k∑

j=1

βjc
j



 = w. (D.19)

Thus, such defined w is an eigenvector of M , as wanted in (D.10).

SinceM is a doubly-stochastic matrix, there exists a permutation matrix P ∈ R
(N−r+k−1)×(N−r+k−1)

such that

PMP T =












M1 0 · · · 0

0 M2 · · · 0

...
...

. . .
...

0 0 · · · Ml












(D.20)

with all diagonal blocks being irreducible. Also, we denote the size of Mi by di, i = 1, . . . , l, and we

assume that d1 ≥ d2 ≥ . . . ≥ dl ≥ 1. If d1 = 1 (and consequently di = 1, for all i = 1, . . . , l), then

M = I, as wanted. Otherwise, let p := max{i|di ≥ 2}, with the convention that d0 = +∞. Our

aim is to prove that p = 0, which would finish our proof.

To that end, define vectors xj := PXj , j = 1, . . . , k, and ω := Pw =
∑k

j=1 βjx
j, and split them

accordingly with respect to (D.20), i.e.:

xj =









xj1
...

xjl









, j = 1, . . . , k, ω =









ω1

...

ωl









,
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with xji , ωi ∈ R
di , i = 1, . . . , l. Then by (D.19) we have that for all i = 1, . . . , l:

Miωi = ωi.

By Lemma 2, we have that there exist ki ∈ R, i = 1, . . . , p, such that

ωi = ki1di , i = 1, . . . , p,

where 1di =









1

1

...

1









∈ R
di . Then

k∑

j=1

βjx
j
i = ci1di , i = 1, . . . , p.

If we denote

yj :=












xji

xj2
...

xjp












, j = 1, . . . , k,

we obtain that

k∑

j=1

βjy
j − k1












1d1

0d2
...

0dp












− k2












0d1

1d2
...

0dp












− . . .− kp












0d1

0d2
...

1dp












= 0,

i.e. since not all βi’s are equal to zero, we have that k+p vectors y1, y2, . . . , yk,









1d1

0d2

...

0dp









,









0d1

1d2

...

0dp









,. . .,









0d1

0d2

...

1dp









are linearly dependent.
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However, since the matrix X satisfies the Condition 4, we have that
∑p

i=1 di < k + p, i.e.

l∑

i=1

(di − 1) < k. (D.21)

In particular we have that p ≤ k − 1, and so
∑p

i=1 di ≤ 2(k − 1). Thus PMP T is of the form:

PMP T =






M ′ 0

0 I




 , (D.22)

where M ′ is 2(k − 1)× 2(k − 1) matrix.

Now, if all Xj , j = 1, . . . , k satisfy MXj = Xj , then by Lemma 2, the matrix X would have at

least two identical rows, which contradicts the Condition 4.

So, there exists some j, such that MXj 6= Xj . Without loss of generality, we can assume that

j = 1. Then from (D.16) we would have that

PMP Tx1 − x1 =

k−1∑

i=1

c1iPvi.

However by (D.22), we have that the left-hand side of the above equation is a nonzero vector (and so

not all c1i ’s are equal to zero), whose all entries except the first 2(k−1) ones are equal to zero. If we

denote by νi ∈ R
N−r−k+1, i = 1, . . . , k−1, the vectors formed by the last N − r+k−1−2(k−1) =

N − r − k + 1 components of the vector Pvi, respectively, then the last implies that the vectors

ν1, . . . , νk−1 are linearly dependent. However, this contradicts the second part of Condition 3 since

N − r − k + 1 ≥ k − 1.

Thus M = I, as wanted.

Finally, we can give our main result:

Theorem 6 Let D ∈ R
N×k be a matrix (D.5) and let S be a r-dimensional subspace of RN (D.7)

such that D and S satisfy the Conditions 3 and 4.
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Let Π be a permutation matrix of the form (D.2), such that the columns of ΠD belong to S.

If M ′ is a doubly-stochastic matrix of the form (D.3), such that the columns of M ′D belong to

S, then M ′ = Π.

Proof:

Let D′ = ΠD =






Ir−k+1 0

0 Π′




D. Then the columns of D′ belong to S, and also the columns

of 




Ir−k+1 0

0 MΠ′−1




D′ =






Ir−k+1 0

0 M




D,

belong to S. Finally, since MΠ′−1 is also a doubly-stochastic matrix and since D′ satisfies the

Condition 4, by Theorem 5 we have that MΠ′−1 = I, i.e. M = Π′, as wanted.

Applications of the main result

In all problems posed and resolved in this appendix, we assume the existence of a certain permutation

matrix, and the problem is in finding it. Moreover, our solution also detects whether such a

permutation matrix exists. Indeed, the solution of Problem 3 determines whether there exists a

wanted doubly-stochastic matrix, and if so, computes it. So if it doesn’t exist or if the obtained

doubly-stochastic matrix is not a permutation matrix, we conclude that a permutation matrix with

the wanted properties does not exist.

Solution of the Problem 1

One approach to Problem 1 would be a search through all N ! permutation matrices.

With the approach given in this paper instead of searching through N ! permutation matrices,

we can reduce the original problem to the case when the wanted permutation matrix has the form

(D.2).
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In fact, if P ∈ R
N×N is a permutation matrix, then there exists a permutation σP ∈ SN , such

that the entries of P are Pi,σP
i
= 1 for all i = 1, . . . , N , and zero otherwise.

Let Pr−k+1 be a subset of the set of all permutation matrices P of size N × N such that

σP
r−k+2 < σP

r−k+3 < · · · < σP
N . Then, every permutation matrix from R

N×N can be written in a

unique way as a product of two permutation matrices of the form:






Ir−k+1 0

0 Π′




∆, (D.23)

where ∆ ∈ Pr−k+1.

Thus, our problem becomes to find Π′ and ∆ such that the columns of






Ir−k+1 0

0 Π′




∆D

belong to S. So, for each ∆ ∈ Pr−k+1, we can search for a matrix Π′ by using our solution to

Problem 2. Moreover, if for some ∆ there exists a corresponding matrix Π′, then Π′ is unique.

So, computationally, we only have to check |Pr−k+1| = N(N − 1) · · · (N − r + k) ∼ N r−k+1

combinations. Moreover, in practical applications usually r = k, thus giving only N possibilities

for the matrix ∆ through which one should search.

Finally, note that, since for every ∆ ∈ Pr−k+1 there exists at most one Π′ such that the matrix

(D.23) solves the Problem 1, there are at most |Pr−k+1| permutation matrices that solve the Problem

1.

Relation with a correspondence problem

Our solution to Problem 2 implies, as a corollary, a solution to a classical correspondence problem

in a generic case.

Let D be a matrix from (D.1), and let E be some other ordering of the rows of D, i.e.:

E =

[

xπ(1) · · · xπ(N)

]T

, (D.24)

for some permutation π. The correspondence problem consists of finding a permutation matrix Π0,
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such that

Π0D = E. (D.25)

By taking SE to be a subspace spanned by the columns of E, (D.25) implies that the columns of

Π0D belong to SE.

In the previous subsection we have obtained the algorithm for solving the problem of finding

a permutation matrix Π, such that the columns of ΠD belong to SE. Also, in a generic case, the

rank of SE is equal to k, and so the number of such permutation matrices Π is at most |P1| = N .

Moreover, by the algorithm from the previous subsection, we can obtain all such permutation ma-

trices and the one that satisfies (D.25) will be the wanted matrix Π0.
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Appendix E

Subspace Matching: the optimization

algorithm

Considering the matching problem, the Subspace Matching theorem guarantees the solution’s unique-

ness on a convex set if we know r− k+ 1 matches, where r is the model rank and k the data rank,

respectively. For the 2D-2D case, the solution’s uniqueness is guaranteed when one correspondence

is known and we need two matches to apply the theorem in the 3D-2D case. But, in practice, the

needed matches can be decreased to r − k, as we mentioned in Chapter 3.

As the following expressions show, the model and data can be augmented with synthetic data,

satisfying, at same time, a theorem condition (3.13).

Saug =






Ssynt 0

0 S




C (E.1)

Waug =

[

AsyntSsynt AW

]

C (E.2)

where C = I− 1
N+Nsynt

1N+Nsynt1
T
N+Nsynt

is a centering matrix and, A the unknown affine camera

model. Matrix Asynt, defined by the user, is the synthetic affine transformation, which allows us

103
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to obtain the projections of the synthetic shape Ssynt. Note that, S and Saug share one dimension.

According to (E.1) and (E.2), expression (3.13) is given by

WT
aug






Id×d 0

0 PT
0




Π⊥

Saug
= 0 (E.3)

where d = (r − k) +Nsynt and P0 is the solution of the following problem

P∗ = argmin
P

∣
∣
∣

∣
∣
∣W

T
PTΠ⊥

Saug

∣
∣
∣

∣
∣
∣

2

F
+ c

2 ||P1− 1||2F + c
2

∣
∣
∣
∣PT1− 1

∣
∣
∣
∣2

F

s.t.
P[1:d1:d] = Id

pij ≥ 0

(E.4)

Such as the equality constraints of doubly-stochastic matrices (3.10,3.11), imposing the identity

matrix can be incorporated into the cost function as the expression shows.

P∗ = argmin
P

∣
∣
∣
∣Π⊥

S b
PWT

b − b
∣
∣
∣
∣2

F
+ c

2 ||P1− 1||2F + c
2

∣
∣
∣
∣PT1− 1

∣
∣
∣
∣2

F

s.t. pij ≥ 0

(E.5)

where b = −Π⊥
S a

WT
a , Wa and Π⊥

S a
are the first d columns of Waug =

[

Wa Wb

]

and Π⊥
Saug

=
[

Π⊥
S a

Π⊥
S b

]

, respectively. Note that the variable P is a [N − (r − k)] × [N − (r − k)] matrix. To

simplify the notation and due to its geometric character, we call the cost function of (E.5) by Fgeo

The gradient of Fgeo is given by

∇PFgeo = 2FPG− 2J+
c

2

(
P11T − 11T

)
+

c

2

(
11TP− 11T

)
(E.6)

where F = (Π⊥
S b

)TΠ⊥
S b

, G = WT
b Wb and J = (Π⊥

S b
)T bWb.
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As- discussed in Section 4.2.1, when we are in presence of clutter points, the geometric constraints

(E.3) can not be enough to define a unique solution in a convex domain and more information, like

photometry, is required. Then, in this case, the used cost function (4.1) and its gradient are given

by

Ftot(P) =
∣
∣
∣

∣
∣
∣Π⊥

S cPWT
b − b

∣
∣
∣

∣
∣
∣

2

F
+

c

2
||P1− 1||2F (E.7)

+
c

2

∣
∣
∣
∣PT1− 1

∣
∣
∣
∣
2

F
+ α1T (C ⊙P) 1

∇PFtot = 2FPG− 2J+
c

2

(
P11T − 11T

)
(E.8)

+
c

2

(
11TP− 11T

)
+ αC

where Π⊥
Saug

=

[

Π⊥
S a

Π⊥
S c

]

and Π⊥
S c

=

[

Π⊥
S b

0

]

. In this case, F = (Π⊥
S c

)TΠ⊥
S c

and J =

(Π⊥
S c

)T bWb. It is important to refer that P is also a square matrix: if there are nc clutter points,

P has [N + nc − (r − k)]× [N + nc − (r − k)] entries.

E.1 The Nesterov’s projected gradient algorithm

We use the Nesterov’s projected gradient to solve our convex problems. This algorithm is given by

In our case, the cost function f is Fgeo (E.5) or Ftot (E.8) and projection function Proj(X) =

{∀i, j Xij = max(Xij , 0)}.

The knowledge of Lipschitz constant L, the maximum singular value of the Hessian matrix, is a

requirement of the Nesterov’s projected gradient. Differentiating the equation (E.6) and using the

vectorial formulation, the Hessian matrix is given by

H = 2F ⊗G+ c
(
11T ⊗ I+ I⊗ 11T

)
(E.9)

As we referred to earlier, the Hessian matrix has a prohibitive size for these problems, but in our

particular case, we do not need to explicitly compute it to calculate its maximum singular value.
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The Nesterov’s projected gradient
(
P,S⊥,S,W, L

)

• Input: Shape spaces S, S⊥, Image points W, Lipschitz constant L
Variable: x - random matrix
Auxiliary variables: y = x, x0 = y, k = 1
f(x) - Cost function of problem Proj - Projection function

• while ||x− Proj (x−∇f (x)) ||2 > T

1. y0 = y

2. y = Proj
(
x− 1

L
∇f (x)

)

3. x = y + k−1
k+2 (y − y0)

4. k = k+1
end

Then, L is defined by

L = 2σmax (Wb)
2 σmax

(

Π⊥
S b

)2
+ 2cN (E.10)

Note that the feature descriptor term does not change the Hessian matrix H and therefore the

Lipschitz constant L because it is a linear term: the Hessian matrix of Ftot is also given by equation

E.9.
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