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Abstract— We study the products Wk · · ·W1 of random
stochastic, not necessarily symmetric matrices. It is known
that, under certain conditions, the product Wk · · ·W1 con-
verges almost surely (a.s.) to a random rank-one matrix;
the latter is equivalent to |λ2(Wk · · ·W1)| → 0 a.s., where
λ2(·) is the second largest (in modulus) eigenvalue. In this
paper, we show that the probability that |λ2(Wk · · ·W1)| stays
above ε ∈ (0, 1] in the long run decays to zero exponentially
fast ∼ e−k I . Furthermore, we explicitly characterize the
rate of this convergence I and show that it depends only on
the underlying graphs that support the matrices Wk’s. Our
results reveal that the rate I is essentially determined by the
most likely way in which the union (over time) of the support
graphs fails to form a directed tree.

Keywords— Consensus, Convergence in probability, Di-
rected networks, Exponential rate, Stochastic matrices.

I. INTRODUCTION

Many applications in distributed systems, such as ren-
dezvous of robots or distributed inference in sensor net-
works, have natural representation as the linear systems
driven by stochastic1 matrices xk+1 = Wkxk, where xk
is the system state at time k, and Wk is the system
(possibly time varying or random) stochastic matrix; see,
e.g., [1] for distributed inference in sensor networks. The
matrices Wk respect the sparsity pattern of the underlying
communication network; in many applications, like with
wireless sensor networks, the Wk’s are random, due to
packet dropouts that occur at random times. Also, physical
communication links may be asymmetric, which necessi-
tates the study of the systems with non-symmetric Wk’s.

The key in analyzing the performance of such systems
is in the study of the long term behavior of the products
Wk · · ·W1. In deterministic time invariant systems, where
Wk = A for all k (and A is a stochastic matrix), it is well
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(ISR), Instituto Superior Técnico (IST), Lisbon, Portugal
jxavier@isr.ist.utl.pt

Bruno Sinopoli is with the Department of Electrical and Com-
puter Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
brunos@ece.cmu.edu

1The rows of the matrix sum to one and all the entries are nonnegative.

known that Wk · · ·W1 converges to a (deterministic) rank
one matrix 1v>, if |λ2(A)| – the modulus of the second
largest (in magnitude) eigenvalue of A is strictly less than
1 [2]. It is also known that the convergence of Wk · · ·W1−
1v> to zero occurs at a geometric rate (in k), equal to
|λ2(A)|. In the time varying case, under the assumption
that the unions of graphs over finite time windows are con-
nected (bounded intercommunication intervals), the rate
of convergence is also geometric [3]. In contrast, with
random Wk’s, a geometric rate of convergence is no longer
guaranteed for every sample path. In this paper, we are
interested in finding the large deviation probabilities that
the convergence rate is sub-exponential. With the random
Wk’s, it is known that the product Wk · · ·W1 converges
almost surely (a.s.) to a random, rank one matrix 1v> (the
vector v is random) [4], when the Wk’s have positive diag-
onals and |λ2(E[Wk])| is strictly less than one. Further, the
path-wise convergence of Wk · · ·W1 to 1v> is equivalent
to the path-wise convergence of |λ2(Wk · · ·W1)| to zero.

We consider independent and identically distributed
(i.i.d.) asymmetric stochastic matrices Wk with positive
diagonals. As a measure of the size of the residual error
Wk · · ·W1 − 1v>, we naturally adopt |λ2(Wk · · ·W1)|.
We show that the probability that |λ2(Wk · · ·W1)| con-
verges to zero sub-exponentially, i.e., the probability that
|λ2(Wk · · ·W1)| ≥ e−ζk , for a sequence 0 ≤ ζk = o(k),
decays to zero exponentially fast ∼ e−k I . Furthermore,
we solve with equality (rather than with upper and lower
bounds) the large deviation limit:

lim
k→+∞

1
k

log P
(
|λ2(Wk · · ·W1)| ≥ e−ζk

)
= −I, (1)

where I ≥ 0. Note that a special case is to take e−ζk =
ε,∀k, with ε ∈ (0, 1]. Interestingly, our results reveal that
I depends on the distribution of matrices Wk only through
the distribution of their induced graphs. Intuitively, we
show that the rate I is determined by the probability of
the most likely way in which the union (over time) of the
graphs that support the Wk’s does not contain a directed
tree. (See Theorem 4 for a precise statement of this result.)

We further calculate the rate I for a commonly used
broadcast gossip protocol [5] in sensor networks, where
(only one) node u activates at a time with probability pu,
and broadcasts its state to all single-hop neighbors. The
rate I = | log 1 − pmin|, where pmin is the probability of
the most rarely active node.

We now distinguish the current paper from our previous
work on the products of stochastic matrices [6], [7]. In [6],



[7], we studied the case when Wk’s are both stochastic and
symmetric and we derived a counterpart of the limit in (1).
With respect to [6], [7], here we significantly extend our
result, as we remove the assumption that the Wk’s need to
be symmetric, thus allowing for directed underlying net-
works. Directed networks are highly relevant in practice,
as practical communication links can be asymmetric: a
directed link from i to j can be strong enough to support
communication, but the link from j to i may not be
strong enough. Mathematically, the analysis with directed
networks (asymmetric Wk’s) introduces two new major
challenges. First, we no longer have convergence of the
product Wk · · ·W1 to the deterministic consensus matrix
J = 1

N 11> as in the symmetric matrices case; rather,
the product converges to a random rank one matrix 1v>.
Second, the error matrix was of the form Wk · · ·W1 − J ,
which allowed for the following factorization Wk · · ·W1−
J = (Wk−J) · · · (W1−J). With directed networks, we no
longer have the deterministic limit J nor the factorization.

The remainder of the paper is organized as follows.
Section II describes the model of random matrices Wk that
we assume, introduces certain concepts needed for sub-
sequent analysis, and provides some preliminary results.
Section III states our main result on the exponential decay
rate I , and gives the key steps for the proof of the result.
Section IV illustrates with examples the computation of the
rate I . Finally, Section V concludes the paper and provides
directions for future research.

Throughout the paper we use the following notation.
We denote by: Aij or [A]ij the entry in i-th row and j-
th column of a matrix A; 1 the vector with unit entries;
J = 1

N 11> the ideal consensus matrix; SN the set of
stochastic N by N matrices; GN the set of all directed
graphs (without self-loops) on the set of vertices V =
{1, ..., N}; and E the expectation operator.

II. PROBLEM SETUP

Let {Wk}k≥1 be a sequence of random matrices defined
on the probability space (Ω,F ,P), taking values in SN .
We assume that Wk, k ≥ 1, are i.i.d. and have almost
surely positive diagonals; that is, we assume that, for every
i, [Wk]ii > 0 with probability one. The last assumption
assures that, if an entry ij of the product Wk · · ·W1

becomes positive at some time k, then, due to positivity of
the diagonals, this entry remains positive for all k′ ≥ k; or,
intuitively, it guarantees continuous flow of information. In
the sequel, we denote by Φ(k, 0) = Wk · · ·W1.

Let G : SN 7→ GN denote the induced graph map
defined by G(W ) = (V, {{i, j} : Wij > 0, i 6= j}). We
define the sequence of random directed graphs Gk, k ≥ 1,
through the sequence of random matrices Wk, k ≥ 1,
by Gk = G(Wk), for k ≥ 1. Remark that the sequence
Gk, k ≥ 1, is i.i.d., as the matrix sequence is i.i.d. For
a graph H ∈ GN , we denote with pH the probability
that the realization of the induced graph equals H , pH =
P(G(Wk) = H). Similarly, for a collection of graphs
H ⊆ GN , we let pH = P(G(Wk) ∈ H)(=

∑
H∈H pH).

We collect all realizations of the induced graphs that occur

with positive probability in the set G:

G :=
{
H ∈ GN : pH > 0

}
. (2)

A. Accumulation graph Γ(k, 0) and tree-free collections

For a collection of graphs H ⊆ GN , let Γ(H) denote
the graph that contains all the edges of all the graphs in H,
Γ(H) = (V,∪H∈HE(H)), where E(H) denotes the set of
edges of a graph H .

An object that will be particularly relevant in our analy-
sis is the graph that collects all the links that appeared from
time 1 until some time k. We refer to it as the accumulation
graph from time 1 until time k and formally define it as

Γ(k, 0) =
(
V,∪kt=1E(Gt)

)
. (3)

We study connectivity properties of Γ(k, 0) using the con-
cept of strong components of directed graphs [8], [2]. Two
nodes i, j in a directed graph H are said to communicate if
H contains both a directed path from i to j and a directed
path from j to i. Communication relation is an equivalence
relation and it induces the equivalence classes on H called
the communication classes of H . If a communication class
of H has only outgoing edges, this class is called initial.

We now give the properties that shed light on the relation
between the accumulation graph Γ(k, 0) and the product
matrix Φ(k, 0). The first step is a simple, but important
relation between Γ(k, 0) and the induced graph of Φ(k, 0)
which we state without proof.

Observation 1 Two nodes communicate in Γ(k, 0) if and
only if they communicate in G(Φ(k, 0)).

Note that the induced graph of the product matrix,
which contains both one-hop information flows and their
superpositions in time, contains in general more links than
the graph Γ(k, 0) that registers only one-hop information
flows. However, Observation 1 assures that the commu-
nication classes of these two graphs are nevertheless the
same. We use this observation to derive the key relation
between the product matrix Φ(k, 0) and the accumulation
graph Γ(k, 0) which we state in Lemma 2.

Lemma 2 |λ2(Φ(k, 0))| < 1 if and only if Γ(k, 0) contains
a directed tree.

Proof: We use (without proof, which can be derived
from Lemma (3.20) on page 224, in [8]) the fact that,
for every stochastic matrix W with positive diagonals,
|λ2(W )| < 1 if and only if G(W ) has exactly one initial
class. Combining this with Observation 1, it follows that
|λ2(Φ(k, 0))| < 1 if and only Γ(k, 0) has exactly one
initial class. Finally, the last condition is equivalent to the
condition that Γ(k, 0) contains a directed tree.

We say that a collection of directed graphs H ⊆ G is a
tree-free collection on G if the accumulation graph Γ(H)
does not contain a directed tree. Denote with Π(G) the set
that collects all tree-free collections on G:

Π(G) = {H ⊆ G : Γ(H) is tree− free} . (4)



Next subsection illustrates the introduced concepts of
accumulation graph and tree-free collection on the example
of broadcast gossip algorithm.

B. Example: broadcast gossip

Let Ĝ = (V, Ê) be a directed graph that collects all
the available communication links in a network. At each
time k, a node is chosen at random in V according to the
probability mass function pu > 0, u ∈ V ,

∑
u∈V pu = 1.

Denote by uk the node chosen at time k. With broadcast
gossip [5], the weight matrix Wk has the sparsity pattern
of a directed star graph centered at uk and is given by:
[Wk]ukv = [Wk]vv = 1/2, for all v such that {uk, v} ∈ Ê
(out-neighbors of uk), [Wk]vv = 1 otherwise, and the rest
of the entries are zero. The graph realization at time k

is then Gk = (V,
{

(uk, v) : v ∈ V, (uk, v) ∈ Ê
}

). Since
each node in V has a positive probability of being chosen,
we conclude that the collection of realizable graphs with
broadcast gossip is the collection of all star subgraphs of
Ĝ centered at its nodes:

GB−gossip = {Hu : u ∈ V } , (5)

where Hu =
(
V,
{

(u, v) : v ∈ V, (u, v) ∈ Ê
})

.
For concreteness, we consider now a simple case when

Ĝ is a four node graph, V = {1, 2, 3, 4}, and with the set
of edges Ê = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)},
as shown in Figure 1a. We can see that, for node 1,

Fig. 1. Example of a broadcast gossip on a 4-node chain; a) Ĝ = (V, Ê)
is the total budget of communication links; b) G = {H1, H2, H3, H4}
is the set of realizable graphs; c) H = {H1, H3, H4} is a tree-free
collection, whereas H′ = {H2, H3} is not.

its only out-neighbor in Ĝ is node 2 – thus, H1 is
the single arc graph (V, (1, 2)), as shown in Figure 1b.
Similarly, node 2 has two out-neighbors in Ĝ, node 1
and node 3, and thus H2 = (V, {(2, 1), (2, 3)}). Checking
the out-neighborhoods of the remaining two nodes, 3
and 4, we conclude that the set of all realizable graphs
is G = {H1, H2, H3, H4}, with Hi as in Figure 1b,
i = 1, ..., 4. To find the tree-free collections on G, we
notice first that the removal of the edges of H2 and
H3 makes Ĝ tree-free. Thus, any subset of G \ {H2} is
a tree-free collection, and similarly for G \ {H3}; for
example, H = {H1, H3, H4} shown in Figure 1c (left) is
one such a collection (it is easy to see from Figure 1c
that Γ({H1, H3, H4}) does not have a directed spanning

tree). On the other hand, simultaneous removal of edges
of H1 and H4 “does no harm”, as Γ({H2, H3}) still
contains a directed spanning tree (in fact, it contains two
directed spanning trees, as can be seen from Figure 1c
(right)). Summing up, the set of all tree-free collections
on G is Π(G) = 2G\{H2} ∪ 2G\{H3}, where 2G\{H2} =
{∅, {H1}, {H3}, {H4}, {H1, H3}, {H1, H4}, {H3, H4},
{H1, H3, H4}} is the power set of G\{H2}, and similarly
for G \ {H3}.

III. MAIN RESULT

This section states the main result of this paper on
the large deviation limit (1) for the sequence of random
stochastic matrices, and it provides key steps of the proof.

Theorem 3 For any sequence of nonnegative numbers
{ζk}k≥1 such that ζk = o(k)

lim
k→+∞

1
k

log P
(
|λ2(Φ(k, 0))| ≥ e−ζk

)
= −I (6)

where
I =

{
| log pmax|, If Π(G) 6= ∅
+∞, otherwise

and pmax = maxH∈Π(G) pH.

Theorem 3 can be proven by proving separately
the lower and the upper large deviation bounds:
lim infk→∞ 1

k log P
(
|λ2(Φ(k, 0))| ≥ e−ζk

)
≥ log pmax

and lim supk→∞
1
k log P

(
|λ2(Φ(k, 0))| ≥ e−ζk

)
≤

log pmax. In the next subsection, we provide a complete
proof for the lower bound. The proof of the upper bound
is omitted due to lack of space and will be presented
elsewhere.

A. Lower bound

If all induced graphs Gt from time t = 1 until time
t = k belong to some tree-free collection on G, then it
must be that Γ(k, 0) = Γ(G1, ..., Gk) is tree-free. In other
words, for any H ∈ Π(G), the following inclusion relation
holds between the two events:

{G1 ∈ H, ..., Gk ∈ H} ⊆ {Γ(k, 0) is tree− free} .

Computing now the probabilities of the events above and
using the fact that Gt, 1 ≤ t ≤ k, are i.i.d., it follows

pkH ≤ P (Γ(k, 0) is tree− free) . (7)

Since equation (7) holds for every H ∈ Π(G), it also holds
for the tree-free collection H? ∈ Π(G) that has the highest
probability pH? = pmax, and therefore:

pkmax ≤ P (Γ(k, 0) is tree− free) . (8)

To relate pkmax and the probability of our event of interest{
|λ2(Φ(k, 0))| ≥ e−ζk

}
, we observe that, by the fact that

ζk is nonnegative, we have:

P
(
|λ2(Φ(k, 0))| ≥ e−ζk

)
≥ P (|λ2(Φ(k, 0))| = 1) . (9)

Using now Lemma 2, the “only-if” part, to link (9) and (8)
yields

pkmax ≤ P
(
|λ2(Φ(k, 0))| ≥ e−ζk

)
. (10)



Taking the log, dividing by k and taking the lim infk→+∞,
the large deviation lower bound follows.

IV. COMPUTATION OF I

In this section we illustrate computation of rate I with
two random models: leader following with link failures and
broadcast gossip.

A. Leader following with link failures
Let T = (V,E) be a directed tree on N nodes and let r

denote the root node in T . We assume that each link e in
T may fail with probability 1− pe and also that links fail
independently in time and in space. With leader following
algorithm on T , every node in T at each time k transmits
its state to all of its children; however, due to link failures,
some if its children may not receive the sent information.
The corresponding matrix of interactions Wk is then given
by [Wk]utu = α and [Wk]uu = 1−α if the node u received
the information from its parent denoted by tu (that is, if the
link (u, tu) ∈ E was online at time k) and [Wk]utu = 0
and [Wk]uu = 1, otherwise; remark also that [Wk]uv = 0
with probability one for all v 6= tu. Using the fact that the
links fail independently, we get that each subgraph of T
occurs with positive probability and thus the collection of
realizable graphs is the collection of all subgraphs of T :

GLeader = {(V,E′) : E′ ⊆ E} . (11)

Now, since T = (V,E) is a directed tree, the easiest way
to make T tree-free is to remove an arbitrary arc from T .
Thus, a candidate for the most likely tree-free collection
on GLeader has to be of the following form: {(V,E′) :
E′ ⊆ E \ e}, for some e ∈ E. The probability of such a
collection equals 1 − pe, e ∈ E. Thus, the one with the
highest probability is the one for which pe is minimal. We
conclude that

pLeader
max = 1− pe? , ILeader = | log(1− pe?)|,

where e? is the “weakest” link in T that has the lowest
probability of occurrence.

B. Broadcast gossip on a tree
In Subsection II-B we explained the broadcast gossip

algorithm running on a generic network that is defined by
graph Ĝ = (V, Ê). We consider now the case when Ĝ is a
symmetric tree (the undirected graph of Ĝ is a tree and for
every arc in Ĝ its inverted arc also belongs to Ĝ). Note that
the four node graph from the example in Figure 1 is of this
type. Similarly as in the case of the four node graph, we
can see that inhibition of any internal node (non-leaf node)
u ∈ V yields a tree-free network, that is, Γ(G \ {Hu}) is
tree-free. Thus, it suffices to remove just one graph of this
type from GB−gossip, and therefore the most likely tree-free
collection must be of the form G \{Hu}, where u is some
internal node in Ĝ. The probability of such a collection is
1− pu, and the most likely one is the one for which pu is
minimal:

pB−gossip
max = 1− min

u∈V :u is internal node
pu

IB−gossip =
∣∣log pB−gossip

max

∣∣ .

For the simplest case when all the nodes have the same
probability of activation, equal to 1

N , the rate IB−gossip =∣∣log
(
1− 1

N

)∣∣ ∼ 1
N , for large N .

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the products Wk · · ·W1 of ran-
dom stochastic matrices Wk that are not necessarily sym-
metric. Asymmetric random matrices are highly relevant
in applications, like with wireless sensor networks where
asymmetric link failures may occur at random, and the
study of their behavior is much more challenging than the
study of symmetric matrices. It is well known that, when
the diagonal entries of the Wk’s are positive almost surely,
and |λ2(E[Wk])| – the modulus of the second largest (in
modulus) eigenvalue of E[Wk] is strictly less than one,
the product Wk · · ·W1 converges to a rank-one random
matrix, which is equivalent to |λ2(Wk · · ·W1)| converging
to zero. In this paper, we show that the probability that
|λ2(Wk · · ·W1)| ≥ e−ζk , with 0 ≤ ζk = o(k), converges
to zero exponentially fast∼ e−kI . Further, we explicitly
characterize the rate I , and we show that I depends only
on the graphs that support the Wk’s. Intuitively, our result
shows that I is determined by the most likely way in which
the union of the support graphs over time does not contain
a directed spanning tree.

As a future work, we plan to address the computation
of I for generic random models (for example, the link
failure model on a general directed graph, as opposed
to a tree graph studied in Section IV). Guided by the
previous findings on the relation of I with the minimum
cut for the case of undirected networks [6], [7], we expect
a qualitatively similar result for directed networks as well,
but now, the minimum cut would be understood in the
sense of “cutting” all the directed spanning trees.
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