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Abstract— We derive the convergence rate of a distributed
gradient algorithm for smooth optimization in networked
systems. We assume that each agent in the network has a
convex cost function fi(x), known only to agent i, and the
goal is to minimize the sum

∑N
i=1 fi(x) of all agents’ costs;

such problem formulation arises in various networked appli-
cations, like, e.g., distributed inference or source localization
in sensor networks. With the distributed gradient algorithm
under study, each agent, at each iteration k, performs a
weighted average of its own and its neighbors’ solution
estimates, and performs a step in the direction of the negative
of its local function’s gradient. We establish a novel result
that the distributed gradient algorithm has the convergence
rate O(1/k2/3), in terms of the cost function optimality gap,
under the assumption of convex fi’s with Lipschitz continuous
and bounded gradients.

Keywords— Convergence rate analysis, Consensus, Dis-
tributed optimization, Gradient methods.

I. INTRODUCTION
We consider distributed optimization in networked sys-

tems where N agents are situated in a generic, connected
network; each agent i (out of N agents) has a convex
cost function fi : Rd → R, known only to agent i,
and the goal is to minimize the sum

∑N
i=1 fi(x) of the

individual agents’ costs. The latter problem encompasses
many applications in networked systems, like distributed
estimation and source localization in sensor networks [1],
or distributed learning, e.g., of a linear classifier [2].

The literature proposes distributed (sub)gradient meth-
ods to solve the described or related problems, see [3], and
more recent works [4], [2]. These methods are attractive as
they are fully distributed and have simple, computationally
cheap iterations k. The literature mostly analyzes the
convergence rates of these methods for a wide class of non-
differentiable convex fi’s that: 1) have bounded subgradi-
ents, for unconstrained problems; or 2) are Lipschitz over
the constraint set, for constrained problems. Specifically,
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reference [2] shows that the distributed algorithm therein
achieves the convergence rate (in terms of the optimality
gap at the cost function) O

(
log k√
k

)
for the second class of

the fi’s. In this paper, we analyze distributed gradient al-
gorithms under a more restrictive class F of differentiable
fi’s with Lipschitz continuous and bounded gradients.
Such a class is still very interesting as it subsumes many
important costs, like the logistic loss in classification,
e.g., [5], or the Huber loss in robust estimation, e.g., [1].
It is natural to expect that distributed gradient algorithms
achieve a faster guaranteed convergence rate under this
“smaller” class of functions, as this situation is typical in
conventional, centralized optimization. For example, the
centralized (sub)gradient method has the rate O

(
1√
k

)
on the class of nondifferentiable convex costs, while the
rate increases to O

(
1
k

)
when the cost function is convex,

differentiable, with Lipschitz continuous derivative. To
date, a corresponding result for smooth optimization has
not been established for distributed gradient methods.

Main contribution. In this paper, we show that the
distributed (sub)gradient algorithm in [4] achieves the
rate O

(
1

k2/3

)
on the class F of convex fi’s with Lipschitz

continuous and bounded gradients. We consider a family of
the algorithm step-sizes αk = c/(k + 1)τ , c > 0, parame-
terized by τ ∈ [0, 1], and we show that the choice τ = 1/3
assures the best guaranteed rate – O

(
1

k2/3

)
. Interestingly,

the obtained rate O
(

1
k2/3

)
for the distributed gradient

algorithm differs (is worse) from the corresponding rate
of the centralized gradient algorithm O

(
1
k

)
. The upper

bound O
(

1
k2/3

)
that we obtain here for the algorithm in [4]

essentially cannot be improved. Namely, reference [6]
demonstrated that a worst case optimality gap under the
class F is no better than Ω

(
1

k2/3

)
. (See the paragraph

with heading Notation for the meaning of symbols O,Ω.)
We contrast this paper with related work on distributed

gradient methods [6], [2], [4], [5]. Reference [4] studies
the same algorithm as we do here, but for nondifferentiable
functions; reference [2] considers a different, dual averag-
ing algorithm. Finally, references [6], [5] also analyze a
different, accelerated distributed gradient method.

Paper organization. The next paragraph introduces
notation. Section II describes the network and optimization
models and outlines the algorithm. Section III states our
main result on the convergence rate, while Section IV
proves the result. Finally, Section V concludes the paper.

Notation. We denote by: Rd the d-dimensional real
coordinate space, d ≥ 1; Aij the entry in the i-th row and
j-th column of a matrix A; ai the i-th entry of a vector a;



(·)> the transpose; ‖·‖ = ‖·‖2 the Euclidean (respectively,
spectral) norm of its vector (respectively, matrix) argument
(‖ · ‖ also denotes the modulus of a scalar); ∇J (x) the
gradient evaluated at x of a function J : Rd → R, d ≥ 1.
Finally, for two positive sequences ηn and χn, ηn = O(χn)
means that lim supn→∞

ηn
χn

< ∞; ηn = Ω(χn) means
that lim infn→∞

ηn
χn

> 0; and ηn = Θ(χn) means that
ηn = O(χn) and ηn = Ω(χn).

II. MODEL AND DISTRIBUTED GRADIENT ALGORITHM

A. Optimization and network models
Optimization model assumes that N agents solve:

minimize f(x) :=
∑N
i=1 fi(x). (1)

The function fi : Rd → R is known only by agent i. We
impose the following structure on the fi’s.

Assumption 1 (Optimization model) (a) For all i, fi :
Rd → R is convex, and problem (1) is solvable.

(b) For all i, function fi has Lipschitz continuous first
derivative with constant L ∈ (0,+∞), i.e., ‖∇fi(x)−
∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd.

(c) For all i, gradient ∇fi(x) is uniformly bounded by
constant G ∈ [0,∞), i.e., ‖∇fi(x)‖ ≤ G, ∀x ∈ Rd.

From Assumption 1 (b), it follows that, e.g., [7]:

fi(z) ≤ fi(x)+∇fi(x)>(z−x)+
L‖z − x‖2

2
, ∀x, z ∈ Rd.

(2)
Also, under Assumption 1, function f(x) =

∑N
i=1 fi(x)

is also convex, and has Lipschitz continuous gradient
with constant NL. Denote by x? a solution to (3), and
by f? = infx∈Rd f(x) = f(x?) the optimal value. For
notational simplicity, from now on we set d = 1 so that
the optimization variable is scalar, but all our results hold
for a generic d.
Communication model. We associate with problem (1)
a network V of N agents, described by the graph G =
(V, E), where E ⊂ V × V is the set of links.

Assumption 2 (Network model) The graph G is connected,
undirected, and simple (no self/multiple links.)

We also associate to graph G a symmetric, stochastic (rows
sum to one and all the entries are non-negative), N × N
weight matrix W , with, for i 6= j, Wij > 0 if and
only if, {i, j} ∈ E, and Wii = 1 −

∑
j 6=iWij . Denote

also W̃ := W − J. We require that µ := ‖W̃‖ < 1,
which is, for a connected G, true for any W with strictly
positive diagonal entries Wii’s, ∀i; a popular choice are
the Metropolis weights, e.g., [8].

B. Distributed Gradient Algorithm in [4]
We now review the distributed (sub)gradient algorithm

in [4]. Each agent i updates over iterations k its estimate
xi(k) of a solution. With the initialization xi(0) ∈ R, the
update rule at agent i is, for k = 0, 1, ...:

xi(k + 1) =
∑
j∈Oi

Wijxj(k)− αk∇fi(xi(k)), (3)

where αk is the step-size, specified further ahead, and
Oi is the neighborhood set of agent i (including i). The
algorithm operation is as follows. Each agent i, at each
iteration k, broadcasts its variable xi(k) to all its neighbors
j ∈ Oi − {i}, receives xj(k) from all its neighbors j ∈
Oi−{i}, and 3) updates xi(k) via (3). To avoid notational
clutter in the subsequent analysis, we let xi(0) = 0, for all
i, i.e., all agents initialize their estimates to zero.

Matrix form. We now write algorithm (3) in matrix
form. Introduce the map F : RN 7→ RN as:

F (x) = F (x1, x2, ..., xN ) = (f1(x1), f2(x2), ..., fN (xN ))>.

Then, (3) in matrix form is:

x(k + 1) = Wx(k)− αk∇F (x(k)), k = 0, 1, ...(4)

Step size. We consider a family of step-sizes: αk =
c

(k+1)τ ,k = 0, 1, ..., where c > 0 is a constant. The
nonnegative parameter τ ∈ [0, 1] is a degree of freedom
that we later optimize for the best convergence rate.

Local weighted running averages. We derive
the convergence rate with respect to the local
weighted running averages, defined by: xi,ra(k) =(∑k−1

t=0 αt

)−1∑k−1
t=0 αtxi(t), for k = 1, ..., and

xi,ra(0) = 0. Note that the quantity xi,ra(k) is locally
available to agent i and is, with xi,ra(0) = 0, efficiently
calculated recursively for k = 1, ... by:

si(k + 1) = si(k) + αk, , k = 0, 1, ..., si(0) = 0

xi,ra(k + 1) =
si(k)xi,ra(k) + αkxi(k)

si(k + 1)
.

III. CONVERGENCE RATE: STATEMENT OF THE RESULT

We now state our main result on the convergence rate of
the distributed algorithm (3) under Assumptions 1 and 2.

Theorem 1 Consider algorithm (3) under Assumptions
1 and 2. Set the step-size to αk = c

(k+1)τ , with
c = 1/(2L) and τ = 1/3. Then, at every agent i:
f (xi,ra(k)) − f? = O

(
1/k2/3

)
, where xi,ra(k) =(∑k−1

t=0 αt

)−1∑k−1
t=0 αtxi(t).

Theorem 1 establishes the rate O
(

1
k2/3

)
for arbitrary

functions fi’s that obey Assumption 1. Hence, compared
with the results in [2], we can see that adding smoothness
to the fi’s (as in Assumption 1 (b)) improves the rate from
O
(

log k
k1/2

)
to O

(
1

k2/3

)
. We also note that an accelerated

distributed gradient method, different from (3), proposed
in [6], achieves a faster rate O

(
log k
k

)
under Assump-

tions 1–2, [6].
Note that we choose the step-size parameters c =

1/(2L) and τ = 1/3. As can be seen from the proofs,
Theorem 1 still holds if we take any c ∈ (0, 1/(2L)). We
will also see that τ = 1/3 is optimal, in the sense that it
minimizes an upper bound on the optimality gap (See the
proof of Theorem 1 and equation (9).)

Finally, we note that the obtained bound O
(

1
k2/3

)
is

essentially tight, i.e., algorithm (3) cannot achieve a rate



faster than O
(

1
k2/3

)
under Assumptions 1–2. We can show

this by creating a certain worst-case lower bound on the
optimality gap at xi(k), which turns out to be Ω

(
1

k2/3

)
.

This is considered in [6].

IV. CONVERGENCE RATE: PROOF

Our convergence rate analysis is based on the evo-
lution of the (hypothetical) global average xi(k) =
1
N

∑N
i=1 xi(k) of the agents’ estimates. Subsection IV-

A studies the optimality gap at x(k) through an inexact
oracle framework that we introduce. Subsection IV-B upper
bounds the agents’ disagreement – how far are the xi(k)’s
from x(k). Finally, Subsection IV-C proves Theorem 1 by
combining the results from Subsections IV-A and IV-B.

A. Inexact oracle framework

We base our analysis on the framework of inexact first
order oracle, and on the analysis of gradient methods under
first order oracle. We first need the following definition
from [6] and that is a variation of Definition 1 in [9].

Definition 2 (Pointwise inexact first order oracle)
Consider a function φ : R → R that is convex and has
Lipschitz continuous gradient with constant Lφ. We say
that a pair

(
φ̃x, g̃x

)
∈ R× R is a (Lx, δx) inexact oracle

of φ at x if:

φ(z) ≥ φ̃x + g̃>x (z − x) , ∀z ∈ R (5)

φ(z) ≤ φ̃x + g̃>x (z − x) +
Lx
2
‖z − x‖2 + δx, ∀z ∈ Rd.

Note that the pair (φ(x),∇φ(x)) satisfies Definition 2 with
(Lx = Lφ, δy = 0). Also, if

(
φ̃x, g̃x

)
is a (Lx, δx) inexact

oracle at x, then it is also a (L′x, δx) local inexact oracle
at x, with L′x ≥ Lx. We will use the following Lemma on
the convergence of the (centralized) gradient method under
inexact oracle. The Lemma easily follows from Theorem 2
and the result in equation (33) in [9].

Lemma 3 Consider the gradient algorithm for a solvable
problem of unconstrained minimization of a convex func-
tion φ : R 7→ R: y(k + 1) = y(k) − βkhk, k =
0, 1, ..., where y(0) ∈ R, βk = 1/Rk, and (φk, hk) is
a (Rk, δk) inexact first order oracle of φ at y(k). Then,
for a solution y?:

φ(yra(k))− φ(y?) ≤
1
2‖y(0)− y?‖2 +

∑k−1
t=0 βtδt∑k−1

t=0 βt
,

where yra(k) = 1∑k−1
t=0 βt

∑k−1
t=0 βty(t).

Casting algorithm (3) in the inexact oracle frame-
work. Consider algorithm (3) and denote by x(k) :=
1
N

∑N
i=1 xi(k) and xra(k) := 1

N

∑N
i=1 xi,ra(k). Note that

the latter quantities are not available to any agent, but only
serve for convergence analysis. Then, multiplying (4) from
the left by (1/N)1>, we get that x(k) evolves as:

x(k + 1) = x(k)− αk
N

N∑
i=1

∇fi(xi(k)), k = 0, 1, ..., (6)

with x(0) = 0. Denote by x̃i(k) = xi(k) − x(k), and
x̃(k) = (x̃1(k), ..., x̃N (k))>. We refer to x̃(k) as the
disagreement vector, as it says how much the estimates
at different agents mutually differ. We now show that (6)
is a gradient method under inexact oracle.

Lemma 4 Let Assumption 1 hold, set αk =
1/(2L(k + 1)τ ), τ ∈ [0, 1], and consider
f̃k :=

∑N
i=1

{
fi(xi(k)) +∇fi(xi(k))>(x(k)− xi(k))

}
,

g̃k :=
∑N
i=1∇fi(xi(k)). Then, (f̃k, g̃k) is a (Lk, δk)

inexact oracle of f =
∑N
i=1 fi at point x(k) with constants

Lk = N
αk

and δk = L‖x̃(k)‖2.

For a proof, see the proof of Lemma 3 in [6]. Revisiting
algorithm (6), we see that it is the gradient method to
minimize f under inexact oracle with the amount of
“inexactness” specified by Lemma 4. Hence, we can apply
Lemma 3 to (6) to derive the optimality gap at xra(k). In
order to “close” the analysis, we need to find δk, i.e., we
need to upper bound the disagreement quantity ‖x(k)‖.

B. Disagreement estimate

We have the following Lemma that upper bounds the
disagreement estimate.

Lemma 5 Consider algorithm (3) under Assumptions 1
and 2 and the step-size αk = 1

(2L)(k+1)τ , τ ∈ [0, 1],
k = 0, 1, ... Then, for k = 1, 2, ...:

‖x̃(k)‖ ≤
√
NGC

2Lkτ
,

where C = C(W ) ∈ [0,∞) depends only on matrix W .

From Lemma 5, we can see that, as long as τ > 0, the
agents reach agreement asymptotically, i.e., ‖x̃(k)‖ → 0
as k →∞. We now prove Lemma 5.

Proof: [Proof of Lemma 5] We first derive the recur-
sive equation for x̃(k). Recall W̃ = W − J , and note that
x̃(k) = (I − J)x(k). Now, multiplying (4) from the left
by (I − J), and using (I − J)W = W̃ (I − J), obtain:

x̃(k + 1) = W̃ x̃(k) +
1

(k + 1)τ
u(k), (7)

for k = 0, 1, ..., and x̃(0) = 0, where u(k) := − 1
2L (I −

J)∇F (x(k)). Note that, by Assumption 1 (c), and by the
sub-multiplicative property of norms, ‖u(k)‖ ≤ 1

2L‖I −
J‖‖∇F (x(k))‖ ≤

√
NG
2L . Next, by unwinding the recur-

sion (7), we have, for k ≥ 1: x̃(k) =
∑k−1
t=0 W̃

t u(k−1−t)
(k−t)τ .

Now, using the sub-multiplicative and sub-additive prop-
erties of norms, and recalling µ := ‖W̃‖:

‖x̃(k)‖ ≤
√
NG

2L

k−1∑
t=0

µt
1

(k − t)τ
. (8)

We next upper bound the sum
∑k−1
t=0 µ

t 1
(k−t)τ = 1

kτ +
µ

(k−1)τ + ... + µk−1

1τ by splitting it into two parts –
one with t running from t = 0 to t = bk/2c, and
the other with t running from t = bk/2c + 1 to t =
k. (Here bac is the integer part of a.) For the first



sum:
∑dk/2e
t=0

µt

(k−t)τ ≤
(1+µ+µ2+...+µbk/2c)

(k/2)τ ≤ 2
1−µ

1
kτ .

For the second sum:
∑k
t=dk/2e+1

µt

(k−t)τ ≤ µk/2( 1
1τ +

... + 1
(k−dk/2e+1)τ ) ≤ µk/2k1−τ ≤

(
supk≥1 kµ

k/2
)

1
kτ .

Note that, as µ ∈ [0, 1), B(µ) := supk≥1 kµ
k/2 is

finite. Combining the bounds for the first and the second
sums, we obtain

∑k−1
t=0 µ

t 1
(k−t)τ ≤

(
2

1−µ +B(µ)
)

1
kτ =:

C(W ) 1
kτ , which, combined with (8), gives the desired

result.

C. Proof of Theorem 1

We now have all the tools needed to prove Theorem 1.
Proof: [Proof of Theorem 1] We first derive the

optimality gap at the global running average xra(k) by
applying Lemma 3. Then, we derive the optimality gap at
each agent’s local running average xi,ra(k).

Optimality gap at xra(k). Using Lemma 5, for k ≥ 1:

δk = L‖x̃(k)‖2 ≤ NG2C2

4Lk2τ
≤ NG2C2

L(k + 1)2τ
.

Also, recall that Lk = N
αk

= 2NL(k + 1)τ . Plugging the
values of δk and Lk into Lemma 3, after some algebra,
for τ ∈ [0, 1) (τ = 1 gives f (xra(k))− f? = O(1/ log k)
and is hence not optimal):

f (xra(k))− f?

≤ NL‖x?‖2∑k−1
t=0 (t+ 1)−τ

+
NG2C2

∑k−1
t=0 (t+ 1)−3τ

L
∑k−1
t=0 (t+ 1)−τ

,

which, using: k1−τ − 1 ≤
∑k−1
t=0

1
(t+1)τ ≤ k

1−τ :

f (xra(k))− f? ≤ NL‖x?‖2

k1−τ − 1
+
NG2C2 k−2τ

L (1− kτ−1)
, k ≥ 2. (9)

From now on, we make the choice τ = 1
3 . We justify this

choice. First, for τ = 1/3, both summands on the right
hand side in (9) are Θ

(
1

k2/3

)
, which means that

f (xra(k))− f? = O

(
1

k2/3

)
. (10)

Further, if we choose τ = 1/3 − δ, δ ∈ (0, 1/3], then,
the second summand on the right hand side of (9) is
Θ
(

1
k2/3−2δ

)
; on the other hand, if we choose τ = 1/3+ δ,

δ ∈ (0, 2/3), then the first summand on the right hand
side of (9) is Θ

(
1

k2/3−δ

)
. In summary, the rate as good as

O
(

1
k2/3

)
is guaranteed for τ = 1/3.

Optimality gap at xi,ra(k). For arbitrary agent i:

f(xi,ra(k))− f? = (f(xi,ra(k))− f(xra(k))) (11)
+ (f(xra(k))− f?) .

We proceed with upper bounding f(xi,ra(k))−f(xra(k)).
By property (2):

f(xi,ra(k))− f(xra(k)) ≤ ‖∇f(xra(k))‖ (12)

× ‖xi,ra(k)− xra(k)‖+
NL‖xi,ra(k)− xra(k)‖2

2
.

We upper bound ‖∇f(xra(k))‖. By the property of convex
functions with Lipschitz continuous derivative of constant
Lφ and a minimizer y?, [7]: ‖∇φ(y)‖2 ≤ 2Lφ(φ(y) −

φ(y?)), for all y ∈ R, and using the result that we already
showed f (xra(k)) − f? ≤ C0

k2/3
, for some constant C0 ∈

(0,∞):

‖∇f(xra(k))‖ ≤
√

2NLC0

k1/3
= O

(
1

k1/3

)
. (13)

It remains to upper bound ‖xi,ra(k) − xra(k)‖. By the
convexity of ‖ · ‖, Lemma 5, and αt = 1/(2L(t+ 1)1/3):

‖xi,ra(k)− xra(k)‖=

∥∥∥∥∥
k−1∑
t=0

αt∑k−1
t=0 αt

(xi(t)− x(t))

∥∥∥∥∥
≤

k−1∑
t=0

αt∑k−1
t=0 αt

‖xi(t)− x(t))‖

≤
√
NGC

2L

∑k−1
t=0 (t+ 1)−2/3∑k−1
t=0 (t+ 1)−1/3

≤
√
NGC

2L

k1/3

k2/3 − 1

= O

(
1

k1/3

)
. (14)

Finally, combining (12)–(14), we obtain that f(xi,ra(k))−
f(xra(k)) = O

(
1

k2/3

)
. The latter, combined with (10)

and (11), completes the proof of the Theorem.
V. CONCLUSION

We considered distributed optimization in networks
where N agents minimize the sum

∑N
i=1 fi(x) of their

local costs. We analyzed the convergence rate of the
distributed (sub)gradient algorithm proposed in [4], un-
der the class F of convex fi’s with Lipschitz contin-
uous and bounded gradients. We established that the
algorithm achieves the convergence rate O(1/k2/3) un-
der the class F , and that the obtained convergence rate
bound O(1/k2/3) is tight.

REFERENCES

[1] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” in IPSN 2004, 3rd International Symposium on Information
Processing in Sensor Networks, Berkeley, California, USA, April
2004, pp. 20 – 27.

[2] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for
distributed optimization: Convergence and network scaling,” IEEE
Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606,
March 2012.

[3] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. Autom. Contr., vol. 31, no. 9, pp. 803–812, Sep. 1986.

[4] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for
multi-agent optimization,” IEEE Transactions on Automatic Control,
vol. 54, no. 1, pp. 48–61, January 2009.

[5] D. Jakovetic, J. M. F. Moura, and J. Xavier, “Distributed Nesterov-
like gradient algorithms,” in to appear in proc. CDC’12, 51st IEEE
Conference on Decision and Control, Maui, Hawaii, December 2012.

[6] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Fast
distributed gradient methods,” November 2011, available at:
http://arxiv.org/pdf/1112.2972.pdf.

[7] L. Vandenberghe, “Optimization methods for large-scale systems,”
2010, Lecture Notes, available at: http://www.ee.ucla.edu/ vandenbe/
ee236c.html.

[8] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed
sensor fusion based on average consensus,” in IPSN ’05, Information
Processing in Sensor Networks, Los Angeles, CA, April 2005, pp.
63–70.

[9] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods of
smooth convex optimization with inexact oracle,” submitted to Math-
ematical Programming, 2011, available at: http://www.optimization-
online.org/DB FILE/2010/12/2865.pdf.


