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Abstract

The squared distance function is one of the standard functions on which an
optimization algorithm is commonly run, whether it is used directly or chained
with other functions. Illustrative examples include center of mass computation,
implementation of k-means algorithm and robot positioning. This function can
have a simple expression (as in the Euclidean case), or it might not even have
a closed form expression. Nonetheless, when used in an optimization problem
formulated on non-Euclidean manifolds, the appropriate (intrinsic) version must
be used and depending on the algorithm, its gradient and/or Hessian must be
computed. For many commonly used manifolds a way to compute the intrin-
sic distance is available as well as its gradient, the Hessian however is usually
a much more involved process, rendering Newton methods unusable on many
standard manifolds. This article presents a way of computing the Hessian on
connected locally-symmetric spaces on which standard Riemannian operations
are known (exponential map, logarithm map and curvature). Although not a
requirement for the result, describing the manifold as naturally reductive ho-
mogeneous spaces, a special class of manifolds, provides a way of computing
these functions. The main example focused in this article is centroid computa-
tion of a finite constellation of points on connected locally symmetric manifolds
since it is directly formulated as an intrinsic squared distance optimization prob-
lem. Simulation results shown here confirm the quadratic convergence rate of a
Newton algorithm on commonly used manifolds such as the sphere, special or-
thogonal group, special Euclidean group, symmetric positive definite matrices,
Grassmann manifold and projective space.



Chapter 1

Introduction and

Motivation

The motivation behind the computation of the Hessian of the squared distance
function is usually to use this important function in intrinsic Newton-like op-
timization methods. The advantages of these methods when compared to gra-
dient methods are well known, especially when high precision is required since
its quadratic convergence rate is guaranteed to outperform any gradient-based
algorithm when enough iterations are run. Several authors have approached the
problem of implementing intrinsic Newton algorithms on smooth manifolds. For
example [1], [2] and [3] discuss several implementations of Newton algorithms
on manifolds and applications can be found in robotics [4], signal processing [5],
image processing [6], etc.

In this article, special emphasis is given to the problem of centroid computa-
tion since it is readily formulated on manifolds as an optimization problem using
little more than the squared distance function to a point. Several authors have
tackled the problem of centroid computation on manifolds: Moakher [7] uses cen-
troid computation on SO(3) for smoothing experimental observations obtained
with a significant amount of noise in the study of plate tectonics and sequence-
dependent continuum modeling of DNA; Manton [8] confirms the need of cen-
troid computation algorithms on manifolds (particularly compact Lie groups);
Pennec [9] uses positive definite symmetric matrices as covariance matrices for
statistical characterization, also subject to smoothing; Fletcher [10] uses the
computation of centroids for analyzing shapes in medical imaging. Other appli-
cations of squared distance cost functions include MAP estimators, where the
probability functions depend on the distance to some nominal point, and the
classic k-means algorithm.

Several approaches to the optimization of cost functions involving intrinsic
squared distance exist, most of them relying on gradient methods, although
there are a few exceptions where a Newton method is used. Hüper and Man-
ton [11] have developed a Newton method for this cost function on the special
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orthogonal group and in [12] a Newton method which operates on an approxi-
mation of the intrinsic distance function on the Grassmann manifold.

It is important to note that all of the manifolds mentioned, and many other
commonly used in engineering are a subset of naturally reductive homogeneous
spaces (see for example [13] and [14] for an introduction). These objects are
interesting since all the required operations considered in this article for com-
puting the Hessian are easily obtained. Please note though that there is no
relation between connected locally symmetric spaces (required for this article)
and naturally reductive homogeneous spaces (a worthy example is the Stiefel
manifold which is not locally symmetric). All the examples presented in this
article: the Grassman manifold (G(n, k)), projective space (Pn), sphere (Sn),
positive definite matrices (Sym+(n)), the special orthogonal group (SO(n)) and
the special Euclidean group (SE(n)) are examples of (and shall later be described
as) naturally reductive homogeneous spaces.

1.1 Contribution

This article follows from two conference papers [15] and [16] where the results
were presented without proof. The present article is entirely self-contained with
respect to the previous two and solidifies them in both clarity and detail. Fur-
thermore, we expand the applications of our result to computing k-means on
manifolds. These papers present a method for computing the Hessian of the in-
trinsic Riemannian squared distance function on a connected locally-symmetric
manifold. The result is presented concisely as a matrix (once a base for the
tangent space is fixed) as expected in most engineering applications.

The main application focused is to solve optimization problems where the
cost function depends on the squared distance function using a Newton method
on manifolds. In particular the problem of computing the centroid of a constel-
lation of points is discussed in depth (on the manifolds mentioned above), but
an example of MAP estimation is included, as well as an example of clustering
using the k-means algorithm.

1.2 Article Organization

The paper is structured as follows:
Section 2 introduces the notation used and defines the necessary differential

geometric concepts.
Section 3 provides a brief review of Newton’s optimization method both in

the R
n case and the appropriate changes needed to implement it on a manifold.

It is by no means a thorough review, serving mainly to refresh the reader. This
section provides a skeleton of the algorithm to implement the Newton method.

Section 4 provides the main content of the article, showing how to obtain
the Hessian of the squared distance function. As section 2 shows, this is a
requirement to implement Newton’s method whenever the cost function depends
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on this widely used function. Although the main results are shown here, for
readability the proof is deferred for an appendix. An algorithm skeleton is also
provided for easy implementation.

Section 5 does a slight detour from the main line of the article introduc-
ing, almost in tutorial style, how to characterize a certain class of widely used
manifolds (known as natural reductive homogeneous spaces) so that the needed
operations necessary to implement the results in the previous sections can be
obtained. The examples provided were chosen based on eligibility (they needed
to be locally symmetric for the main theorem to be applicable) and importance
in engineering.

Section 6 describes centroid computation, the main application focused in
this article. Results obtained are shown in section 7. Conclusions are drawn in
section 7.5.

As stated, there is also an important appendix proving the results shown in
section 4.
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Chapter 2

Riemannian Manifolds and

Notation

Although this article assumes some familiarity with Riemannian manifolds, this
section provides a brief introduction, reviewing the necessary definitions and
notation for understanding the main theorem. Note that this section is not
enough to understand the proof. The books [13,17] should provide the necessary
theory for completely understanding the proof. Other texts introducing the field
include [18, 19] and [14].

For a given smooth n dimensional manifold M , denote its tangent space at a
point p ∈M by TpM . The disjoint union of all these tangent spaces is called the
tangent bundle of M and is denoted as TM . The set of real valued functions
on M is C∞ (M). If M and N are smooth manifolds, given f : M → N
a smooth map between them, its push-forward is defined as the application
f∗ : TM → TN such that for any tangent vector Xp ∈ TpM and any function
g ∈ C∞ (N) the equality f∗(Xp) ·g = Xp · (g ◦f) holds. If f ∈ C∞ (M), exterior
differentiation is denoted by df (here f is seen as a degree 0 differential form).

Additionally, the manifold M might be equipped with a non-degenerate,
positive and symmetric 2-tensor field g, called a Riemannian metric, providing
the tangent space at each point p with an inner product gp : TpM × TpM → R.
The notation 〈Xp, Yp〉 = gp(Xp, Yp) for Xp, Yp ∈ TpM will be used extensively.

The Riemannian exponential map is defined on any Riemannian manifold
and sends a vector Xq ∈ TqM to a point on the manifold. If γ is the unique unit
speed geodesic such that γ(0) = q and γ̇(0) = Xq, then expq(Xq) = γ(1). In
general expq is only defined on a neighborhood of the origin in TqM . However,
complete spaces, defined as those where the expp map has domain TpM are
very interesting in view of manifold optimization. On a sufficiently small open
neighborhood, this map is a diffeomorphism. Its inverse function known as the
logarithm, when defined, returns Xq = logq(p) such that, γ(0) = q, γ(1) = p
and γ̇(0) = Xq. Although computation of these maps may be very involved,
many manifolds used in engineering have already been widely studied and these
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maps are usually available in the literature (see section 5 for a simple way to
compute them for the special class of naturally reductive homogeneous spaces).

The length of a smooth curve γ : [a, b]→M is defined as

l(γ) =

∫ b

a

√

〈γ̇(t), γ̇(t)〉dt .

The intrinsic distance between two points p, q belonging to the same connected
component of M is defined as the infimum of the length of all smooth curves
joining p and q.

On a Riemannian manifold there is a canonical way of identifying nearby tan-
gent spaces called the Levi-Civita connection, here denoted by ∇. Once a con-
nection is established, the curvature endomorphism is defined as R(Xq, Yq)·Zq =
∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z. Here X, Y, Z are any vector fields extending
Xq, Yq, Zq ∈ TpM and [·, ·] is the Lie bracket. The operator is independent of
the extension chosen.

The gradient vector gradf(p) ∈ TpM is then defined as the unique tangent
vector that satisfies (df)pXp = 〈grad f(p), Xp〉 for any Xp ∈ TpM . The Hessian
is defined as the symmetric 2-form such that Hess f(q)(Xq, Yq) =

〈
∇Xq

grad f, Yq

〉

for any Xp, Yp ∈ TpM . Note that once an orthonormal basis
{
Fip

}
⊂ TpM

for the tangent space is fixed, any tangent vector has a canonical expansion
with respect to this basis and inner product given by Xp =

∑n
i=1 xiFip, where

xi =
〈
Xpi, Fip

〉
. These coefficients can be collected in a column matrix X̂ =

[
x1 x2 . . . xn

]T
, easily inputed to a computer. The hat will denote a co-

ordinate representation for a given object on the manifold. Similarly the Hes-
sian with respect to this basis can be described as the matrix Ĥ such that
Hess f(q)(Xq, Yq) = X̂T ĤŶ for any Xp, Yp ∈ TpM with coordinate representa-

tion in this basis X̂, Ŷ ∈ Rn.
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Chapter 3

Newton’s Method

3.1 Unconstrained Optimization

Gradient descent methods (familiarity with basic optimization techniques is as-
sumed, see for example [20] or [21] for detailed reference) are undoubtedly among
the easiest to implement on smooth cost functions (as is the case of the squared
distance function on Rn). Unfortunately it has linear convergence rate, which
might be prohibitively expensive on applications where precision is required.
Newton’s method, when applicable, trades a little in implementation simplicity
to gain greatly in convergence speed, guaranteeing quadratic convergence rate
when close enough to the optimum.

Suppose a function f : Rn → R is to be minimized (assume f is convex
for simplicity). One way of interpreting Newton’s method is to describe it as a
sequence of second order Taylor expansions and minimizations. Let

f(x + d) ≈ f̂(x + d) = f(x) + 〈gradf(x), d〉+ 1

2
dT Hd

where H is a matrix representation of the Hessian function. In RN the gradient
vector field is easily computed as grad f(x) =

[
∂

∂ xi
f(x)

]
and the Hessian matrix

has the familiar form H =
[
hij

]
where hij = ∂

∂ xj
grad fi(x). Here f̂ is a second

order polynomial in d attaining a minimum when d = −H−1 grad f(x). The
idea is that x + d will be closer to the point which minimizes f .

Please note that when minimizing non-convex functions, some safeguards
must be implemented. One way of guaranteeing convergence to a local minimum
is to make sure a descent direction is chosen at each step (its dot product with
the gradient should be negative, if not, a standard negative gradient direction
should be used) and to use Armijo’s rule for step size selection (see the previous
references for details). The complete algorithm can now be described:
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Rn Newton Algorithm

Input: function f : RN → R to be minimized.
Output: x̄ which minimizes f within tolerances.
1: choose x0 ∈ RN and tolerance ǫ > 0. Set k = 0.
2: loop
3: gk = gradf(xk).
4: if |gk| < ǫ set x̄ = xk and return.
5: Hk = Hess f(xk).
6: dk = −H−1

k gk (Newton direction).
7: if 〈dk, gk〉 ≥ 0 set dk = −gk.
8: αk ≈

Armijo
argminα≥0 xk + αdk.

9: xk+1 = xk + αkdk.
10: k ← k + 1.
11: end loop

3.2 Manifold Optimization

When dealing with constrained optimization the classic solution becomes more
involved. When the constraint set is a known manifold M though, the previous
description still applies with only slight re-interpretations (see [2], [3] and [22]
for some generalizations). A search direction is generated dq ∈ TqM as the
solution of the system

∇dq
gradf = − gradf

If a basis for the tangent space is chosen, then the former is written as

Ĥ · d̂q = −ĝ (3.1)

where Ĥ is a matrix representation of the Hessian of the cost function (with
respect to the chosen basis for the tangent space) and ĝ is the representation
of the gradient gradf(q) ∈ TqM also in the chosen basis. See section 2 for a
description of these intrinsic objects and section 5 for a way of computing them
in certain spaces.

As stated in the previous section, once a Newton direction has been obtained,
it should be checked if it’s a descent direction (its dot product with the gradient
vector should be negative). If this is not verified, a fallback to the gradient
descent direction should be used. Once a direction has been obtained a step in
that direction must be taken. Although on a manifold it is not possible to add
a vector to a point directly, a canonical way of doing it is available through the
Riemannian exponential map which sends a vector Xq ∈ TqM to a point on the
manifold as described in section 2. So the update equation qk+1 = expqk

(αkdk),
can be used to obtain a better estimate. Here αk is again a step size given by
Armijo’s rule.

The complete algorithm is now described, with only slight modifications
relative to the RN case:
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Manifold Newton Algorithm

Input: function f : M → R to be minimized.
Output: x̄ which minimizes f within tolerances.
1: choose q0 ∈M and tolerance ǫ > 0. Set k = 0.
2: loop
3: gk = gradf(qk) ∈ Tqk

M .
4: if |gk| < ǫ set q̄ = qk and return.
5: compute Newton direction dk as the solution of (3.1).
6: if 〈dk, gk〉 ≥ 0 set dk = −gk.
7: αk ≈

Armijo
argminα≥0 expqk

(αdk).

8: qk+1 = expqk
(αkdk). Please note that due to finite precision

limitations, after a few iterations the result should be enforced
to lie on the the manifold.

9: k ← k + 1 and re-run the loop.
10: end loop
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Chapter 4

Hessian of the Riemannian

Squared Distance Function

In [15] the following theorem was introduced without proof, and later updated
in [16] still without proof. The proof is presented as an appendix to this article.

Theorem 4.0.1. Consider M to be a connected locally-symmetric n-dimensional
Riemannian manifold with curvature endomorphism R. Let Bǫ(p) be a geodesic
ball centered at p ∈ M and rp : Bǫ(p) → R the function returning the intrinsic
(geodesic) distance to p. Let γ : [0, r] → Bǫ(p) denote the unit speed geodesic
connecting p to a point q ∈ Bǫ(p), where r = rp(q), and let γ̇q ≡ γ̇(r) be its
velocity vector at q. Define the function kp : Bǫ(p) → R, kp(x) = 1

2rp(x)2 and
consider any Xq, Yq ∈ TqM . Then

Hess(kp)q(Xq, Yq) =
〈

Xq
‖, Yq

〉

+

n∑

i=1

ctgλi
(r)
〈

Xq
⊥, Eiq

〉 〈
Yq, Eiq

〉
.

where
{
Eiq

}
⊂ TqM is an orthonormal basis which diagonalizes the linear

operator R : TqM → TqM , R(Xq) = R(Xq, γ̇q)γ̇q with eigenvalues λi, this
means R(Eiq) = λiEiq. Also,

ctgλ(t) =







√
λ t/ tan(

√
λ t) λ > 0

1 λ = 0√
−λ t/ tanh(

√
−λ t) λ < 0

.

Here the ‖ and ⊥ signs denote parallel and orthogonal components of the vector

with respect to the velocity vector of γ, i.e. Xq = Xq
‖ + Xq

⊥,
〈

Xq
⊥, Xq

‖
〉

= 0,

and
〈

Xq
⊥, γ̇(r)

〉

= 0 .

For practical applications though, presenting the Hessian in matrix notation
greatly improves its readability and comprehension. Hence in [16] a second
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theorem was presented also without proof which is included in the appendix as
well.

Corollary 4.0.2. Under the same assumptions as above, consider
{
Fiq

}n

i=1
⊂

TqM an orthonormal basis. If Xq ∈ TqM is a vector, let the notation X̂ de-
note the column vector describing the decomposition of Xq with respect to the

basis
{
Fiq

}
, i.e. [X̂ ]i =

〈
Xq, Fiq

〉
, let Rk be the matrix with entries [Rk]ij =

〈

Fiq,R(Fjq)
〉

and consider the eigenvalue decomposition Rk = EΛET . Here

λi will be used to describe the i’th diagonal element of Λ. Then the Hessian ma-
trix (a representation for the bilinear Hessian tensor on the finite dimensional
tangent space with respect to the fixed basis) is given by:

Hkp
= EΣET

where Σ is diagonal with elements σi given by σi = ctgλi
(r). Hence

Hess(kp)q(Xq, Yq) = X̂T Ĥkp
Ŷ .

This corollary is only a useful rewrite of the first, from an implementation
perspective.

4.1 Spaces of Constant Curvature

In spaces of constant curvature (such as the sphere and SO(3)) with sectional
curvature λ, computing the Hessian has almost zero cost. Due to the symmetries
of the curvature tensor, 〈Xq,R(Yq)〉 = 0 whenever Xq or Yq are parallel to γ̇q.
Hence, matrix Rk, which is the matrix representation on the given basis for the
bilinear operator 〈Xp,R(Yp)〉, has a null eigenvalue with eigenvector γ̇q. Since
the sectional curvature is by definition equal to 〈Xq,R(Xq)〉 and is constant,
equal to λ whenever Xq is not parallel to γ̇q, then







max X̂TRkX̂

s.t.

〈

X̂, X̂
〉

= 1
〈

X̂, γ̇q

〉

= 0







=







min X̂TRkX̂

s.t.

〈

X̂, X̂
〉

= 1
〈

X̂, γ̇q

〉

= 0







= λ

hence using the Rayleigh quotient, the eigenvalues of Rk are constant and equal
to λ. So an eigenvalue decomposition for Rk is

Rk =
[
γ̇q γ̇⊥

q

]
[
0 0
0 λI

] [
γ̇T

q

γ̇⊥T

q

]
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where γ̇⊥
q is any orthonormal complement of γ̇q. It follows then from the last

theorem that the Hessian is given by

Hk = γ̇q γ̇
T
q + ctgλ(r)γ̇⊥

q γ̇⊥T

q

= γ̇q γ̇
T
q + ctgλ(r)(I − γ̇qγ̇

T
q )

= ctgλ(r)I + (1 − ctgλ(r))γ̇q γ̇
T
q

This removes the need for the numerical computation of matrix Rk and its
eigenvalue decomposition, significantly speeding the computation of the Hessian
matrix.

4.2 Algorithm

Note that when inserted in a Newton optimization algorithm, it is usually better
to have the inverse of the Hessian available. This is obtained at almost no cost
since the eigenvalue decomposition is available (just substitute every occurrence
of ctgλ(r) with its reciprocal in the expressions above).

The complete algorithm is presented in both situations, when the space is
not known to be of constant curvature:

Hessian of Riemannian squared distance function

Input: an orthonormal base
{
Fiq

}
⊂ TqM , γ̇q = logq(p) and the Rie-

mannian curvature tensor.
Output: Ĥ the Hessian matrix of the Riemannian squared distance

function 1
2rp(q)

2.

1: Build matrix [R]ij =
〈

Fiq,R(Fjq)
〉

.

2: Compute its eigenvalue decomposition R = EΛET .
3: Assemble diagonal matrix Σ with elements σi = ctgλi

(r).

4: Ĥ = EΣET .

or when it is known to be of constant curvature:

Hessian of Riemannian squared distance function (spaces of
constant curvature)

Input: an orthonormal base
{
Fiq

}
⊂ TqM , γ̇q = logq(p) and the Rie-

mannian curvature tensor.
Output: Ĥ the Hessian matrix of the Riemannian squared distance

function 1
2rp(q)

2.
1: Represent γ̇q in the given basis.

2: Ĥ = ctgλ(r)I + (1− ctgλ(r))γ̇q γ̇
T
q .

11



Chapter 5

Naturally Reductive

Homogeneous Spaces

Although this section is not critical for presenting the main result in this article,
it does show that the method presented is viable by providing a recipe for
obtaining the required data in a vast class of manifolds used in engineering.
Note that a basic understanding of Lie group theory is assumed. Naturally
Reductive Homogeneous Spaces, henceforth denoted by NRHS, (see for example
[13] and [14], are important since they can lead to closed formula solutions for the
Riemannian exponential maps, logarithm maps and curvature endomorphisms,
exactly what’s needed to implement the Hessian algorithm presented. A space
with this property is defined as a coset manifold M = G/H , where G is a
Lie group (with Lie algebra g) and H a closed subgroup (with Lie sub-algebra
h ⊂ g), furnished with a G-invariant metric such that there exists an AdH(·)
invariant subspace m ⊂ g that is complementary to h ⊂ g. Note that g = h⊕m

but m is usually not a Lie sub-algebra since it is usually not closed under the
Lie bracket operation. Furthermore, the property

〈[X, Y ]m , Z〉 = 〈X, [Y, Z]m〉 for X, Y, Z ∈ m

needs to hold. Here the subscript m denotes projection on this subspace. Hence-
forth, for spaces with this property, m will be called a Lie subspace for G/H .

5.1 NRHS Construction For a Particular Rie-

mannian Manifold

When faced with an optimization problem on a particular Riemannian manifold
M , it is not usually known whether or not it admits an NRHS structure. Since
many usefull manifolds in engineering admit such structures, the process of
identifying it will be described here with the construction of a few manifolds.
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M

G

H

G/H
o

g · o

e g

[e] [g]

π

F̂ (g) = g · o

F

∼=

Figure 5.1: Figure illustrating the process of NRHS construction.

First it is necessary to describe M as a coset manifold M ∼= G/H were
the symbol ∼= states that the two sides are diffeomorphic (see figure 5.1 for an
illustration). Here, a proposition stated in [13] solves the problem, stating that
all that needs to be done is to find a Lie group G which acts transitively on M
(see figure 5.1):

Theorem 5.1.1. Let G×M →M be a transitive action and let H be its isotropy
subgroup at a point o ∈ M . Then there is a natural map F : G/H → M which
is a diffeomorphism. In particular, the projection F̂ : G → M, g 7→ go is a
submersion.

Furthermore, this action must be an isometry as stated in the definition of
an NRHS space, which means that for any p ∈ M , Xp, Yp ∈ TpM and g ∈ G
the following must hold:

〈Xp, Yp〉p = 〈g∗Xp, g∗Yp〉gp ,

where g∗ denotes the push forward of the translation by g.
Examples

1. SO(n + 1) ⊂ GL(n + 1) acts on the unit sphere Sn ⊂ Rn+1 (seen as a Rie-
mannian subspace) as the restriction of the usual action of GL(n + 1) on
Rn+1. This action is transitive. The isotropy subgroup of o = (1, 0, . . . , 0) ∈
Sn consists of the subgroup

H =

{[
1 0
0 q

]

∈ SO(n + 1) : q ∈ SO(n)

}

∼= SO(n)

Hence, ignoring the natural diffeomorphism yields Sn ∼= SO(n + 1)/SO(n).
To verify that this action is G-invariant let Xp, Yp ∈ TpSn and g ∈
SO(n + 1). Then:

〈g∗Xp, g∗Yp〉gp = Xp
T gT gYp = Xp

T Yp = 〈Xp, Yp〉p .

2. As a trivial example, SO(n) acts transitively on itself (seen as a Rie-
mannian submanifold of GL(n + 1) with the Euclidean inner product)
through group multiplication. The isotropy subgroup at any point is the
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trivial subgroup H = {e} (where e is the group identity), hence trivially
SO(n) ∼= SO(n)/{e}. As before, to verify that this action preserves the
inner product let Xp, Yp ∈ TpSO(n) and g ∈ SO(n). Then:

〈g∗Xp, g∗Yp〉gp = tr
{
Xp

T gT gYp

}
= 〈Xp, Yp〉p .

3. Expanding the previous example, the Lie group product G = SO(n)×Rn

acts transitively on the Special Euclidean group M = SE(n) (seen as a
Riemannian submanifold of GL(n + 1)) as

(SO(n)× R
n)× SE(n) −→ SE(n)

(

(R, v),

[
Q t
0 1

])

7−→
[
RQ t + v
0 1

]

Once again the isotropy subgroup is trivial, hence SE(n) ∼= SO(n) × Rn.

If Xp =

[
KX ∆X

0 0

]

∈ TpM then for a given element g = (Rg, ∆g) ∈ G

the push forward of the action of g is given by:

g∗Xp = g∗

[
KX ∆X

0 0

]

=

[
RgKX tX

0 0

]

Hence the action preserves the inner product since:

〈g∗Xp, g∗Yp〉gp = tr

{[
RgKX ∆X

0 0

]T [
RgKY ∆Y

0 0

]}

= tr

{[
KT

XKY −
− ∆T

X∆Y

]}

= 〈Xp, Yp〉p .

4. GL(n) (the set of n × n invertible matrices with real entries) acts tran-
sitively on Sym+(n) (the set of n × n positive definite symmetric ma-
trices with the inner product described below) by conjugation, that is
(g, p) 7→ gT pg. The isotropy subgroup of the identity matrix seen as an el-
ement of Sym+(n) is the set H =

{
g : gT g = e

}
= O(n). So, Sym+(n) =

GL(n)/O(()n). Letting Xp, Yp ∈ TpSym+(n) and g ∈ GL(n) and assum-

ing the inner product is given by 〈Xp, Yp〉p = tr
{
Xp

T p−1Ypp
−1
}
, then:

〈g∗Xp, g∗Yp〉gp

= tr
{
gT Xp

T gg−1p−1g−T gT Ypgg−1p−1g−T
}

= tr
{
Xp

T p−1Ypp
−1
}

= 〈Xp, Yp〉p
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5. If S ∈ M(n, r) with n > r let the notation [S] denote the subspace gen-
erated by the column vectors of S. The Grassman manifold consists of
the set of all such subspaces, i.e. G(n, r) = {[S] : S ∈M(n, r)}. Please
note that the elements of the Grassman manifold are equivalence classes,
where [S1] = [S2] ⇔ the columns of S1 and the columns of S2 span the
same subspace.

Consider the transitive action of G = SO(n) on M = G(n, r) defined as

SO(n)×G(n, r) −→ G(n, r), (g, [S]) 7−→ [gS]

the isotropy subgroup of o =

[[
I
0

]]

∈ G(n, r) is the set

H =

{[
Q1 0
0 Q2

]

: (Q1, Q2) ∈ S(O(r)×O(n− r))

}

Let g be the Lie algebra of G and h be the Lie sub-algebra of H . The next
step consists of finding a Lie subspace m such that m+ h = g and AdH(m) = m.
This step must be done by inspection but it is usually not hard to accomplish.

Examples

1. Let Skew(n) denote the set of n × n skew symmetric matrices with real
entries. For the coset space Sn = SO(n + 1)/SO(n), g = Skew(n + 1) and

h =

{[
0 0
0 k

]

: k ∈ Skew(n)

}

. By inspection (due to the requirement that

m+h = g) a logical candidate for m is the set m =

{[
0 −xT

x 0

]

: x ∈ Rn

}

.

Since

AdH(m) =

{[
1 0
0 q

] [
0 −xT

x 0

] [
1 0
0 qT

]

=

=

[
0 −(qx)T

qx 0

]

: x ∈ R
n, q ∈ SO(n)

}

= m (5.1)

results that m is indeed a Lie subspace.

2. When G = SO(n) and H = {e}, g = Skew(n) and h = 0 (the trivial vector
space). Hence, the obvious choice is m = g, which is obviously invariant
under AdH(·).

3. The same happens when considering G = SO(n) × Rn and H = {(e, 0)}.
Hence, for SE(n), m = g = Skew(n)× R

n.

4. If G = GL(n) and H = O(n) as is the case for M = Sym+(n), the
corresponding Lie algebras are g = M(n) (n × n real matrices) and h =
Skew(n). A natural candidate for the Lie subspace is the set of symmetric
matrices m = Sym(n), and indeed if q ∈ O(n) and Xe ∈ Sym(n) then
qXeq

T = qXe
T qT = (qXeq

T )T hence it is AdH(·) invariant.
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5. For the case of the Grassmann, G = SO(n) and H = S(O(r)×O(n− r))
(as seen previously). The corresponding Lie algebras are g = Skew(n)

and h =

{[
K1 0
0 K2

]

: (K1, K2) ∈ Skew(r)× Skew(n− r)

}

. Then, by

inspection, the obvious choice for the Lie subspace is

m =

{[
0 M
−MT 0

]

: M ∈ R
r×n−r

}

.

It is easily checked that this choice is AdH(·) invariant.

All that remains to be done is to verify if the construction verifies the prop-
erty

〈[X, Y ]m , Z〉 = 〈X, [Y, Z]m〉 for X, Y, Z ∈ m

Since m is identified with TeM , the dot product is the pull-back by F̂ of the
dot product on M . If the property is not satisfied, another construction with
another Lie group G acting on M might be tried, or it is possible that M does
not admit an NRHS structure.

Examples

1. Continuing the previous examples consider the sphere, where Xe, Ye, Ze ∈
m ⊂ Skew(n + 1). Let Xe =

[
0 −xT

x 0

]

and Ye =

[
0 −yT

y 0

]

where

x, y ∈ R
n. Then it results that

[Xe, Ye]m = (XeYe − YeXe)|m

=

[
0 0
0 yT x− xyT

]∣
∣
∣
∣
m

= 0

Thus the required result is trivially verified . If needed, the corresponding

dot product on m can be found by noting that F∗Xe =

[
0
x

]

. Hence

〈Xe, Ye〉m =
〈

F̂∗Xe, F̂∗Ye

〉

M

= xT y

=
1

2
tr{Xe

T Ye}

2. For M = G = SO(n), the tangent vectors in both manifolds are canoni-
cally identified, hence if Xe, Ye, Ze ∈ m the inner product on m is given in
the usual way:

〈Xe, Ye〉m = tr{Xe
T Ye}
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So the required property is once again satisfied

〈[Xe, Ye]m , Z〉 = tr
{

(XeYe − YeXe)
T

Ze

}

= tr {YeXeZe −XeYeZe}
= tr

{
−Xe

T ZeYe + Xe
T YeZe

}

= 〈Xe, [Ye, Ze]m〉

3. When M = SE(n) and G = SO(n)×R
n, the inner product on m is found

in the same manner as in the first example. Thus if Xe = (KX , ∆X), Ye =
(KY , ∆Y ), Ze = (KZ , ∆Z) ∈ m

〈Xe, Ye〉m =
〈

F̂∗Xe, F̂∗Ye

〉

M

= tr

{[
KX ∆X

0 0

]T [
KY ∆Y

0 0

]}

= tr{KT
XKY }+ ∆T

X∆Y

= 〈KX , KY 〉SO(n) + 〈∆X , ∆Y 〉Rn

The Lie bracket on the product group is given by the product of the Lie
brackets. Hence

[Xe, Ye]SO(n))×Rn =
(

[KX , KY ]
SO(n) , [∆X , ∆Y ]

Rn

)

= (KXKY −KY KX , 0)

Then to check the required property:

〈[Xe, Ye]m , Z〉 = tr
{

(KXKY −KY KX)
T

KZ

}

+ 0

= 〈Xe, [Ye, Ze]m〉

(check the example for the SO(n) case for details of the last step).

4. In the case of the symmetric positive definite matrices where m = Sym(n)
the Lie bracket results in a skew symmetric matrix, hence the projection
back to m results in a null vector. Hence the requirement is trivially
satisfied.

5. Noting that for the Grassmann manifold Xe, Ye ∈ m ⊂ Skew(n)

[Xe, Ye]m = (XeYe − YeXe)|m
= 0

The needed property is once again trivially verified.

Hence all five manifolds have been described as naturally reductive homoge-
neous spaces.
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5.2 Operations on NRHS manifolds

Now is the time to unveil why this structure is important in the Riemannian
optimization process. A preposition in [13] states:

Theorem 5.2.1. If M = G/H is a naturally reductive homogeneous space, its
geodesic starting at o with tangent vector Xo ∈ ToM are given by γ(t) = F̂ ◦α(t)
for all t ∈ R, where α(t) is the one parameter subgroup of Xo identified as an
element of m.

MG

o
a(t)

F (a(t))
e

F̂

Xe Xo

Figure 5.2: How to compute geodesics in NRHS constructions.

Hence the Riemannian exponential map follows directly from the Lie group’s
exponential map which in our examples is the standard matrix exponential
(since G is either GL(n) or SO(n)). Geodesics starting at any other point of M
can be found by translation of γ since G acts transitively as an isometry. The
Riemannian logarithm map follows from inversion.

On a manifold with NRHS structure, the curvature endomorphism is also
computable as seen for example in [23]:

R(Xp, Yp) · Zp =
[

Zp, [Xp, Yp]h

]

+
1

2

[
Zp, [Xp, Yp]m

]

m

+
1

4

[
[Xp, Zp]m , Yp

]

m
+

1

4

[
Xp, [Yp, Zp]m

]

m
(5.2)

Examples To finish the examples, a summary of the functions needed for
each of the considered manifolds is provided:

1. The Sphere Sn:
This n-dimensional manifold is described as the set Sn = {x ∈ Rn+1 :
‖x‖ = 1} whose tangent space at a point p ∈ S

n is TpS
n ∼= {x ∈ R

n+1 :
pT x = 0}. Let p, q ∈ Sn, Xp, Yp, Zp ∈ TpSn and s is the norm of Xp. It

can be shown that for the ambient metric 〈Xp, Yp〉 = Xp
T Yp:

• expp(Xp) = p cos(s) +
Xp

s sin(s).

• logp(q) = (q − p(pT q)) a
sin(a) where a = arccos(pT q).

• R(Xp, Yp) · Zp = 〈Yp, Zp〉Xp − 〈Xp, Zp〉 Yp.

2. Special Orthogonal Group SO(n)
This n(n−1)/2 dimensional manifold represents the set of rotations of Rn

and is described as SO(n) = {x ∈M(n, n) : xT x = I} whose tangent space
at a point p ∈ SO(n) is TpSO(n) ∼= {pk : k ∈ Skew(n)}, where Skew(n)
denotes the set of n × n skew-symmetric matrices. The metric comes
naturally from the Riemannian embedding as 〈Xp, Yp〉 = tr{Xp

T Yp}
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• expp(Xp) = p exp(pT Xp), where exp denotes the matrix exponential
function.

• logp(q) = p log(pT q) where log denotes the matrix logarithm function.

• R(Xp, Yp) · Zp = − 1
4

[[
Xp, Yp

]
, Zp

]
.

3. Special Euclidean Group SE(n):
The Euclidean group, characterized as the product manifold SO(n)×R

n,
inherits these manifolds’ properties. Hence, at a point p = (R, t), the
tangent space TpSE(n) = TRSO(n) × TtR

n with dot product given by
〈(XR, vt), (YR, ut)〉SE(n) = 〈XR, YR〉SO(n) + 〈vt, ut〉Rn .

• exp(R,t)

(

(X, v)(R,t)

)

= (R exp(RT XR), t + vt), where exp denotes

the matrix exponential function.

• log(R,t) ((Q, s)) = (R log(RT Q), s− t), where log denotes the matrix
logarithm function.

• R
(

(X, v)(R,t), (Y, u)(R,t)

)

·(Z, w)(R,t) =
(
− 1

4

[[
XR, YR

]
, ZR

]
, 0
)

where

the brackets denote the Lie bracket only on so(n) since Rn is flat.

4. Symmetric positive definite matrices Sym+(n):
This n(n + 1)/2 dimensional manifold is described as the set Sym+(n) =
{x ∈ M(n, n) : x = xT , with positive eigenvalues} whose tangent space
at a point p ∈ Sym+(n) is TpSym+(n) ∼= {x : x ∈ Sym(n)}, where
Sym(n) denotes the set of n×n symmetric matrices. Let p, q ∈ Sym+(n),
Xp, Yp, Zp ∈ TpSym+(n). When considering the metric

〈Xp, Yp〉 = tr{Xp
T p−1Ypp

−1}

the following expressions hold

• expp(Xp) = p1/2 exp(p−1/2Xpp
−1/2)p1/2.

• logp(q) = p1/2 log(p−1/2qp−1/2)p1/2.

• R(Xp, Yp) · Zp = 1/4(Zpp
−1O − Op−1Zp), where O = Xpp

−1Yp −
Ypp

−1Xp.

5. The Grassmann manifold G(n, r):
The Grassmann is an r(n−r) dimensional manifold of r dimensional linear
subspaces in R

n. It is naturally described as a quotient manifold, hence a
point p = [P ] is described by a representative P ∈M(n, r). Note that no
canonical embeding in R· exists, unlike the previous manifolds.
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Chapter 6

Centroid Computation on

Manifolds

Let M be a connected manifold and X = {p1, . . . , pL} ⊂M a constellation of L
points. Let r : M ×M → R be the function that returns the intrinsic distance
of any two points on the manifold and define a cost function CX : M → R as

CX (q) =
1

2

L∑

l=1

r(pl, q)
2 =

L∑

l=1

kpl
(q) , (6.1)

The set of solutions to the optimization problem mf (X ) = argminq∈M CX (q) is

defined as the Fr̈ı¿1
2chet mean set of the constellation and each member will be

called a centroid of X . Depending on the manifold M , the centroid might not
be unique, for example if the sphere is considered with a constellation consisting
of two antipodal points, all the equator points are centroids. The set of points
at which the function (6.1) attains a local minimum is called the Karcher mean
set and is denoted as mk(X ). The objective is to find a centroid for the given
constellation (which in the applications of interest should be unique), but the
possibility of convergence to a local minimum is not dealt with. If the points
on the constellation are close enough to each other, it is known that the global
set mf (X ) has a single element and so the centroid is unique as stated in [8]
and [24].

Using linearity of the gradient and the Hessian operators (meaning in partic-
ular that if f, g : M → R then Hess(f + g) = Hess f + Hess g and grad(f + g) =
gradf +gradg), the cost function in equation (6.1) allows for the decomposition

gradCX (q) =

L∑

l=1

gradkpl
(q) = −

L∑

l=1

logq(pn)

HessCX (q) =

L∑

l=1

Hess kpl
(q) , (6.2)
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where the fact that the gradient of the squared Riemannian distance function is
the symmetric of the Riemannian log map is used (as stated in [17] as a corollary
to Gauss’s lemma).

The algorithm for centroid computation is then

Centroid computation

Input: A constellation X = {p1, . . . , pL} ⊂ M with L points and an
initial estimate q0

Output: An element q of the Karcher mean set of the constellation
1: Apply Newton’s algorithm as described in section 3 to function

CX (q) where at each step the Hessian and gradient is computed
as follows:

2: for each point pl in the constellation do
3: gradkpl

(q) = −logq(pn)
4: Hess kpl

(q) (as described in section 4)
5: end for
6: gradCX (q) =

∑L
l=1 gradkpl

(q)

7: Hess CX (q) =
∑L

l=1 Hess kpl
(q)
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Chapter 7

Results

This section holds experimental results for 3 applications: centroid computation,
k-means algorithm and an MAP estimator. Special emphasis is given to the
problem of centroid computation exactly because it is the simplest to formulate
and test. The natural extension is an implementation of the k-means algorithm
on a manifold. The example of MAP estimation applied to robot navigation
is provided as a slightly different application where these results might prove
usefull as well.

7.1 Point Cloud Generation

The examples in this section need a constellation of points to be available on
some locally symmetric manifold so first an explanation on how these constella-
tions are generated is given. The idea is that for the centroid to be well defined
the points should be close together and for an error measure to be available the
true centroid of the constellation must be known. Hence points on the cloud
are generated with the following algorithm:
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Point cloud generation

Input: An n dimensional manifold M with the corresponding exponen-
tial map,
L the number of desired points on the manifold and a radius ǫ.

Output: A constellation X of points and the known centroid p.
1: Generate a random point p on the manifold. This will be the true

centroid and the rest of the constellation will be built around this
point.

2: Generate {Fpi}ni=1 ⊂ TpM an orthonormal base.
3: Randomly generate {v̂i}Li=1 vectors in Rn with norm less than ǫ.
4: Remove the mean such that the vectors are centered around 0.
5: Build vpj =

∑n
i=1 v̂j

iFpi, the corresponding tangent vectors.

6: Use the exponential map to generate the constellation X = {q ∈
M : q = expp(vpj)}

Note that the cloud will not necessarily be contained in an ǫ-ball due to the
recentering of the tangent vectors, but the result should still be “almost” within
it. If needed it can be enforced by scaling each v̂i after the mean is removed. The
recentering step guarantees that p is the centroid of the constellation (compare
with expression 6.2 and the fact that a (Karcher) centroid was defined as the
points where the gradient is zero).

7.2 Centroid Computation

Figure 7.1 compares the results of applying a Newton algorithm and a standard
gradient algorithm when computing the centroid of a constellation on 6 different
manifolds. The 20-point constellations were generated using the algorithm just
described, using a radius of π/3 except for the grassman where the radius used
was π/6. The results presented in logarithmic scale clearly show the quadratic
convergence rate of Newton’s method and the linear convergence rate of the
gradient method. Notice the finite precision plateau at 10−15.

Note that the projective space manifold Pn = G(n + 1, 1) is a special case
of the Grassman, hence the previous expressions are applicable.

7.3 K-means Algorithm

The implementation of a K-means algorithm is straightforward once a working
centroid computing algorithm is available. The algorithm is as follows:
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Figure 7.1: Simulation results for centroid computation. Except for the Grass-
man manifold, whose constellations were built with a radius of π/6, all constel-
lations were built with a radius of π/3.
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k-means algorithm

Input: An n dimensional manifold M where the centroid is com-
putable, X a cloud of points and l the number of desired classes.

Output: {p1...pl} centroids of each class.
1: Choose {p1...pl} ⊂ X randomly as initial estimate for the centroids.
2: for each point q in X do
3: Compute distance to each centroid: ri = r2

q(pi).
4: Label point as belonging to set Xj , where j = argmini{ri}.
5: end for
6: Recompute the centroids pi ← centroid(Xi).
7: If the centroids did not change position (or a maximum number of

iteration reached), return.

As shown in figure 7.2, the algorithm works as expected, not necessarily
well, due to known limitations of the algorithm itself. All standard modifications
available from the Rn case are still applicable (such as incrementally introducing
new classes where the variance of the data is high). The 2 dimensional sphere
and the 3 dimensional symmetric positive definite matrixes were chosen because
they can be visualized in low dimensions. Tests on the other manifolds indicate
that it works as expected as well.

7.4 MAP Estimator

A slightly different application, albeit a simple one, comes from the field of
robot navigation. Simple as it may be it is still the application where Newton’s
convergence rate is better evidenced when compared with the gradient method.

Consider a freely moving robot in R
n whose position is represented as a point

T ∈ SE(n), seen as the rigid transformation that transforms points in the world
referential, taking them to the local (robot) referential. Keeping the experiment
simple, consider that the robot observes several known landmarks in the world
{x1, ..., xk} ∈ Rn. Hence, in the local referential, the robot observes the points
T xi. If the robot is considered to be at T0 with a certain uncertainty, it is
possible to build a prior knowledge probability density function as:

p(T ) = k1 exp− 1

2
r2(T,T0)/σ2

where k1 is a normalizing constant and σ2 describes an isotropic level of uncer-
tainty. Notice that all directions are treated equally which is usually not the
case. Please note that by the identity SE(n) = SO(n)×Rn a slightly more use-
full prior may be built weighting differently translations from rotations. With
simplicity in mind, assume that this description is usefull. Assume also that the
robot’s sensor is not perfect and the observations obey the following Gaussian
probability distribution:

p(yi|T ) = k2 exp−(yi−T xi)
T R−1(yi−T xi)
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Figure 7.2: Results of running the k-means algorithm on S2 ((a) and (b)) and
on Sym+(2) ((c) and (d)). There were 5 clouds each with 30 points generated
with ǫ = 0.1. In the results on the left ((a) and (c)), the algorithm succeeded in
classifying the classes, but the k-means has many known limitations even in Rn

and on the right ((b) and (d)) failed to correctly classify the classes. The sphere
is represented as its usual embedding in R3 while the symmetric matrixes are
represented by the three independent entries (the axis are labeled accordingly).
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Figure 7.3: MAP estimate results using 5 observations σ = 1 and R = I.

where, again k2 is a normalizing constant and R is a matrix encoding the un-
certainty of the sensor. If the observations are considered to be independent,
the MAP estimator of the robot’s position is given by

T ∗ = arg max
T∈SE(n)

p(T |y1, y2, ..., yk)

= arg max
T∈SE(n)

(
k∏

i=1

p(yi|T )

)

p(T )

Using the usual trick of applying the logarithm and discarding constants, the
former problem is equivalent to

T ∗ = arg max
T∈SE(n)

k∑

i=1

−(yi − Txi)
T R−1(yi − Txi)

− 1

2
d(T, T0)

2/σ2

This is formulated as an optimization problem on SE(n). The gradient of each
term is readily available and the Hessian of the first terms can be obtained
using standard techniques (see the chapter of Riemannian Embeddings on any
Riemannian geometry book, specifically the part about the second fundamental
form). The result presented in this paper allows for the Hessian of the last term
to be obtained as well, thus allowing for a Newton algorithm to be implemented.
Figure 7.3 shows the results obtained in an experiment using 5 observations.
The gradient method is clearly outperformed by the 5 iterations taken by the
Newton method to attain the required precision.
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7.5 Conclusions

This article describes a simple algorithm to obtain the Hessian of the intrinsic
squared distance function on connected locally-symmetric manifolds on which
it is known how to compute basic Riemannian differential operations. Results
are presented for centroid computation on the commonly used manifolds SO(n),
Sym+(n), Sn, SE(n), G(n, p), and Pn. This is by no means an exhaustive list,
and the result is valid for other manifolds fitting the requisites (fer example
the hyperbolic plane). Besides the main application, simple examples of MAP
estimation and k-means clustering are also provided, extending the range of
applications besides centroid computation.
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Appendix A

Proof of the theorem

Theorem A.0.1. Consider M to be a connected locally-symmetric n-dimensional
Riemannian manifold with curvature endomorphism R. Let Bǫ(p) be a geodesic
ball centered at p ∈ M and rp : Bǫ(p) → R the function returning the intrinsic
(geodesic) distance to p. Let γ : [0, r] → Bǫ(p) denote the unit speed geodesic
connecting p to a point q ∈ Bǫ(p), where r = rp(q), and let γ̇q ≡ γ̇(r) be its
velocity vector at q. Define the function kp : Bǫ(p) → R, kp(x) = 1

2rp(x)2 and
consider any Xq, Yq ∈ TqM . Then

Hess(kp)q(Xq, Yq) =
〈

Xq
‖, Yq

〉

+

n∑

i=1

ctgλi
(r)
〈

Xq
⊥, Eiq

〉 〈
Yq, Eiq

〉
. (A.1)

where
{
Eiq

}
⊂ TqM is an orthonormal basis which diagonalizes the linear

operator R : TqM → TqM , R(Xq) = R(Xq, γ̇q)γ̇q with eigenvalues λi, this
means R(Eiq) = λiEiq. Also,

ctgλ(t) =







√
λ t/ tan(

√
λ t) λ > 0

1 λ = 0√
−λ t/ tanh(

√
−λ t) λ < 0

.

Here the ‖ and ⊥ signs denote parallel and orthogonal components of the vector

with respect to the velocity vector of γ, i.e. Xq = Xq
‖ + Xq

⊥,
〈

Xq
⊥, Xq

‖
〉

= 0,

and
〈

Xq
⊥, γ̇(r)

〉

= 0 .

This is the main result presented and the rest of this section is devoted to
its proof. With the intent of finding the Hessian of the function kp, recall that
(see for example [13])

Hess kp(q)(Xq, Yq) =
〈

(∇X gradkp)q , Yq

〉

(A.2)

where X is any local extension of Xq. Note that from the properties of a
connection, its value depends only of X at q, but for the expression to be
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formally correct the extension X must be considered. Knowing that the gradient
operator is linear and that for any two smooth functions f, g : U → R defined
on an open set U ⊂M satisfies the point-wise multiplication property

grad(f g) = f grad g + g grad f ,

allows for the simplification

gradkp =
1

2
grad(rp rp) = rp grad rp .

Defining ∂
∂ rp

as the unit normed radial vector field when written in normal co-

ordinates centered at p, a corollary to Gauss’s Lemma [17] states that grad rp =
∂

∂ rp
. Hence the former expression is written as

gradkp = rp
∂

∂ rp
.

Gauss’s Lemma also allows for the decomposition of any vector field X ∈ TU as
X = X⊥ + X‖, where X‖ ∈ TU is a vector field parallel to ∂

∂ rp
and X⊥ ∈ TU

is orthogonal to it. These statements, along with the properties of a connection,
are used to write

∇X gradkp = ∇X

(

rp
∂

∂ rp

)

= X (rp)
∂

∂ rp
+ rp∇(X‖+X⊥)

(
∂

∂ rp

)

= X (rp)
∂

∂ rp
+ rp∇X‖

(
∂

∂ rp

)

+ rp∇X⊥

(
∂

∂ rp

)

.

Noting that for any vector field X :

X(rp) = d rp(X) = 〈grad rp, X〉 =
〈

∂

∂ rp
, X

〉

and since X‖ is parallel to ∂
∂ rp

, there is a smooth function f : U → R such that

X‖ = f ∂
∂ rp

. Since ∂
∂ rp

is tangent to unit speed geodesics emanating from p,

∇ ∂
∂ rp

∂
∂ rp

= 0. Hence

∇X gradkp =

〈
∂

∂ rp
, X

〉
∂

∂ rp
+ rpf ∇ ∂

∂ rp

(
∂

∂ rp

)

+ rp∇X⊥

(
∂

∂ rp

)

= X‖ + rp∇X⊥

(
∂

∂ rp

)

(A.3)
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p

q

Γ(0, t)
θ(s)

∂
∂ rp

∣
∣
∣
q

Xq
⊥

Figure A.1: Construction of the Jacobi field.

Now let θ : R → Sr ⊂ M be a curve in the geodesic sphere Sr = {s ∈ M :
rp(s) = r = rp(q)} with θ(0) = q and θ̇(0) = Xq

⊥. In normal coordinates

centered at p, consider the geodesic variation Γ̂ :]− δ, δ[×[0, r] for some δ, given

by Γ̂(s, t) = t
r θ̂(s). Here the hat notation denotes a coordinate representation,

hence if φ : M → Rn is the normal coordinate function:

p̂ = φ(p)

θ̂ = φ ◦ θ

r̂p̂ = rp ◦ φ−1

Defining T̂ (s, t) = ∂Γ̂
∂t (s, t) and Ŝ(s, t) = ∂Γ̂

∂s (s, t), the corresponding Jacobi
field J : M → TM (see [17] for an introduction to Jacobi fields) is given in
coordinates by Ĵ(t) = Ŝ(0, t) = t

r X̂⊥
q̂ . Note that Ĵ is normal to the unit-

speed geodesic γ̂(t) = Γ̂(0, t) = t
r q̂ and that Ĵ(r) = X̂⊥

q̂ . Also, notice that

T̂ (s, t) = φ∗

(
∂

∂ rp

)∣
∣
∣
Γ̂(s,t)

since Γ̂(0, t) is a geodesic. In order to ease notation

the coordinate representation for these objects will be hidden, although not
forgotten. Hence, at q:

∇X⊥

∂

∂ rp

∣
∣
∣
∣
q

= DsT (0, r) = DtS(0, r) = DtJ(r)

where the fact that DsT = DtS is used (see [17], specifically Lemma 6.3).
Substituting in equation A.3, again at q, results in

(∇X gradkp)|q = Xq
‖ + r ∇X⊥

(
∂

∂ rp

)∣
∣
∣
∣
q

= Xq
‖ + rDtJ(r)

Substituting back into equation A.2, yields

Hess kp(q)(Xq, Yq) =
〈

Xq
‖ + rDtJ(r), Yq

〉

=
〈

Xq
‖, Yq

〉

+ r 〈DtJ(r), Yq〉 (A.4)
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All that remains to do is to find an expression for the Jacobi field and take its
covariant derivative. This leads to a rather lengthy discussion so it is stated
here as a couple of lemmas:

Lemma A.0.2. The solution of the ODE

ü + ku = 0, u(0) = a, u̇(0) = b

is given by
u(t) = a ck(t) + b sk(t)

where

ck(t) =







cos(
√

k t) k > 0

1 k = 0

cosh(
√
−k t) k < 0

, sk(t) =







1
√

k
sin(

√
k t) k > 0

t k = 0
1

√

−k
sinh(

√
−k t) k < 0

Proof. Picard’s existence theorem guarantees uniqueness and direct substitution
of the result in the differential equation proves the result.

Lemma A.0.3. Let M be a locally-symmetric Riemannian manifold and Bǫ(p)
be a geodesic ball centered at p ∈ M . If r = rp(q) is the intrinsic distance of
a point q ∈ Bǫ(p) to p and γ : [0, r] → Bǫ(p) is the unit speed radial geodesic
running from p to q, given a tangent vector Vq ∈ TqM orthogonal to γ̇(r), then
the normal Jacobi field J : [0, r] → TM along γ which satisfies J(0) = 0 and
J(r) = Vq is given by

J(t) =

n∑

i=1

[〈Vq, Ei(r)〉
sλi

(r)
sλi

(t)

]

Ei(t) (A.5)

where Ei(t) ∈ TM is the parallel transport along γ of the tangent space’s
orthonormal basis {Eiq} ⊂ TqM which diagonalizes the linear operator R :
TqM → TqM defined as R(Xq) = R(Xq, γ̇(0)) · γ̇(0), i.e., R(Eiq) = λiEiq.
Note that R denotes the curvature tensor of M and sλi

is defined as in the
previous lemma.

Proof. As stated in [17] the Jacobi field J specified by its two endpoints J(0) = 0
and J(r) = Vq exists and is unique as long as q is not conjugate to p along γ.
Consider the Jacobi equation

J̈(t) + R(J(t), γ̇(t)) · γ̇(t) = 0 (A.6)

Choosing an orthonormal basis for the tangent space {Fiq} ⊂ TqM and creating
the vector fields Fi ∈ TM along γ by parallel translation of Fiq, it is possible
to write J(t) with respect to this basis (note that the set {Fiγ(t)} ⊂ Tγ(t)M is
a basis for Tγ(t)M) as:

J(t) =

n∑

i=1

J i(t)Fi(t)
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where J i : [0, r] → R. Hence the left hand side of equation A.6 can be written
as

J̈(t) + R(J(t), γ̇(t)) · γ̇(t)

=

n∑

i=1

J̈ i(t)Fi(t) + R(J i(t)Fi(t), γ̇(t)) · γ̇(t)

=

n∑

i=1

J̈ i(t)Fi(t) + J i(t)R(Fi(t), γ̇(t)) · γ̇(t) (A.7)

where the identity J̈(t) =
∑n

i=1 J̈ i(t)Fi(t) is used, which follows from the fact
that the vector fields Fi(t) are parallel. The goal is now to solve this ordinary
differential equation. Start by defining the linear operator R : TqM → TqM
as R(Xq) = R(Xq, γ̇(0)) · γ̇(0) and note that due to the symmetries of the
Riemannian curvature tensor, this operator is self-adjoint, i.e. 〈R(Xq), Yq〉 =
〈Xq,R(Yq)〉. This guarantees that there is an orthonormal basis Eiq ∈ TqM
such that R(Eiq) = λiEiq for some λi ∈ R as described next. Write R(Fiq) as
a linear combination of the basis

{
Fiq

}
as follows:

R(Fiq) =

n∑

j=1

〈

Fjq,R(Fiq)
〉

Fjq

Since any two vector spaces with the same dimension are isomorphic there is
an isomorphism, φ : TpM → R

n taking Fiq to F̂i ∈ R
n. In this vector space

the operator R may be written as R̂ = φ ◦ R ◦ φ−1. Hence, writing in matrix

notation by defining F̂ =
[

F̂1 F̂2 . . . F̂n

]
and since R is linear in a finite

dimensional vector field, R̂ can be described as a matrix. Hence,

R̂F̂ = F̂








〈
F1q ,R(F1q)

〉 〈
F1q ,R(F2q)

〉
. . .

〈
F1q,R(Fnq)

〉

〈
F2q ,R(F1q)

〉 〈
F2q ,R(F2q)

〉
. . .

〈
F2q,R(Fnq)

〉

...
...

. . .
...〈

Fnq ,R(F1q)
〉 〈

Fnq ,R(F2q)
〉

. . .
〈
Fnq,R(Fnq)

〉








︸ ︷︷ ︸

A

.

The fact that the operator is self-adjoint makes A a symmetric matrix and as
such, it admits an eigenvalue decomposition

A = UDUT

where D = diag(λ1, λ2, . . . , λn) is a diagonal matrix such that λi are the eigen-
values of A and U is an orthogonal matrix with the normalized eigenvectors of
A as its columns. Hence

R̂F̂ = F̂UDUT

⇐⇒ R̂ F̂U
︸︷︷︸

Ê

= F̂U
︸︷︷︸

Ê

D
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hence, if U = [uij ] are the entries of the matrix, Êj =
∑n

i=1 uijF̂i is the or-
thonormal basis such that

R̂Êj = λjÊj

Using the isomorphism once again, this means that Ejq =
∑n

i=1 uijFiq is the
basis that diagonalizes the operator R:

R(Eiq) = λiEiq

Define Ei(t) as the parallel transport of Eiq along γ. Define as well the vector
fields

Ri(t) = R(Ei(t), γ̇(t)) · γ̇(t)

which, since M is locally symmetric, are parallel along γ(t) [13]. It follows then,
using the fact that parallel transport preserves inner products and

{
Eiq

}
is an

orthonormal basis

Ri(t) =

n∑

k=1

〈Ri(t), Ek(t)〉Ek(t)

=
n∑

k=1

〈Ri(r), Ek(r)〉Ek(t)

=

n∑

k=1

〈
R(Eiq), Ekq

〉
Ek(t)

= λi

n∑

k=1

〈
Eiq, Ekq

〉
Ek(t)

= λiEi(t)

Writing equation A.7 in terms of the new basis:

J̈(t) + R(J(t), γ̇(t)) · γ̇(t)

=

n∑

i=1

J̈ i(t)Ei(t) + J i(t)R(Ei(t), γ̇(t)) · γ̇(t)
︸ ︷︷ ︸

Ri(t)

=

n∑

i=1

(

J̈ i(t) + λiJ
i(t)
)

Ei(t)

Hence, the Jacobi equation decouples into n scalar differential equations with
the corresponding two-point boundary conditions as stated below:







J̈1(t) + λ1J1(t) = 0, J1(0) = 0 and J1(r) = 〈Vq , E1(r)〉
J̈2(t) + λ1J2(t) = 0, J2(0) = 0 and J2(r) = 〈Vq , E2(r)〉

...

J̈n(t) + λ1Jn(t) = 0, Jn(0) = 0 and Jn(r) = 〈Vq , En(r)〉
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Invoking lemma A.0.2, the solution of the ith equation is given by

J i(t) =
〈Vq, Ei(r)〉

sλi
(r)

sλi
(t)

Hence

J(t) =
n∑

i=1

[〈Vq, Ei(r)〉
sλi

(r)
sλi

(t)

]

Ei(t)

Now that an expression for J(t) has been found, it can be substituted in
equation A.4, by making Vq = Xq

⊥. Taking the covariant derivative of J(t)
evaluated at t = r, considering that DtEi(t) = 0 since Ei(t) is parallel along
the geodesic, results in

DtJ(r) =

n∑

i=1





〈

Xq
⊥, Ei(r)

〉

sλi
(r)

cλi
(r)



Ei(r)

Hence, defining by pointwise division ctgλi
(r) = r

cλi
(r)

sλi
(r) ,

Hess kp(q)(Xq, Yq) =
〈

Xq
‖, Yq

〉

+ r 〈DtJ(r), Yq〉

=
〈

Xq
‖, Yq

〉

+
n∑

i=1

ctgλi
(r)
〈

Xq
⊥, Ei(r)

〉

〈Yq, Ei(r)〉

A.1 Matrix Form

Although equation A.1 provides a way to compute the Hessian, it is not very
implementation-friendly. This section re-writes the equation in matrix form
once a tangent basis {Fiq} ⊂ TqM is fixed.

Theorem A.1.1. Under the same assumptions as above, consider
{
Fiq

}
⊂

TqM an orthonormal basis. If Xq ∈ TqM is a vector, let the notation X̂
denote the column vector describing the decomposition of Xq with respect to

the basis
{
Fiq

}
, i.e. [X̂]i =

〈
Xq, Fiq

〉
, let Rk be the matrix with entries

[Rk]ij =
〈

Fiq,R(Fjq)
〉

and consider the eigenvalue decomposition Rk = EΛET .

Here λi will be used to describe the i’th diagonal element of Λ. Then the Hessian
matrix (a representation for the bilinear Hessian tensor on the finite dimensional
tangent space with respect to the fixed basis) is given by:

Hkp
= EΣET (A.8)

where Σ is diagonal with elements σi given by σi = ctgλi
(r). Hence

Hess(kp)q(Xq, Yq) = X̂T Hkp
Ŷ .
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From the symmetries of the curvature tensor follows that any vector parallel

to γ̇(r) (for example Xq
‖) belongs to the kernel of the operator R. Without

loss of generality assume that E1(r) is parallel to γ̇(r) (hence λ1=0, Xq
‖ =

〈Xq, E1(r)〉E1(r) and Xq
⊥ =

∑n
j=2 〈Xq, Ej(r)〉Ej(r). Then, since ctg0(r) = 1,

equation A.1 can be re-written:

Hess kp(q)(Xq , Yq)

= ctgλ1
(r)

〈

〈Xq , E1(r)〉E1(r),

n∑

j=1

〈Yq, Ej(r)〉Ej(r)

〉

+

n∑

i=1

ctgλi
(r)

〈
n∑

j=2

〈Xq, Ej(r)〉Ej(r), Ei(r)

〉

〈Yq, Ei(r)〉

= ctgλ1
(r) 〈Xq , E1(r)〉 〈Yq, E1(r)〉

+

n∑

i=2

ctgλi
(r) 〈Xq , Ei(r)〉 〈Yq , Ei(r)〉

=

n∑

i=1

ctgλi
(r) 〈Xq, Ei(r)〉 〈Yq, Ei(r)〉

= X̂T Hkp
Ŷ

where the matrices are defined in the theorem statement.
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