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1 Introduction

In the paper “Bilinear modelling via Augmented Lagrange Multipliers (BALM)”, by Alessio
del Bue, João Xavier, Lourdes Agapito and Marco Paladini, in IEEE Transactions on Pattern
Analysis and Machine Intelligence, we introduced the BALM algorithm. For lack of space, a
convergence analysis was not included. Here, we provide a convergence analysis of BALM (see
section 3), which was labeled Algorithm 1 in the aforementioned paper. As an intermediate
result, we also study the convergence of Algorithm 2 in the BALM paper (see section 2).

2 Block coordinate descent

We consider the optimization problem

minimize f(x)
subject to x ∈ X

(1)

where X is the Cartesian product

X = X1 × · · · ×Xm+1,

with Xi ⊂ R
ni for i = 1, . . . , m + 1. The vector x is partitioned as x = (x1, . . . , xm+1) and

n = n1 + · · · + nm+1. Let x = (x1, . . . , xm+1) ∈ X . For each i = 1, . . . , m + 1, we define
fi(·; x) : Rni → R,

fi(ξ; x) = f (x1, . . . , xi−1, ξ, xi+1, . . . , xm+1) .

We say that x ∈ X is regular for f if for each i = 1, . . . , m the function fi(·; x) has an
unique minimizer over Xi. Note the asymmetric treatment: the function fm+1(·; x) is not
involved.

We make the following assumptions:

A) for each i = 1, . . . , m, there holds Xi = R
ni, and Xm+1 denotes an embedded subman-

ifold of Rnm+1 (e.g., see [2] for this basic notion of smooth manifold theory);

B) the function f is continuously differentiable over an open set containing X . Moreover,
fi(·; x) is a convex function for all i = 1, . . . , m and x ∈ X .

First-order necessary conditions. Given these assumptions, if x = (x1, . . . , xm+1) ∈ X
is a local minimizer of f then it satisfies the following first-order necessary conditions:

∇fi (xi; x) = 0, i = 1, . . . , m, (2)

∇fm+1 (xm+1; x) ∈ Nxm+1Xm+1, (3)

where Nxm+1Xm+1 denotes the normal space to the manifoldXm+1 at the point xm+1 ∈ Xm+1,
i.e., the linear subspace of Rnm+1 which is orthogonal to Txm+1Xm+1, the tangent space to
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Xm+1 at the point xm+1. Let us further clarify (3). Commonly, the embedded submanifold
Xm+1 is represented as a level set of a submersion, i.e., Xm+1 = {ξ ∈ R

nm+1 : h(ξ) = 0} where
h : R

nm+1 → R
p (p < nm+1), h(ξ) = (h1(ξ), . . . , hp(ξ)) denotes a submersion: a smooth

(infinitely differentiable) map with full rank Jacobian everywhere, that is, rank∇h(ξ) = p
for all ξ, where ∇h(ξ) denotes the nm+1 × p matrix

∇h(ξ) =
[
∇h1(ξ) · · · ∇hp(ξ)

]

(equivalently, the constraint gradients ∇h1(ξ), . . . ,∇hp(ξ) are linearly independent). The
manifold Xm+1 has dimension nm+1− p and the tangent space to Xm+1 at the point xm+1 is
given by

Txm+1Xm+1 = Kernel
(
∇h(xm+1)

⊤
)
,

see proposition lemma 8.15 in [2]. It follows that the normal space is

Nxm+1Xm+1 = Range (∇h(xm+1)) =

{
p∑

j=1

∇hj(xm+1)λj : λj ∈ R for j = 1, . . . , p

}
.

Therefore, (3) translates into ∇fm+1(xm+1; x) =
∑p

j=1∇hj(xm+1)λj , for some λj ∈ R, which
is the usual form of expressing the necessary first-order conditions for the problem

minimize fm+1(ξ; x)
subject to h(ξ) = 0,

(4)

e.g., see proposition 3.1.1 in [1]. Note that xm+1 solves (4).
We need to keep the generic notation (3) because in the nonrigid SfM and articulated

SfM applications, the associated manifolds are not (globally) represented as level sets of
submersions.

An important property. The assumed convexity of fi(·; x) for all i = 1, . . . , m and x ∈ X
yields the following property, which will turn out important for the convergence analysis of
the block coordinate descent method: let i ∈ {1, . . . , m} and let ξ ∈ Xi be a minimizer of
fi(·; x) over Xi; then, fi(·; x) is monotonically nonincreasing in the interval from xi to ξ, i.e.,

fi
(
(1− t2)xi + t2ξ; x

)
≤ fi

(
(1− t1)xi + t1ξ; x

)
for all 0 ≤ t1 ≤ t2 ≤ 1. (5)

This is readily established as follows. Let φ(t) = fi
(
(1− t)xi + tξ; x

)
− fi

(
ξ; x

)
. Note that

φ(t) is a convex function of t. Moreover, φ(t) ≥ 0 for all t. Now, let 0 ≤ t1 < t2 ≤ 1 (the
case t1 = t2 is trivial in (5)). Write t2 = (1− α)t1 + α1 where α = (t2 − t1)/(1− t1) belongs
to [0, 1]. The convexity and the nonnegativity of φ yield

φ(t2) ≤ (1− α)φ(t1) + αφ(1) = (1− α)φ(t1) ≤ φ(t1),

which establishes (5).

Block coordinate descent method. The block coordinate descent method (BCD) oper-
ates as follows. Given the current iterate

xk =
(
xk
1, . . . , x

k
m+1

)
∈ X,
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the next iterate xk+1 =
(
xk+1
1 , . . . , xk+1

m+1

)
∈ X is generated as

xk+1
i ∈ arg min

ξ∈Xi

f
(
xk+1
1 , . . . , xk+1

i−1 , ξ, x
k
i+1, . . . , x

k
m+1

)
, i = 1, . . . , m+ 1. (6)

Theorem 1. (Convergence of block coordinate descent) Let assumptions A,B hold for prob-
lem (1). Let {xk} be a sequence obeying the recursion (6). Then, every limit point of {xk}
which is regular for f satisfies the first-order conditions (2)-(3).

Before delving into the proof, an important remark. Note that the theorem says that, in
particular, if the sequence {xk} generated by the BCD method happens to converge, then
its limit (assumed regular for f) will satisfy the first-order necessary conditions for a local
minimizer of the optimization problem (1). The theorem is not powerful enough to assert
that {xk} will converge nor that, if it does, the limit is a local minimizer for (1). The
conclusion of the theorem is what can be typically guaranteed for a BCD method, without
further assumptions, e.g., compare theorem 1 with proposition 2.7.1 in [1]. However, in
practice, when {xk} converges, its limit is usually indeed a local minimizer for (1).

Proof of theorem 1: We just follow the reasoning of the proof of proposition 2.7.1 in [1]
(the proof in the errata available at http://www.athenasc.com/nonlinbook.html) and add
some new lines to handle the manifold Xm+1.

Let x = (x1, . . . , xm+1) be a point of {xk} which is regular for f . Let {xkj} be a sub-
sequence of {xk} which converges to x. By replicating the steps of the proof in [1] we can
conclude that

∇fi (xi; x) = 0, i = 1, . . . , m, (7)

and that {xkj+1
i } converges to xi as j →∞, for each i = 1, . . . , m. We omit here the details

of this replication, since they are a straightforward adaptation of the aforementioned existing
proof. We just remark that the reasoning in [1] can be replicated here because property (5)
holds and that x is regular for f .

Equation (7) shows that x satisfies (2) in the first-order necessary conditions (2)-(3). We
now show that it also satisfies (3). We have

f
(
xkj+1

)
≤ f

(
xkj+1

)
≤ f

(
x
kj+1
1 , . . . , xkj+1

m , ξ
)
, for all ξ ∈ Xm+1.

Taking the limit j →∞ gives

f(x) ≤ f(x1, . . . , xm, ξ), for all ξ ∈ Xm+1,

that is, xm+1 solves the optimization problem

minimize fm+1(ξ; x)
subject to ξ ∈ Xm+1.

(8)

Now, since Xm+1 is an embedded submanifold of Rnm+1 it can be represented near xm+1

as a level set of a submersion, see proposition 8.12 in [2]. More precisely, there exist an

4



open set U ⊂ R
nm+1 containing xm+1, and a submersion h : U → R

p (p < nm+1), h(x) =
(h1(x), . . . , hp(x)), such that Xm+1 ∩ U = {ξ ∈ U : h(ξ) = 0}. Moreover, the tangent space
to the manifold Xm+1 at any point ξ ∈ Xm+1 ∩ U is given by TξXm+1 = Kernel

(
∇h(ξ)⊤

)

and the corresponding normal space is NξXm+1 = Range (∇h(ξ)) = {∇h(ξ)λ : λ ∈ R
p}.

Since xm+1 solves (8), it also solves the restricted version

minimize fm+1(ξ; x)
subject to h(ξ) = 0, ξ ∈ U.

(9)

Thus it satisfies the first-order necessary conditions of proposition 3.1.1 in [1], i.e.,

∇fm+1(xm+1; x) =
∑

j

∇hj(xm+1)λj

for some λj ∈ R, which is equivalent to (3) �

Application to BALM. We now show that Algorithm 2 (iterative Gauss Seidel) in the
BALM paper fits into the framework of theorem 1. More precisely, we shall consider the
following algorithm 2.1.

Algorithm 2.1 corresponds to Algorithm 2 in the BALM paper, modulo these irrelevant
modifications: 1) the order of the minimizations is changed - we update the manifold vari-
able at the end (in order to match the framework of theorem 1); 2) two minimizations, one
for S and another for M , are done, instead of a single joint minimization for (S,M) as in
Algorithm 2; as explained in the BALM paper, this is another possible variation of Algo-
rithm 2, which, in fact, was used in our numerical experiments; 3) we let the algorithm run
forever (we removed the upper bound Lmax on the number of iterations) in order to study the
asymptotic behavior of the infinite sequence

{(
z[l], S [l],M [l], N [l]

)}
generated by the iterative

Gauss Seidel iterations.
In terms of theorem 1, we have m + 1 = 4 block variables, i.e., x = (z, S,M,N) with

z ∈ X1 = R
q (q is the number of missing entries), S ∈ X2 = R

n×r, M ∈ X3 = R
r×m and

N = (N1, . . . , Nf) ∈ X4 = Mf , where M denotes the particular manifold at hand and
Mf denotes the Cartesian product M× · · · × M (f factors). Also, the cost function is
f(x) = f(z, S, L,M) = Lσ(k)

(
z, S,M,N ;R(k)

)
, where

Lσ(z, S,M,N) = ‖Y (z)− SM‖2 − tr
(
R⊤(M −N)

)
+

σ

2
‖M −N‖2 .

We now check the assumptions A) and B) needed in the theorem. Assumption B) is
trivially satisfied. Indeed, f is obviously a smooth function. Moreover, when f is viewed as
a function of z alone (resp. S and M), it is convex, i.e., f1(·; x) (resp. f2(·; x) and f3(·; x)) is
convex: in fact, it is a simple quadratic for all x = (z, S,M,N). Thus assumption B) holds.
Interestingly, note that f1(·; x) and f3(·; x) are strictly convex for all x and f2(·; x) is also
strictly convex for those x = (z, S,M,N) in which M has full row rank. Since rank deficient
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Algorithm 2.1 (algorithm 2 in the BALM paper)

1: set l = 0
2: set z[0] = z(k), S [0] = S(k) and M [0] = M (k)

3: loop

4: solve

z[l+1] =

= argmin Lσ(k)

(
z, S [l],M [l], N [l];R(k)

) (10)

5: solve

S [l+1] =

= argmin Lσ(k)

(
z[l+1], S,M [l], N [l];R(k)

) (11)

6: solve

M [l+1] =

= argmin Lσ(k)

(
z[l+1], S [l+1],M,N [l];R(k)

) (12)

7: solve

N [l+1] =

= argmin Lσ(k)

(
z[l+1], S [l+1],M [l+1], N ;R(k)

)

subject to Ni ∈M, i = 1, . . . , f,

(13)

8: update l ← l + 1
9: end loop
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matrices M ∈ R
r×m constitute a zero measure set in R

r×m, we see that all points x (except
for a zero measure set) are regular for f . In that sense, the assumption of regularity of limit
points mentioned in theorem 1 is very mild.

We now address assumption A). Since the Cartesian product of embedded submanifolds
is an embedded submanifold it suffices to show thatM is an embedded submanifold of Rr×p.
We do it for the three cases of interest in the BALM paper:

1. Nonrigid structure from motion. We consider the set

M = {t⊗Q : t = (t1, . . . , td) ∈ R
d, Q⊤Q = I2} − {0}. (14)

This is not exactly the setM defined in equation (14) of the BALM paper. We removed
one point (the origin), which is irrelevant in practice (but would raise a topological
difficulty in our study). We now prove that M in (14) is an embedded submanifold
of R3d×2 − {0}. We assume that the reader is familiar with basic concepts of smooth
manifold theory, e.g., at the level of [2]. The set M in (14) can be equivalently
represented as

M = {ρ u⊗Q : ρ > 0, u ∈ S
d−1, Q⊤Q = I2}, (15)

where S
d−1 = {u ∈ R

d : ‖u‖ = 1} denotes the unit-sphere in R
d. For reasons that

will be apparent later, let us introduce the smooth manifold P = Sd−1 ×O(3, 2) where
O(3, 2) = {Q ∈ R

3×2 : Q⊤Q = I2} denotes the Stiefel manifold of 3 × 2 matrices.
Furthermore, consider the (discrete) Lie group G = {±1} acting on P as follows:

(u,Q)
g7→ (gu, gQ) for all g ∈ G and (u,Q) ∈ P . It is straightforward to check that

this action is smooth, free and proper, see [2]. Thus, invoking theorem 9.16 in [2],
the quotient space P/G can be turned into a smooth manifold such that the canonical
map π : P → P/G is a smooth, surjective submersion. Note that the quotient space
is nothing more than the set of equivalence classes of P induced by the equivalence
relation: (u1, Q1) ∼ (u2, Q2) if (u1, Q1) = ±(u2, Q2). We denote by [(u,Q)](= π(u,Q))
a typical element of P/G. Consider the smooth manifold A = R++×(P/G) where R++

is the set of strictly positive reals. The set M is (15) can be written as M = F (A)
where F : A → R

3d×2 − {0} is defined as F (ρ, [(u,Q)]) = ρu ⊗ Q. According to
theorem 8.3 in [2], M is an embedded submanifold of R3d×2 − {0} if F is a smooth
embedding.

We now focus on proving that F is a smooth embedding. We show that we can invoke
proposition 7.4 (b) in [2]. First, it is trivial to check that F is injective (that’s why

the quotient space was introduced). Second, note that F̂ : R++ × P → R
3d×2 − {0},

F̂ (ρ, (u,Q)) = ρu ⊗ Q is clearly smooth and the equality F̂ = F ◦ λ holds, where
λ : R++ × P → A, λ(ρ, (u,Q)) = (ρ, π(u,Q)) is a surjective smooth submersion.
Thus, we may invoke proposition 7.17 in [2] to conclude that F is smooth. Third, F
is an immersion. This can be established as follows. We begin by showing that F has
constant rank. Consider the group G = R++ × O(d)× O(3) with group multiplication
(s1, V1,W1) · (s2, V2,W2) = (s1s2, V1V2,W1W2) and where O(n) = {V ∈ R

n×n : V ⊤V =
In} denotes the set of n × n orthogonal matrices. It is clear that G is a smooth
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Lie group assuming the canonical smooth manifold structures of the Lie groups R++

and O(n). Define an action of G on A as (ρ, [(u,Q)])
(s,V,W )7→ (sρ, [(V u,WQ)]). It is

straightforward to check that this action is smooth and transitive. Also, define an

action of G on R
3d×2 − {0} as Z

(s,V,W )7→ s(V ⊗W )Z. Clearly, this action is smooth.
Finally, note that F : A→ R

3d×2 is equivariant with respect to those two actions. It
follows from theorem 9.7 in [2] that F has constant rank. Now, since F is also injective,
theorem 7.15 (b) in [2] asserts that F is an immersion. Fourth and finally, we show
that F is a proper map. Let K be a compact subset of R3d×2 − {0}. We must show
that F−1(K) = {(ρ, [(u,Q)]) ∈ A : F (ρ, [(u,Q)])} ∈ K is compact. Equivalently,
we must show that any sequence in F−1(K) admits a convergent subsequence. Let
{(ρk, [(uk, Qk)])} be a sequence in F−1(K). Since {Zk}, where Zk = F (ρk, [(uk, Qk)]),
is a sequence in the compact set K, it admits a convergent subsequence. Thus, by
restricting to a subsequence if necessary, we may assume that {Zk} converges, say to
Z ∈ R

3d×2 − {0} as k → ∞. Now, it is easily seen that ρk =
∥∥Zk

∥∥ /
√
2. Thus, {ρk}

converges to
∥∥Z

∥∥ /
√
2 as k →∞. Finally, note that P/G is compact since it the image

of the compact manifold P = S
d−1 × O(3, 2) by the continuous map π. Thus, passing

to a subsequence if necessary, we may further assume that {[(uk, Qk)]} is convergent.
We conclude that (ρk, [(uk, Qk)]) is convergent.

We proved thatM in (15) is an embedded submanifold R
3d×2 − {0}. Since the later

is itself an embedded submanifold of R3d×2 (because it is an open subset of R3d×2), we
conclude thatM in (15) is an embedded submanifold of R3d×2.

2. Articulated structure from motion. Consider the set

M = {(u,A,B) ∈ R
2 × R

2×2 × R
2×2 : uu⊤ + AA⊤ = uu⊤ +BB⊤ = I2} − Z (16)

where Z = {(u,A,B) : detA = 0}. This is the set M defined in equation (22) of
the BALM paper, except that we removed a (closed) zero measure set Z, which is
irrelevant in practice. We will prove that M in (16) is an embedded submanifold of
U = R

2 × R
2×2 × R

2×2 − Z by applying corollary 8.10 in [2]. Introduce the map
Φ : U → S(2)× S(2),

Φ(u,A,B) =
(
uu⊤ + AA⊤, uu⊤ +BB⊤

)
,

where S(n) = {X ∈ R
n×n : X = X⊤} is the linear subspace of n × n symmetric

matrices, viewed here as a smooth manifold. Note that M = Φ−1(I2, I2). We pro-
ceed to show that (I2, I2) is a regular value of Φ. It is clear that Φ is smooth. Let
(u,A,B) ∈ Φ−1(I2, I2). We must show that the derivative map of Φ, evaluated at
(u,A,B), is a surjective linear map. It is straightforward to check that this derivative
map corresponds to the linear map Φ∗ : R2 × R

2×2 × R
2×2 → S(2)× S(2),

Φ∗(δu,∆A,∆B) =
(
δuu

⊤ + uδ⊤u +∆AA
⊤ + A∆⊤

A, δuu
⊤ + uδ⊤u +∆BB

⊤ +B∆⊤

B

)
.
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Now, let (X, Y ) ∈ S(2) × S(2). We show that there exist (δu,∆A,∆B) such that
Φ∗(δu,∆A,∆B) = (X, Y ). We let δu = 0. Consider the equation

∆AA
⊤ + A∆⊤

A = X. (17)

Since A is nonsingular, we can change variables as ΩA = ∆AA
⊤, and (17) turns into

ΩA + Ω⊤

A = X, (18)

where

X =

[
Xa Xb

Xb Xc

]
∈ S(2)

is given and

ΩA =

[
α β
γ δ

]
∈ R

2×2

is to be found. But, clearly, the choice α = Xa/2, β = Xb, γ = 0 and δ = Xc/2
solves (18), and ∆A = ΩAA

−⊤ solves (17). Now, consider the equation

∆BB
⊤ +B∆⊤

B = Y

to be solved for ∆B. We could duplicate the previous reasoning to show that there
exists a solution, if B were nonsingular. But, indeed, B is nonsingular. Note that
(u,A,B) ∈ Φ−1(I2, I,2). Thus, the two equations uu⊤ + AA⊤ = I2, uu

T + BB⊤ = I2
hold. Subtracting one from the other yields AA⊤ = BB⊤. Since A is nonsingular, B
is also nonsingular.

In sum, we have shown thatM is an embedded submanifold of U . But, since U is an
open subset of R2 ×R

2×2 ×R
2×2 it is an embedded submanifold of R2 ×R

2×2 ×R
2×2.

Thus,M is an embedded submanifold of R2 × R
2×2 × R

2×2.

3. Photometric stereo. The relevant set here is

M = {ρ(1, z) : ρ ∈ R, z ∈ R
3, z⊤z = 1} − {0}. (19)

Compared toM given in equation (25) of the BALM paper, we have just removed one
point (the origin), which is irrelevant in practice. We now prove thatM in (19) is an
embedded submanifold of R4 − {0}. Note thatM can be represented asM = F−1(0)
where F : R

4 − {0} → R is given by F (ξ1, ξ2, ξ3, ξ4) = ξ21 − (ξ22 + ξ23 + ξ24). Now,
it is straightforward to check that F is a smooth submersion. Thus, according to
corollary 8.9 in [2], M is an embedded submanifold of R

4 − {0}. Since the later
manifold is itself an embedded submanifold of R4, we conclude that M in (19) is an
embedded submanifold of R4.
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3 BALM

Consider the optimization problem

minimize f(x1, x2)
subject to x2 ∈ X

(20)

where x1 ∈ R
n1, x2 ∈ R

n2 and X ⊂ R
n2 denotes an embedded submanifold of Rn2. Moreover,

f : Rn1+n2 → R is assumed to be continuously differentiable. Problem (20) is equivalent to

minimize f(x1, x2)
subject to x2 = x3

x3 ∈ X.

(21)

Also, it is straightforward to see that (x1, x2) is a local minimizer for problem (20) if and only
if (x1, x2, x2) is a local minimizer for problem (21). We now write the first-order necessary
conditions that must hold at a minimizer (x1, x2, x3) for problem (21). Since x3 ∈ X and
X is an embedded submanifold of Rn2, proposition 8.12 in [2] asserts the existence of an
open set U ⊂ R

n2 containing x3 such that X ∩ U = {ξ ∈ U : h(ξ) = 0} for some smooth
(infinitely differentiable) map h : U → R

p, h(x) = (h1(x), . . . , hp(x)), where p denotes the
codimension of the submanifold X (i.e., dimX = n2 − p). Additionally, h is a submersion,
that is, rank∇h(ξ) = p for all ξ ∈ U , where ∇h(ξ) =

[
∇h1(ξ) · · · ∇hp(ξ)

]
. Thus, if

(x1, x2, x3) is a local minimizer for problem (21) then it is also a local minimizer for the
problem

minimize f(x1, x2)
subject to x2 = x3

h(x3) = 0
x3 ∈ U.

(22)

Now, using proposition 3.1.1 in [1], the necessary first-order conditions for (22) are given by

∇x1f(x1, x2) = 0 (23)

∇x2f(x1, x2) + α = 0 (24)

−α +∇h(x3)β = 0 (25)

x2 = x3, h(x3) = 0, (26)

for some Lagrange multiplier (α, β) ∈ R
n2 × R

p.

Augmented Lagrangian approach. We consider an augmented Lagrangian optimization
method to solve (21), see algorithm 3.1. The augmented Lagrangian is given by

Lσ(x1, x2, x3;λ) = f(x1, x2)− λ⊤(x2 − x3) +
σ

2
‖x2 − x3‖2 .

Thus, only the first equality constraint in (21) has been dualized, the manifold constraint is
present in each subproblem (27) of the augmented Lagrangian method.
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Algorithm 3.1 (augmented Lagrangian Method to solve (21))

1: set k = 0 and ǫbest = +∞
2: initialize σ0 > 0, λ0 ∈ R

n2, γ > 1 and 0 < η < 1
3: initialize x0

1 ∈ R
n1 and x0

2 ∈ R
n2

4: loop

5: solve (
xk+1
1 , xk+1

2 , xk+1
3

)
= argmin Lσk(x1, x2, x3;λ

k)
subject to x3 ∈ X

(27)

6: compute ǫ =
∥∥xk+1

2 − xk+1
3

∥∥2

7: if ǫ < η ǫbest
8: λk+1 = λk − σk

(
xk+1
2 − xk+1

3

)

9: σk+1 = σk

10: ǫbest = ǫ
10: else

10: λk+1 = λk

11: σk+1 = γσk

12: endif

13: update k ← k + 1
14: end loop

Theorem 2. (Convergence of augmented Lagrangian method) Suppose {λk} is bounded.
Then, every limit point (x1, x2, x3) of the sequence {(xk

1, x
k
2, x

k
3)} satisfies the first-order con-

ditions (23)-(26).

Both the assumption and the conclusion match the spirit of proposition 4.2.2 in [1], but
note that theorem 2 refers to the sequence {(xk

1, x
k
2, x

k
3)} generated by algorithm 3.1.

Proof of theorem 2: We essentially follow the reasoning of the proof of proposition 4.2.2
in [1] with a minor adaptation to account for algorithm 3.1. Let {(xkj

1 , x
kj
2 , x

kj
3 )} be a

subsequence of (xk
1, x

k
2, x

k
3) which converges to (x1, x2, x3) as j → ∞. Let the embedded

submanifold X ⊂ R
n2 be represented near x3 as a level set, i.e., X ∩ U = {ξ ∈ U :

h(ξ) = (h1(ξ), . . . , hp(ξ)) = 0} for some open set U ⊂ R
n2 containing x3 and smooth map

h : U → R
p with rank∇h(ξ) = p for all ξ ∈ U (existence of such U and h is guaranteed

by proposition 8.12 in [2]). Since x
kj
3 → x3 we may assume without loss of generality that

the whole sequence {xkj
3 } is contained in U . Also, since {λkj−1} is a bounded sequence, by

passing to a subsequence if necessary, we may assume that it converges, say to λ, as j →∞.
Now, according to (27), (x

kj
1 , x

kj
2 , x

kj
3 ) is a local minimizer for

minimize L
σ
kj−1(x1, x2, x3;λ

kj−1)
subject to h(x3) = 0

x3 ∈ U.

Thus, proposition 3.1.1 in [1] asserts the existence of a Lagrange multiplier βj ∈ R
p such

11



that

∇x1f(x
kj
1 , x

kj
2 ) = 0 (28)

∇x2f(x
kj
1 , x

kj
2 )− λkj−1 + σkj−1(x

kj
2 − x

kj
3 ) = 0 (29)

λkj−1 + σkj−1(x
kj
3 − x

kj
2 ) +∇h(xkj

3 )βj = 0 (30)

hold. Taking the limit in (28) gives

∇x1f(x1, x2) = 0. (31)

Define γj = σkj−1(x
kj
2 − x

kj
3 ). Thus, equation (29) corresponds to

∇x2f(x
kj
1 , x

kj
2 )− λkj−1 + γj = 0,

and it follows that γj → γ as j →∞, where γ = λ−∇x2f(x1, x2). Taking the limit in (29)
gives

∇x2f(x1, x2) + α = 0, (32)

where we defined α = −λ + γ. Equation (30) corresponds to

λkj−1 − γj +∇h(xkj
3 )βj = 0,

which, since ∇h(xkj
3 ) has full column rank, implies that

βj =
(
∇h(xkj

3 )⊤∇h(xkj
3 )

)−1

∇h(xkj
3 )⊤

(
γj − λkj−1

)
.

Thus, βj → β =
(
∇h(x3)

⊤∇h(x3)
)−1∇h(x3)

⊤
(
γ − λ

)
and, taking limits in (30), gives

−α +∇h(x3)β = 0. (33)

Note that (31)-(33) establish (23)-(25). Since we also have h(x3) = 0, it only remains to
show that x2 = x3 in order to prove that the whole set of necessary conditions (23)-(26)
hold. We split the analysis in two cases:

1. σkj−1 →∞: since γj = σkj−1(x
kj
2 −x

kj
3 ) is convergent, we conclude that x

kj
2 −x

kj
3 → 0.

Thus, x2 = x3;

2. σkj is upper bounded: by the nature of the algorithm 3.1 this means that, after some
finite k0, σ

k = σk0 for all k ≥ k0 which implies that
∥∥xk+1

2 − xk+1
3

∥∥2
< η

∥∥xk
2 − xk

3

∥∥2

for k > k0. Since η < 1 we conclude that x2 = x3 �

Application to BALM. Note that algorithm 3.1 corresponds to Algorithm 1 in the BALM
paper, after one makes the identification x1 = (z, S), x2 = M , x3 = N and X = M×
M× · · ·×M (f times). As the proof of theorem 2 shows, it suffices that (xk

1, x
k
2, x

k
3) satisfy

the first-order necessary conditions for subproblem (27) for the conclusion of theorem 2 to
hold. That is, it is not required that (xk

1, x
k
2, x

k
3) is a global minimizer for subproblem (27).

This is in line with theorem 1, which (under the appropriate assumptions) guarantees that
(xk

1, x
k
2, x

k
3) satisfies those first-order necessary conditions.
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