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ABSTRACT

This paper considers the problem of filter design with secrecy
constraints, where two legitimate parties (Alice and Bob) com-
municate in the presence of an eavesdropper (Eve), over a Gaus-
sian multiple-input multiple-output (MIMO) wiretap channel.
In particular, this problem involves the design of the transmit and
the receive filters, subject to a power constraint, which minimize
the mean-squared error (MSE) between the legitimate parties
whilst assuring that the eavesdropper MSE remains above a cer-
tain level. We consider a general Multiple-Input Multiple-Output
(MIMO) Gaussian wiretap scenario, where a Zero-Forcing (ZF)
filter is used at the legitimate receiver, whilst the eavesdropper
uses an optimal linear receive filter, and characterize the receive
and transmit filters in various power regimes. Finally, we present
a set of numerical results that support some of the main conclu-
sions.

1. INTRODUCTION

Security and privacy remain issues of utmost importance in wire-
less communications systems. In contrast to their wire-line coun-
terparts, the wireless links are much more susceptible to eaves-
dropping attacks due to the inherent broadcast nature of the wire-
less medium.
In addiction to the traditional cryptographic algorithms (which

are based on the intractability of certain functions and are in-
sensitive to the physical nature of the wireless medium), there
has been a renewed interest in information-theoretic security –
widely accepted as the strictest notion of security. This involves
the use of physical-layer techniques that exploit the inherent ran-
domness of the communications medium to guarantee both reli-
able and secure communications in the presence of an eavesdrop-
per.
The basis of information-theoretic security, which builds upon

Shannon’s notion of perfect secrecy [1], was laid by Wyner [2]
and by Csiszár and Körner [3] who proved in seminal papers that
there exist channel codes guaranteeing both robustness to trans-
mission errors and a certain degree of data confidentiality. In
particular, Wyner considered the wiretap channel where two le-
gitimate users communicate over a main channel in the presence
of an eavesdropper who observes degraded versions of the main
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channel messages over the wiretap channel. Wyner character-
ized the rate-equivocation region of the wiretap channel and its
secrecy capacity. The computation of the secrecy capacity of a
range of communications channels has thus been an important
research topic (e.g. see [4], [5]).
This paper addresses the problem of secure communications

from the estimation-theoretic rather than from the information-
theoretic view-point. We consider the problem of filter design
with secrecy constraints in the classical wiretap scenario consist-
ing of two legitimate parties that communicate in the presence of
an eavesdropper, where the objective is to conceive transmit and
receive filters that minimize the mean-squared error (MSE) be-
tween the legitimate parties whilst guaranteeing a certain eaves-
dropper MSE level. In particular we consider the case where the
legitimate receiver uses a Zero-Forcing (ZF) constraint whereas
the eavesdropper uses the optimal linear receiver. This gener-
alizes the filter design with secrecy constraint problem in [6],
where both the legitimate receiver and the eavesdropper employ
a ZF filter. Interestingly, this class of problems also represents
a natural generalization of filter design for point-to-point com-
munications systems which has been considered in the past by
several authors (e.g. [7], [8]). Another approach to this problem
is presented in [9] where the authors aim to minimize the trans-
mit power required to guarantee a certain signal-to-interference-
plus-noise ratio (SINR) for the legitimate receiver and then, use
the remaining power generate artificial noise to jam the eaves-
dropper. Note that, due to the nature of the problem, minimizing
the MSE is equivalent to maximizing the SINR [7].
This paper is structured as follows: Section 2 defines the prob-

lem. Sections 3 and 4 consider the design of the receive and
transmit filters, respectively. Section 5 discusses the regions of
validity of key operational regimes under consideration. Section
6 shows various numerical results to illustrate the impact of the
filter designs on both the reliability and security criteria. The
main conclusions of this work are drawn in section 7.

2. PROBLEM STATEMENT

We consider a communications scenario where a legitimate user,
say Alice, communicates with another legitimate user, say Bob,
in the presence of an eavesdropper, Eve (see Figure 1). Bob and
Eve observe the output of the multiple-input multiple-output
(MIMO) channels given, respectively, by:



Fig. 1. MIMO Gaussian wiretap channel model.

YM = HMHTX+NM (1)

YE = HEHTX+NE (2)
whereYM andYE are the nM and the nE-dimensional vectors
of receive symbols,X is am-dimensional vector of independent,
zero-mean and unit-variance transmit symbols, andNM andNE

are nM and nE-dimensional complex Gaussian random vectors
with zero mean and identity covariance matrix. The nM ×mma-
trixHM and the nE ×mmatrixHE contain the gains from each
main and eavesdropper channel input to each main and eaves-
dropper channel output, respectively. The m × m matrix HT

represents Alice’s transmit filter. We assume that HMHT and
HEHT are full column rank, which implies that nM ≥ m and
nE ≥ m. We also assume that Alice, Bob and Eve have perfect
knowledge about the channel matrices HM and HE . This is of-
ten a common assumption in the physical layer security literature
(see e.g. [4]).
Bob’s and Eve’s estimate of the vector of input symbols are

given by:
X̂M = HRMYM (3)
X̂E = HREYE (4)

where the m × nM matrix HRM and the m × nE matrix HRE

represent Bob’s and Eve’s receive filters, respectively.
In this setting, we take as a performance metric the MSE be-

tween the estimate of the input vector and the true input vector.
The objective is to design the transmit filter that solves the opti-
mization problem:

min MSEM = E
[
‖X− X̂M‖2

]
(5)

subject to the security constraint:
MSEE = E

[
‖X− X̂E‖2

]
≥ γ (6)

and to the total power constraint:

tr

{
HTH

†
T

}
≤ Pavg (7)

for particular receiver filter choices, where ‖ · ‖2 denotes the l2-
norm, E

(
·
)
denotes the expectation operator,

(
·
)† denotes the

Hermitian transpose operator and tr {·} denotes the trace opera-
tor.
It is important to note that this approach does not guarantee

perfect information-theoretic security, in the sense of [1], [2]
and [3]1. The design of the filters based on the MSE criteria is,
instead, a means to provide additional confusion in a communi-
cations system. The rationale is based on the fact that some ap-
plications require a MSE below a certain level to function prop-
erly, so that this approach would impair further the performance
1We consider this aspect in greater detail in section 6, where we
analyze the mutual information in the eavesdropper channel.

of the eavesdropper by imposing a threshold on its MSE level.
This setup can also be combined with existing cryptographic al-
gorithms, in order to strengthen the security of the communica-
tions system.

3. RECEIVE FILTERS DESIGN
We now consider the design of the receive filters. The legitimate
receiver uses the receive filter that, for any fixed transmit filter,
minimizes the MSE given by:

MSEM = E
[
‖X−HRMYM‖2

]
(8)

subject to the ZF constraint:

HRMHMHT = I (9)

where I is the m × m identity matrix. The legitimate receiver
receive filter is then given by:

H
∗
RM =

(
H

†
T
H

†
M
HMHT

)−1
H

†
T
H

†
M

(10)

On the other hand, the eavesdropper uses the receive filter that,
for any fixed transmit filter, minimizes the MSE given by:

MSEE = E
[
‖X−HREYE‖2

]
(11)

The eavesdropper receive filter is then given by [10]2:

H
∗
RE = H

†
T
H

†
E

(
I+HEHTH

†
T
H

†
E

)−1

(12)

Hence, upon substitution of (10) and (12) into (8) and (11),
respectively, it follows that the MSEs associated with the receive
filter designs are given by:

MSEM = tr

{(
H

†
T
H

†
M
HMHT

)−1
}

(13)

and
MSEE = tr

{(
I+H

†
E
HEHTH

†
T

)−1
}

(14)

4. TRANSMIT FILTER DESIGN
We now consider the design of the optimal linear transmit filter.
This, in view of (13) and (14), corresponds to the solution of the
optimization problem given by:

min
HT

tr

{(
H

†
T
H

†
M
HMHT

)−1
}

(15)

subject to the secrecy constraint:

tr

{(
I+H

†
E
HEHTH

†
T

)−1
}

≥ γ (16)

and to the power constraint:

tr

{
HTH

†
T

}
≤ Pavg (17)

2We recognize the fact that more sophisticated nonlinear techniques
could be used in order to estimate Alice’s information, but we
restrict our attention to the use of linear filters by the eavesdropper,
in this paper.



with HTH
†
T

� 0. By considering the change of variable(
HTH

†
T

)−1

= Z,
(
H

†
M
HM

)−1

= A and
(
H

†
E
HE

)
= B,

together with the Woodbury matrix identity, it is also possible to
rewrite the optimization problem as follows:

min
Z

tr {AZ} (18)

subject to the constraints:

tr {I} − tr

{
B (Z+B)−1

}
≥ γ (19)

tr

{
Z
−1
}
≤ Pavg (20)

and Z � 0. One recognizes immediately that this is a standard
convex optimization problem, so that the solution follows from
the Karush-Kuhn-Tucker conditions given by:

A− ν

[
(Z+B)−1

B (Z+B)−1
]
− μZ

−2 = 0 (21)

ν

{[
tr {I} − tr

{
B (Z+B)−1

}]
− γ

}
= 0, ν ≥ 0 (22)

μ

[
Pavg − tr

{
Z
−1
}]

= 0, μ ≥ 0 (23)

Z � 0 (24)

tr {I} − tr

{
B (Z+B)−1

}
≥ γ (25)

tr

{
Z
−1
}
≤ Pavg (26)

where ν ans μ are the Lagrange multipliers associated with the
secrecy and the power constraints, respectively.
It is clear from the Karush-Kuhn-Tucker conditions that there

are three operational regimes: i) the scenario where the trans-
mitter can use all the available power without violating the se-
crecy constraint (there is not enough available power to violate
the secrecy constraint), so that the secrecy constraint is not ac-
tive (ν = 0) and the power constraint is active (μ > 0); ii) the
scenario where both the secrecy and power constraints are active
(ν > 0 and μ > 0); and iii) the scenario where the transmitter
cannot use all the available power without violating the secrecy
constraint, so that the secrecy constraint is active (ν > 0) and the
power constraint is inactive (μ = 0).
It is difficult to extract a characterization of the optimal fil-

ter design from the Karush-Kuhn-Tucker conditions above in the
general scenario. Consequently, we concentrate on scenarios i)
and iii) only.

4.1. Power constraint active / secrecy constraint inactive
Let us consider the scenario where the power constraint is active,
whilst the secrecy constraint is inactive. This situation typically
arises – for a certain fixed γ – in a regime of low available power,
due to the fact that the power, injected into the channel, is not
enough to meet or violate the secrecy constraint.
The following Theorem, which stems directly from the

Karush-Kuhn-Tucker optimality conditions above, defines the
form of the optimal transmit filter, in such a regime.

Theorem 1 An optimal transmit filter is, without loss of gener-
ality, given by:

H
∗
T = α

(
H

†
M
HM

)− 1

4 (27)

where α =

√
Pavg

tr

{(
H

†
M

HM

)− 1

2

} .

Proof 1 This Theorem follows from the Karush-Kuhn-Tucker
conditions by using the fact that ν = 0, so that we can rewrite
(21) as follows:

A− μZ
−2 = 0 (28)

Note that in this regime, the left singular vectors ofH∗
T corre-

spond to the matrix with the right singular vectors ofHM ,
so that the transmit filter diagonalizes the main channel. This
solution corresponds to the solution in [7].

4.2. Power constraint inactive / secrecy constraint active
Let us now consider the scenario where the power constraint is
inactive, whilst the secrecy constraint is active. This is a situation
that typically arises – for a certain fixed γ – in a regime of high
available power; in fact, the use of all the available power would
immediately violate the secrecy constraint.
The following theorem, which also stems directly from

the Karush-Kuhn-Tucker optimality conditions above, defines
the form of the optimal transmit filter, in such a regime. In par-
ticular, we use the fact that there exists a non-singular m × m

matrix C that diagonalizes both H
†
M
HM and H

†
E
HE simulta-

neously [11], i.e.:

C
†
H

†
E
HEC = ΛE

C
†
H

†
M
HMC = ΛM

such that:
H

†
E
HE = C

−†
ΛEC

−1

(
H

†
M
HM

)−1

= CΛ
−1

M C
†

where, them×m matrices ΛM , Λ−1

M
and ΛE are diagonal ma-

trices.

Theorem 2 An optimal transmit filter is, without loss of gener-
ality, given by:

H
∗
T = C

(
αΛ

1

2

M
Λ

1

2

E
−ΛE

)− 1

2

(29)

where α =
tr

{
Λ

1

2

E
Λ

− 1

2

M

}
tr{I}−γ

.

Proof 2 This Theorem also follows from the Karush-Kuhn-
Tucker conditions above by using the fact that μ = 0, so that
we can rewrite (21) as follows:

A− ν

[
(Z+B)−1

B (Z+B)−1
]
= 0 (30)



5. A NOTE ON THE VALIDITY OF THE
OPERATIONAL REGIMES

It is now relevant to establish conditions, which are a function
of the system parameters, that identify the exact regions of va-
lidity of the operational regimes unveiled and investigated in the
previous section.

5.1. Power constraint active / secrecy constraint inactive
It is easy to show that this regime is valid if, for a fixed set of sys-
tem parameters, Pavg , γ, HM and HE , the following condition
holds:

tr {I}− tr

{
H

†
E
HE

[(
H

∗
TH

∗†
T

)−1

+H
†
E
HE

]−1
}

≥ γ (31)

where H∗
T follows the solution embodied in Theorem 1, given

by:

H
∗
T =

√√√√√ Pavg

tr

{(
H

†
M
HM

)− 1

2

} (H†
M
HM

)− 1

4 (32)

Note that (31) and (32) can be used to determine a thresh-
old secrecy constraint, γmaxreg1 , below which we operate un-
der this regime, or equivalently, a threshold power constraint,
PavgmaxR1

, below which we operate under this same regime.
The threshold secrecy constraint is given by:

γmaxreg1 =

tr{I}−tr

⎧⎪⎪⎨
⎪⎪⎩H

†
E
HE

⎡
⎢⎣ tr

{
(H†

M
HM)

− 1

2

}

Pavg

(
H

†
M

HM

) 1

2 +H
†
E
HE

⎤
⎥⎦

−1
⎫⎪⎪⎬
⎪⎪⎭
(33)

5.2. Power constraint inactive / secrecy constraint active
It is also straightforward to show that this regime is valid if, for
a fixed set of system parameters, Pavg , γ, HM andHE , the fol-
lowing condition holds:

tr

{
H

∗
TH

∗†
T

}
≤ Pavg (34)

where H∗
T follows the solution embodied in Theorem 2, given

by:

H
∗
T = C

⎛
⎜⎝ tr

{
Λ

1

2

E
Λ

− 1

2

M

}
tr {I} − γ

Λ

1

2

M
Λ

1

2

E
−ΛE

⎞
⎟⎠

− 1

2

(35)

Similarly to the previous regime, (34) and (35) can be used to
determine a threshold secrecy constraint, γminreg3

, above which
we operate under this regime, or equivalently, a threshold power
constraint, PavgminR3

, above which we operate in the same re-
gime. The threshold power constraint is given by:

Pavgmin = tr

⎧⎪⎨
⎪⎩C

⎛
⎜⎝ tr

{
Λ

1

2

E
Λ

− 1

2

M

}
tr {I} − γ

Λ

1

2

M
Λ

1

2

E
−ΛE

⎞
⎟⎠

−1

C
†

⎫⎪⎬
⎪⎭
(36)

6. NUMERICAL RESULTS

We shall now present a set of numerical results in order to pro-
vide further insight into this problem. We consider, for simplic-
ity, a 2× 2MIMO Gaussian wiretap channel where the main and
the eavesdropper channel matrices are given by:

HM =

[
4 −1

1 2

]
and HE =

[
2 −1

1 1

]

Figure 2 shows the values of the MSEs in the main and in the
eavesdropper channels and the injected power into the channels
vs. the secrecy constraint, for Pavg = 1. The three operational
regimes are evident. Below γmaxreg1 ,the solution minimizes the
MSE in the main channel subject to the power constraint only.
We can indeed verify that the available power is not sufficient to
meet or violate the secrecy constraint. In-between γmaxreg1 and
γminreg3

,the optimal solution3 minimizes the MSE in the main
channel while meeting the power and the secrecy constraint with
equality. Above γminreg3

, the optimal solution minimizes MSE
in the main channel subject to the secrecy constraint only. Note
that it is not possible to use all the available power, otherwise the
secrecy constraint would be violated. Figure 3 shows the values
of the MSEs in the main and eavesdropper channel along with
the injected power vs the available power, for γ = 1. We easily
identify, once more, the three regimes of operation. For Pavg <

PavgmaxR1
the optimal design follows the solution embodied in

Theorem 1. For Pavg > PavgminR3
the optimal design follows

the solution embodied in Theorem 2. For PavgmaxR1
< Pavg <

PavgminR3
the optimal design satisfies the power and the secrecy

constraints with equality.
It is also of interest to analyze the mutual information between

the input vector and the output vectors achieved by our design.
Figure 4 depicts the mutual information between the inputX and
the eavesdropper outputYE vs. the available power, by assuming
that the input follows a Gaussian distribution. We consider three
distinct designs: (1) the optimal transmit filter achieved by our
design; (2) the transmit filter that minimizes the mean squared
error in the main channel, but does not take in account any se-
crecy constraint; and (3) a transmit filter which is a multiple of
the identity matrix, and such that tr

{
HTH

†
T

}
= Pavg – note

that this represents isotropic signalling. It is very interesting to
verify that, even without directly minimizing the mutual infor-
mation in the eavesdropper channel, which corresponds to the
information-theoretic security criteria par excellence, our opti-
mal solution results in the lowest mutual information of these
three cases. In particular, by imposing a threshold on the MSE
in the eavesdropper channel one will, not only impair the eaves-
dropper performance, but also limit the amount of information
that is leaked.

7. CONCLUSIONS

We have considered the problem of filter design with secrecy
constraints in the classical wiretap scenario, where the objec-
tive is to design transmit and receive filters that minimize the
3The solution in this regime, which has not been derived, was ob-
tained through numerical methods.



MSE between the legitimate parties whilst guaranteeing that the
eavesdropper MSE remains above a certain threshold. In partic-
ular we considered the case where the legitimate receiver uses
a Zero Forcing receive filter while the eavesdropper utilizes the
optimum linear receive filter. We characterized the form of the
receive and transmit filters in particular operational regimes, to-
gether with a set of numerical results to illustrate the perfor-
mance. We also note that the design of filters that minimize the
MSE between the legitimate parties whilst guaranteeing a min-
imum MSE at the eavesdropper, subject to a power constraint,
appears to be a viable option to provide reliability and a certain
additional degree of security. In particular, our designs have been
shown to limit the amount of mutual information leaked to the
eavesdropper, in comparison to other designs.
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