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Instituto Superior Técnico – Instituto de Sistemas e Robótica
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ABSTRACT

The non-coherent single-user multiple-input multiple-output
(MIMO) channel in the low signal-to-noise ratio (SNR) regime
is analyzed from the capacity point of view. We investigate
the impact of channel and noise correlation on the mutual
information for the on-off and Gaussian signaling schemes.
The novelty is that we allow an arbitrary structure for both
the channel and noise correlation matrices. Our results estab-
lish that, in the low SNR regime, mutual information is max-
imized when the channel correlation matrix is of rank one.

1. INTRODUCTION

In slowly fading scenarios, channel stability allows the re-
ceiver to be trained in order to obtain the channel state infor-
mation (CSI) necessary for coherent detection of the trans-
mitted codeword. The scope of this paper will be fast fading
scenarios, where the channel coefficients change too quickly
to allow reliable channel estimation. Hence, CSI is no more
available, and the receiver must operate in a non-coherent
mode. Furthermore, we focus on the low signal-to-noise ratio
(SNR) regime. This is due to the fact that a variety of digital
communication systems (more specifically in wireless, sensor
and satellite networks) operate in the power-limited region.
See [2, 3] for a more thorough discussion of this topic.

Previous work. In [3], low SNR MIMO systems when CSI is
available at the receiver have been considered. The interplay
of rate, bandwidth, and power is analyzed in the region of en-
ergy per bit close to its minimum value. In [4], the scenario
where no CSI is available at the receiver has been treated. It
has been demonstrated that the optimal signaling at low SNR
achieves the same capacity as the known channel case for sin-
gle transmit antenna systems. In [5], it has been shown that
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knowledge of the first and second derivatives of capacity at
low SNR gives us insight on bandwidth and energy efficiency
for signal transmission. More precisely, these quantities tell
us how spectral efficiency grows with energy-per-bit. In [6],
a formula for the second-order expansion of the input-output
mutual information at low SNR is obtained, whereas in [7]
the capacity and the reliability function as the peak constraint
tends to zero are analyzed for a discrete-time memoryless
channel with peak constrained inputs. In [8], Rao and Hassibi
have shown that the on-off signaling presented in [4] general-
izes to the multi-antenna setting and attains the known chan-
nel capacity. The tradeoff between communication rate and
average probability of decoding error using a framework of
error-exponent theory has been considered in [9]. It is argued
that the advantage of having multiple antennas is best realized
when the fading is fully correlated, i.e., a performance gain of
MN and a peakiness gain of M2NT can be achieved where
M , N and T represent the number of transmit, receive an-
tennas, and the length of the coherence interval, respectively.
In [2], the approach in [8] has been extended as both noise
and channel correlation have been taken in account.

Contribution and paper organization. We study the non-
coherent MIMO channel in the low SNR regime from the ca-
pacity viewpoint. The novel aspect is that we allow the chan-
nel covariance matrix to have an arbitrary correlation struc-
ture. This, together with the fact that the noise covariance
matrix is also allowed to have an arbitrary structure, makes
this scenario the most comprehensive and challenging one.
The data model is introduced in section 2. In section 3, the
spatially correlated non-coherent MIMO block Rayleigh fad-
ing channel is analyzed and the impact of channel and noise
correlation on the mutual information is obtained for the on-
off signaling. In section 4, we extend the analysis presented in
section 3 to the case of Gaussian signaling. The main conclu-
sion is that for both cases mutual information is maximized
when the channel correlation matrix is fully correlated. We
also argue that the on-off signaling is optimal for this multi-
antenna setting. Some mathematical details are left to an ap-



pendix.

2. DATA MODEL

We focus on a communication system consisting of M trans-
mit and N receive antennas over a narrowband flat Rayleigh
fading channel. A block fading channel model which is widely
used in the MIMO literature [8, 9]with coherence interval T ,
is adopted. In complex base band notation we have the system
model

X = SH + E, (1)

where S is the T × M matrix of transmitted symbols, X is
the T × N matrix of received symbols, H is the M × N
channel matrix, and E is the T × N matrix of zero-mean
additive observation noise. We work under the following as-
sumptions: A1 (Channel matrix) The stochastic model for
the channel matrix H is such that vec(H) =

√
ρ
M K

1
2 hw,

where the vector hw is an MN × 1 vector comprised of sta-
tistically independent CN (0, 1) entries and the matrix K is
an MN × MN positive semidefinite Hermitian correlation
matrix. The coefficient ρ is the model parameter proportional
to the SNR and vec(H) stacks all columns of the matrix H
on the top of each other, from left to right. We assume that
the vector hw remains fixed for the coherence time T af-
ter which it changes to a new independent value. Also, the
vector hw is not known at the receiver neither at the trans-
mitter, but its distribution is. Further, we view the channel
correlation matrix K as a system parameter which we can
introduce and track. The generalization to arbitrary channel
covariance matrices K comprises many scenarios of interest
as special cases: the popular separable (Kronecker) spatial
correlation model [2, 3], a recently proposed spatial correla-
tion model that takes into account coupling between transmit
and receive sides [10], uncorrelated rayleigh fading channel
model [8], etc. For a fair comparison of different correlation
cases, we assume that tr(K) = MN ; A2 (Transmit power
constraint) We impose the power constraint E[tr(SHS)] ≤
TM ; A3 (Noise distribution) The noise covariance matrix
Υ = E[vec(E) vec(E)H ] is known at the transmitter and at
the receiver. Without loss of generality (w.l.o.g.), we assume
tr(Υ) = NT . In A3, as in [2], we let the data model de-
part from the customary assumption of spatio-temporal white
Gaussian observation noise. In real scenarios the E term
often has a very rich correlation structure, e.g, see [3] and
pp. 100 in [11]. In [12], a methodology for designing space-
time codebooks for non-coherent communications in multiple-
antenna wireless systems and an arbitrary given noise covari-
ance matrix Υ in the high SNR regime has been proposed.

3. MUTUAL INFORMATION: ON-OFF SIGNALING

In [8], it has been demonstrated that the on-off signaling pre-
sented in [4], where the single transmit antenna systems were

considered, generalizes to the multi-antenna setting and at-
tains the known channel capacity. In [1, 2], the authors have
extended the results from [8] to the case of the correlated
Rayleigh fading channel model that obeys the Kronecker struc-
ture, with arbitrary noise covariance matrix. Here, we argue
that this is also the case for the correlated Rayleigh fading
channel model with an arbitrary channel covariance matrix
(as in [1, 2], the noise term is allowed to have an arbitrary
covariance matrix). Moreover, we maximize the mutual in-
formation with respect to (w.r.t.) the input signal Son and
K. The on-off signaling is defined as: for any ε > 1 and
assuming ρ < 1,

S =
{

Son ρ−
ε
2 with probability (w.p.) ρε

0T×M w.p. 1 − ρε

With an analysis similar to [8], not presented here due to lack
of space, it can be shown that at sufficiently low SNR the
mutual information between X and S up to first order in ρ is
given by

I(X; S) =
ρ

M
tr

(
Υ−1 (IN ⊗ Son)K

(
IN ⊗ SH

on

))
+o(ρ),

(2)
where ⊗ denotes the Kronecker product. Remark that for
the special case of the Kronecker correlation model, i.e., the
channel covariance matrix K is of the form K = Kr ⊗ Kt

for some Hermitian positive semidefinite matrices Kr and
Kt, our result in (2) recovers the finding in [1, 2]. Now,
we address the maximization of the mutual information w.r.t.
Son and K , i.e.,

max
tr

(
SonSH

on

)
≤ TM

K ∈ PMN

tr
(
Υ−1SonKS

H

on

)
(3)

wherePn = {Y : n×n matrix such that Y � 0 and tr (Y ) =
n} and Son = IN ⊗ Son. Carrying out an analysis similar
to the one presented in [2], it can be shown that the maximum
of (3) is attained by:

Ŝon = ivec(ŝon), K̂ = MN ûûH , (4)

where

(û, ŝon) = arg max
||u|| = 1,

||son|| ≤
√

TM

sH
onMonson (5)

with
Mon = KH

on

((
uuH

)T ⊗ Υ−1
)

Kon, (6)

u ∈ C
MN and son = vec (Son) ∈ C

TM . The operation
“ivec” operates as an inverse of “vec” (in this case, reshapes
the TM -dimensional vector into a T×M matrix). The matrix
Kon is the TMN2×TM matrix such that vec (IN ⊗ Son) =



Konvec (Son). The proof of (4) is omitted due to paper
length constraints. Essentially, it uses the fact that the max-
imum of a convex function over a compact, convex set is at-
tained at extreme points. The optimization problem in (5)
always admits a solution (maximization of a continuous func-
tion over a compact set) but, in general, a closed form solution
is not available. For the choice in (4), the maximal mutual in-
formation (per channel use (p.c.u.)) is given by

1
T

I(X; S) = ρ N Mλ̂ + o(ρ) (7)

where

λ̂ = ŝHKH
on

((
ûûH

)T

⊗ Υ−1

)
Konŝ (8)

and ŝ = 1/
√

TM ŝon. Note that tr
(
Υ−1

)
=

∑NT
i=1 1/αi ≥∑NT

i=1(2 − αi) = NT , where αi’s are the eigenvalues of Υ.
Let

[
Υ−1

]
ij

= EiΥ−1ET
j where i, j = 1, ..., N , Ei =

eT
i ⊗ IT and ei represents the i-th column of IN . Thus, we

can w.l.o.g. assume that, e.g., λmax

([
Υ−1

]
11

) ≥ 1 (other-

wise tr
(
Υ−1

)
=

∑N
i tr

([
Υ−1

]
ii

)
<

∑N
i T = NT ). Then,

by choosing u =
[
1 01×(MN−1)

]T
we have

λ̂ ≥ max
||s|| ≤ 1

sHKH
on

((
uuH

)T ⊗ Υ−1
)

Kons

= λmax

(
KH

on

(
uT ⊗ ITN

)H
Υ−1

(
uT ⊗ ITN

)
Kon

)
(9)

= λmax

((
UT ⊗ IT

)H

Υ−1
(
UT ⊗ IT

))
(10)

= λmax

([
Υ−1

]
11

)
where U = ivec (u) (i.e., we reshape the MN × 1 vector u
into the M × N matrix U ). The passage from (9) to (10) is
valid due to the following equality: for every M × N matrix
U it holds

KT
on (u ⊗ ITN ) = U ⊗ IT (11)

where u = vec (U). The proof of (11) is given in Appendix A.
Thus, λ̂ ≥ 1. This result confirms the general principle that
correlated noise is beneficial from the capacity point of view.
See, e.g., pp. 100 in [11] for more details. This is also in
agreement with [2] where the case of the Kronecker fading
model has been treated.

Fixed eigenvectors of K . In practice, by changing the an-
tenna separation one can control the eigenvalues of K , but
not their eigenvectors. See [9], [11, section 6.3.3]. As a con-
sequence, the result presented in (7) has to be interpreted as
the upper bound on the channel capacity. In case where we
cannot control the eigenvectors of K the optimization prob-
lem defined in (3) becomes(

Ŝon, Λ̂
)

= arg max
||Son|| ≤

√
TM

Λ ∈ DMN

tr
(
Υ−1SonUΛUHS

H

on

)

where Dn = {Y : n × n diagonal matrix such that Y �
0 and tr (Y ) = n} and UΛUH represents the eigenvalue
decomposition (EVD) of the matrix K. Let ui’s (λi’s) be
the eigenvectors (eigenvalues) of K and let’s define M i

on =
KH

on

((
uiu

H
i

)T ⊗ Υ−1
)

Kon. Then, we can write

max
||Son|| ≤

√
TM

Λ ∈ DMN

tr
(
Υ−1SonUΛUHS

H

on

)

= max
||Son|| ≤

√
TM

Λ ∈ DMN

vecH
(
Son

)
vec

(
Υ−1SonUΛUH

)

= max
||son|| ≤

√
TM

max
Λ ∈ DMN

∑
i

λis
H
onM i

onson (12)

= max
||son|| ≤

√
TM


MN max

i
sH

onM i
onson


 (13)

= M2NT max
i

λmax

(
M i

on

)
. (14)

The justification behind (14) is the following. It is easy to see
that for a given unit-norm vector u, the maximum of (5) is
attained at an extreme point of the convex, compact set

∆ = {s : TM × 1 vectors such that ||s|| ≤
√

TM}
(remark that the objective function in (5) is a convex function

since M i
on =

(
M i

on

)H � 0). The same line of reason-
ing can be used to establish the equivalence between (12)
and (13). In this case, the objective function in (12) is a
linear combination of λi’s and defined on the convex, com-
pact set Ω = {(λ1, ..., λMN ) : MN × 1 vectors such that∑MN

i=1 λi = MN and λi ≥ 0}. It is readily seen that the
extreme points of Ω are the vectors whose all entries are zero
except one which is equal to MN . Thus, we have

Ŝon =
√

TM ivec(smax), K̂ = MNui∗u
H
i∗ , (15)

where smax is an unit-norm eigenvector associated to the max-
imal eigenvalue of

M i∗
on = KH

on

((
ui∗uH

i∗
)T ⊗ Υ−1

)
Kon (16)

and
i∗ = arg max

i = 1, 2, ..., MN
λmax

(
M i

on

)
. (17)

For the choice in (15), the maximal mutual information (p.c.u.)
is given by

1
T

I(X; S) = ρ N Mλmax

(
M i∗

on

)
+ o(ρ).

Remarks. From (4) and (15) it is clear that the channel co-
variance matrix should be made as correlated as possible, as



the optimal K has rank one. A short exercise would show
that the first order term in (7) corresponds to that of the ca-
pacity when the channel is known to the receiver. For the co-
herent case, the mutual information is maximized if the input
vec(S) is circularly symmetric, complex Gaussian distribu-
tion, i.e., vec(S)∼CN (0, P coh) for some covariance matrix
P coh with tr(P coh) ≤ TM such that the power constraint in
the assumption A2 is satisfied. In that case, by maximizing
the first-order expansion of the very well known expectation-
log-det expression for the capacity w.r.t. P coh and K it can
be shown that the optimal correlation matrix K̂ is defined as
in (4) and the optimal covariance matrix P̂ coh is given by

P̂ coh = ŝonŝH
on, (18)

with ŝon defined as in (5).

4. MUTUAL INFORMATION: GAUSSIAN
MODULATION

In this section, we compute the low SNR mutual information
for the more realistic and practical case of Gaussian modu-
lation. Let s = vec(S) be a zero-mean random variable
with covariance matrix P that follows a circularly symmetric,
complex Gaussian distribution, i.e., s∼CN (0, P ). Clearly,
in order to satisfy the power constraint in the assumption A2,
tr(P ) ≤ TM . Then, at sufficiently low SNR, the mutual in-
formation between X and S up to second order in ρ is given
by

I(X; S) =
ρ2

2M2
tr

(
E[Z2] − (E[Z])2

)
+ o(ρ2),(19)

where Z = Υ− 1
2 SonKS

H

onΥ− 1
2 . The proof of (19) is omit-

ted due to paper length constraints. We now address the opti-
mization problem

max
P ∈ HTM , K ∈ PMN

tr
(

E[Z2] − (E[Z])2
)

(20)

where Hn = {P : n × n matrices such that P = P H �
0 and tr (P ) ≤ n}. It can be shown (proof omitted) that
the maximum of (20) is attained by the following signaling
scheme: the optimal correlation matrix K̂ is defined as in (4),
and the optimal covariance matrix P̂ is given by

P̂ = ŝonŝH
on (21)

where the vectors û and ŝon are, as before, solutions of the
optimization problem (5). In this case, the mutual information
(p.c.u.) is given by

1
T

I(X; S) =
ρ2

2
N2 T M2 λ̂2 + o(ρ2) (22)

with λ̂ defined as in (8).

Fixed eigenvectors of K. In the case where we cannot con-
trol the eigenvalues of K it can be shown that the optimal
correlation matrix K̂ is defined as in (15) and the optimal
covariance matrix P̂ is given by

P̂ = TMsmaxs
H
max (23)

where smax is, as before, an unit-norm eigenvector associated
to the maximal eigenvalue of the matrix M i∗

on defined in (16).
In this case, the mutual information (p.c.u.) is given by

1
T

I(X; S) =
ρ2

2
N2 T M2 λ2

max

(
M i∗

on

)
+ o(ρ2). (24)

The proof of (23) is omitted due to lack of space. However,
in what follows, we outline its main steps here for the com-
pleteness of the presentation. First, we note that the objec-
tive in (20) is a quadratic (and always positive) function of
the eigenvalues of K. Hence, the maximum is attained at an
extreme point of the set Ω and, consequently, the optimal cor-
relation matrix is rank one, i.e., it can be written in the form
MNuuH for some u. Then, for a given MN dimensional

vector u and Zu = Υ− 1
2 SonuuHS

H

onΥ− 1
2 one can show

(proof omitted) that the following hold:

tr
(
E

[
Z2

u

])
= tr2 (PMon) + tr

(
(P Mon)2

)
(25)

and
tr

(
(E [Zu])2

)
= tr

(
(PMon)2

)
(26)

where M on is defined as in (6). By combining (25) and (26)
with (20) and by invoking Fan’s theorem (see pp. 17 in [13])
we get (23).

Remarks. We see that the mutual information is proportional
to M2N2. Hence, the results herein presented are in concor-
dance with [2, 9] and with the results of the previous sub-
section where it has been shown that channel correlation and
correlated noise can improve the channel performance. Also,
note that the optimal values correspond to those of the co-
herent correlated Rayleigh fading channel case (remark that
P̂ = P̂ coh defined in (18)).

5. CONCLUSIONS

We have studied the MIMO channel in the low SNR regime
from the capacity analysis perspective. The novel aspect is
that we allow the channel correlation matrix to have an ar-
bitrary correlation structure. This paper completes our pre-
vious work in [1, 2] where the Kronecker correlation model
has been adopted for the channel covariance matrix. We have
shown that, by maximizing the mutual information for the on-
off and Gaussian signallings over the system’s parameters, the
channel correlation matrix should be as correlated as possible.
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[5] S. Verdú, “Spectral efficiency in the wideband regime,”
IEEE Trans. Inform. Theory, vol. 48, pp. 1319-1343,
June 2002.
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A. APPENDIX

In this appendix, we establish expression (11). We start by
using the following result: Kon = H⊗ IT where

H = (IN ⊗ KMN ) (vec (IN ) ⊗ IM ) (27)

and KMN is the MN×MN commutation matrix. See pp. 46
and 48 in [14]. Hence, it holds

KT
on (u ⊗ ITN ) =

(HT (u ⊗ IN)
) ⊗ IT . (28)

In (28) the following property is used: if AC and BD exist
then (A ⊗ B) (C ⊗ D) = AC⊗BD and ITN = IN ⊗IT .
See pp. 28 in [14]. This implies that if one manages to prove
that for every M × N matrix U

HT (u ⊗ IN ) = U , (29)

where u = vec (U), the equality in (11) will be automatically
proved. Thus, in the sequel, we prove (29). To this end, note
that it is sufficient to show that for every i = 1, .., M and
j = 1, ..., N

fT
i

(HT (u ⊗ IN )
)
ej = U ij (30)

where U ij is the ij-th element of U and ej , f i represent the
j-th and i-th column of IN and IM , respectively. Using (27)
and (30) we can write

fT
i HT = (vec (IN) ⊗ f i)

T
(
IN ⊗ KT

MN

)
=

[
(e1 ⊗ f i) ; ... ; (eN ⊗ f i)

]T
(
IN ⊗ KT

MN

)
(31)

and

(u ⊗ IN )ej =
[
(u1 ⊗ ej)

T
... (uN ⊗ ej)

T
]T

(32)

where uk, for k = 1, ..., N , is the k-th column of the matrix
U . By combining (31) and (32) with (30) we have

fT
i

(HT (u ⊗ IN)
)
ej =

N∑
k=1

(ek ⊗ f i)
T

KT
MN (uk ⊗ ej)

=
N∑

k=1

(f i ⊗ ek)T (uk ⊗ ej) (33)

= U ij .

To get (33) Theorem 9 on pp. 47 in [14] is invoked. This
completes the proof.


