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Abstract

We study blind identification of multiple-input multiple-output (MIMO) systems based
only on 2nd order statistics (SOS). This problem arises naturally in many applications,
for example, SDMA (Space Division Multiple Access) networks for wireless multi-user
communications. The problem of SOS-based blind MIMO channel identification is not
strictly well-posed. At least, a phase ambiguity per input cannot be avoided. But other,
more severe, channel ambiguities may also exist. We take the viewpoint of modeling the
unavoidable phase ambiguities as an equivalence relation in the set of MIMO channels.
We partition the set of MIMO channels in disjoint equivalence classes and work solely
with this quotient space (the set of equivalence classes) throughout the thesis. We prove
an identifiability theorem which shows that, under a certain spectral diversity condition
on the input random signals, the MIMO channel equivalence class is uniquely determined
by the output SOS. Although the proof of the identifiability theorem is not constructive,
we develop a closed-form algorithm which achieves the predicted identifiability bound.

We show that the sufficient input spectral diversity condition can be easily induced
by placing a coloring pre-filter at each transmitter. To achieve an optimal design for the
pre-filters, we carry out an asymptotic performance analysis of our closed-form algorithm.
Since we deal with an inference problem over a quotient space, our case is not covered
by the standard theory used in Euclidean contexts. Instead, a Riemannian structure is
induced in the quotient space and we set up some intrinsic theoretical tools to cope with
this manifold setting. To place a fundamental limit on the MIMO channel equivalence
estimate quality, we also present an extension of the Cramér-Rao bound to this Riemannian
setup.

Keywords: Blind channel identification, Multiple-input multiple-output systems, Second-
order statistics, Colored inputs, Performance Analysis, Riemannian geometry
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Resumo

Esta tese aborda o problema da identificação cega de canais MIMO (multiple-input
multiple-output) baseada apenas em estat́ısticas de 2a ordem. Trata-se de um problema
que encontra aplicação imediata em diversos cenários, como por exemplo, redes de acesso
múltiplo por divisão espacial SDMA (Space Division Multiple Access) para comunicações
móveis. O problema da identificação cega de canais MIMO a partir das estat́ısticas de 2a

ordem não está, de um ponto de vista puramente matemático, bem formulado. De facto,
não pode ser resolvida pelo menos uma ambiguidade de fase por cada entrada do canal.
Contudo, podem existir outras ambiguidades de carácter mais severo. Nesta tese, resolveu-
se modelar as inevitáveis ambiguidades de fase como uma relação de equivalência no con-
junto dos canais MIMO. Assim, particiona-se este conjunto em classes de equivalência
disjuntas e analisam-se os diversos problemas a tratar nesta tese a partir deste espaço
quociente. Para resolver o problema da identificação, prova-se um teorema que, sob deter-
minada condição espectral nos processos estocásticos presentes à entrada, garante que a
classe de equivalência do canal é univocamente determinada pelas estat́ısticas de 2a ordem
observadas à sáıda. Embora a prova deste teorema não seja construtiva, desenvolve-se um
algoritmo que, num número finito de passos, realiza a identificação do canal.

Mostra-se que a condição espectral suficiente acima mencionada pode ser facilmente
induzida colocando um filtro que correlaciona os śımbolos de informação emitidos, em
cada transmissor. De modo a conseguir um desenho óptimo para estes filtros, realiza-se
um estudo de desempenho asimptótico do algoritmo de identificação proposto. Contudo,
porque nos confrontamos com um problema de estimação formulado sobre um espaço
quociente, o nosso caso não se encontra coberto pelas técnicas usuais de análise estat́ıstica
que operam em espaços Euclideanos. Assim, induz-se uma estrutura Riemanniana sobre
o espaço quociente e desenvolvem-se algumas ferramentas teóricas que possibilitam uma
análise intŕınsica neste contexto. Apresenta-se ainda uma extensão do conhecido limiar
de Cramér-Rao para este contexto de variedades diferenciais Riemannianas.

Palavras-chave: Identificação cega de canal, Sistemas com múltiplas entradas e sáıdas,
Estat́ısticas de segunda ordem, Entradas com espectro não-branco, Análise de desem-
penho, Geometria Riemanniana
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Chapter 1

Introduction

1.1 Problem formulation

During the past few years, we have witnessed a spectacular growth in the demand for
mobile communication services, such as telephony, data, facsimile, etc. Indeed, whilst
low data-rate digital voice was the main application of second-generation (2G) wireless
systems (European GSM, North American IS-95, etc) with channels operating around
14.4kbps (kilobits per second), the new third-generation (3G) systems (Universal Mobile
Telecommunications System (UMTS), International Mobile Telecommunications (IMT)-
2000, etc) migrated towards high-rate data applications and aim to support Internet and
multimedia applications of up to 144kbps in high mobility (vehicular) traffic and up to
2Mbps (megabits per second) in indoor (stationary) traffic [19]. To cope with these rates
of demand, an increase of the current cellular networks’ capacity is mandatory. Since the
radio frequency (RF) spectrum is a scarce resource, this translates into the demand for
new, highly efficient spectral bandwidth-saving multiple access techniques together with
advanced signal processing methodologies which end up enabling the operators to reliably
serve multiple high-rate users in parallel. Multiple-access schemes incorporated in some 1G
and 2G standards include: code division multiple access (CDMA), time-division multiple
access (TDMA) and frequency division multiple access (FDMA). In CDMA architectures,
several users occupy simultaneously in time a spectral bandwidth that is substantially
greater than their respective information-bearing signals [70]. Their baseband data sig-
nals are spread by means of a pseudo-random code (one per user) before transmission.
Stretching the signal to the whole available bandwidth, provides protection against in-
terference, noise, and permits to mitigate the negative effects of multipath propagation.
CDMA reception consists in exploiting the near-orthogonality of the spreading codes to
uniquely despread each intended user from the incoming wideband signal which contains
the mixed co-channel transmissions. The CDMA concept is embodied in the IS-95 stan-
dard for cellular phone applications and is also envisaged for 3G systems. In TDMA
architectures, each user has access to the whole available bandwidth, but only one com-
municator can be active at a time [46]. That is, the time axis is partitioned into disjoint
intervals and each of these non-overlapping time slots is allocated to only one user. Since
the users’ transmissions do not intersect in time, there is no inherent crosstalk, which,
apart some synchronization issues, simplifies TDMA reception. The TDMA concept is
included in the GSM digital cellular system. In FDMA architectures, the available RF
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2 Introduction

bandwidth is split into disjoint frequency narrowband subchannels. Each user enjoys ex-
clusive access to one frequency subchannel and all users transmit simultaneously in time.
Due to the intrinsic separation of signals in the frequency domain, the FDMA receiver
essentially picks up each user from the observed signal through a bandpass filter. The
FDMA scheme was prominently employed in the first-generation (1G) cellular systems.

Recently, the space division multiple access (SDMA) concept has emerged as an at-
tractive multiple-access technique which has the potential for supporting high-speed data
transmission while maintaining an efficient signal spectral occupation [3, 45, 20]. In loose
terms, SDMA networks take advantage of the spatial dimension of the radio resource for
acommodating multiple users in parallel. In SDMA architectures, several users within the
same geographical cell do coexist in the same time and/or frequency channel which may
be either narrowband or wideband. SDMA reception relies on an multielement antenna
deployed at the base station receiver together with sophisticated array signal processing
techniques to discriminate the co-channel users based on their distinct spatial signatures.
Combining the SDMA philosophy with other multiple-access techniques results in a more
efficient spectral packing of users, which ends up boosting the overall system capacity
without requiring further Hertzs. Figure 1.1 depicts the uplink (users to base station) of
a standard SDMA network (all users are active at the same time). In addition to the net
increase in cellular capacity, SDMA systems can provide better immunity to the multipath-
induced fading phenomenon. Indeed, if the antenna elements are properly spaced so that
signal decorrelation can be assumed, the SDMA receiver has access to several independent
versions of each transmitted signal (spatial oversampling). The probability that a deep
fade occurs simultaneously across all antenna elements becomes negligible (as the number
of antennas grows), thus ensuring an adequate average power level for signal copy.

Base Station

User 1 (carrier f0)

User 2 (carrier f0)

User P (carrier f0)

Figure 1.1: Space Division Multiple Acess (SDMA) wireless network: uplink

These performance gains are obtained at the cost of an increased complexity in the base
station receiver, which must now demodulate several co-channel users’ transmissions (with-
out the help of orthogonal spreading codes). The first separation techniques in the spatial
domain relied on the concept of spatial filtering or beamforming [69]. Essentially, this
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consists in numerically weighting the outputs of the antenna array in order to create beam
patterns (spatial filters) with the ability of illuminating desired users and nulling out the
unintended ones. The implementation of beamformers at the receiver requires previous
knowledge of the sources’ geographical position, that is, the direction of arrival (DOA) of
the wavefronts impinging on the array. Although, in principle, the receiver can learn these
spatial channel characteristics through training sessions (supervised reception), this results
in a waste of the available bandwidth. Thus, blind (unsupervised reception) methods is
the preferred mode of operation. Furthermore, blind techniques can support automatic
link re-establishment whenever data links are occasionally disruptured due to severe fad-
ing. A plethora of blind DOA finding methods have been proposed in the literature,
see [52, 50, 21, 35] and the references therein. The DOA estimation techniques can resolve
closely spaced sources but require highly accurate parametric channel models, calibrated
arrays, and/or special array configurations. Their performance can drop significantly in
the face of callibation errors, sensor position mismatches, etc. This motivated the search
for new blind spatial separation techniques, free from the DOA/beamforming paradigm.
Thus, to gain robustness, current approaches do not rely on known array responses, but
instead, tend to interpret SDMA demodulation as an instance of a blind source separa-
tion (BSS) problem. The area of BSS is a very active, interesting research subject on its
own which finds direct applications in many fields such as speech, digital communications,
radar, etc. See [26] for a survey of theory, techniques and recent research findings. In
the context of SDMA networks, the BSS techniques exploit special properties in the data
signal model “outside” the realm of the array response matrix. Note that the structure of
the channel matrix is basically controlled by the physical environment (position of scat-
ters, etc) in which the data link is embedded. In contrast, the transmitted signals are
man-made. Thus, any desired structure can be easily inserted in the transmitter side and
can safely be assumed to be there (to be exploited) at the receiver end. In the context of
wireless communications, current BSS approaches take advantage of several digital signal
structures: cyclostationarity, constant-modulus (CM), finite-alphabet (FA), etc. In fact,
a wide range of methodologies is now available, see [17, 18]. When BSS techniques exploit
the information contained in the statistics of the observations, they can be classified as
either higher-order statistics (HOS) methods or second-order statistics (SOS) methods.
The SOS-based techniques are potentially more attractive since they tend to require less
data samples to achieve channel identification when compared to cumulant-based (HOS)
techniques. Furthermore, the majority of BSS techniques developed so far are iterative in
nature and vulnerable to local minima convergence.

In this thesis, we address the problem of blindly separating the contribution of distinct
digital sources, given a finite set of observation vectors from the noisy linear mixture. Al-
though the primary motivation comes from the SDMA context, our results are presented
in full generality and can be used in other relevant digital communication setups. The
striking features of our solution are: it uses only 2-nd order statistics (SOS) and provides
a closed-form (non-iterative) estimate of the mixing channel. This is obtained by conve-
niently structuring the transmitted signals (more precisely, by judiciously coloring their
2nd order statistics) in order to enable the receiver to recover the channel matrix from the
correlation matrices of the observation vector. In addition to the proposed closed-form
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channel identification algorithm, we study in this thesis some adjacent problems linked to
this multiple users setup. A more detailed account of the topics covered in this work and
the main contributions to be found herein is given in the sequel.

1.2 The thesis chapter by chapter: brief summary and con-
tributions

In this section, we briefly review the contents of chapters 2, 3 and 4, which are the
main chapters in this thesis. The goal is to highlight the more important contributions
per chapter. A more exhaustive description (summary) of each one can be found in
their respective introductory section. For each chapter, we also refer the publications
(conference or journal papers) that it gave rise.

1.2.1 Chapter 2

Summary. In chapter 2, we concern ourselves with the blind channel identification prob-
lem (BCIP) mentioned earlier. More specifically, we aim at blindly identifying the convo-
lutive (that is, with finite memory) mixing channel which underlies the available channel
output observations. From this knowledge, a space-time linear equalizer retrieving all the
the input users is easily synthesized at the receiver. Our solution identifies the channel
analytically (non-iterative scheme) and is based only on the 2nd order statistics of the
observations. To put in perspective our results, we now review the more relevant blind
channel identification/equalization techniques but with a clear and strong emphasis on
SOS-based only methods. We begin with the single-user context and then proceed to the
multiple-users setup.

For single-input multiple-output (SIMO) systems, the work by Tong et al. [59, 60, 61]
was a major achievement. By exploiting only the 2nd order statistics of the channel
outputs, they derive an analytical solution for the unknown channel coefficients. Being a
non-iterative identification scheme, it is not impaired by local (false) minima convergence
issues which plague many iterative techniques (and oblige them to several time-consuming
reinitializations). In their work, the input signal driving the SIMO channel is assumed to
be white (uncorrelated in time), and this structure was shown to be sufficient for retrieving
the channel by the method of moments. The subspace method developed in [43] exploits
instead the Sylvester structure exhibited by the channel matrix in a stacked data model
and yields another SOS-based closed-form channel identification technique. The subspace
method can also be viewed as a deterministic method (no statistical description is assumed
for the source signal), like the techniques in [80, 29]. See [62] for a survey on both these
statistical and deterministic approaches.

The subspace-based methodology was generalized to the context of multiple-input
multiple-output (MIMO) systems in [24, 1, 2]. It was shown that, by exploiting only
the 2nd order statistics of the channel outputs, the MIMO channel can be recovered up
to a block diagonal constant matrix. In equivalent terms, the convolutive mixture can
be decoupled in several instantaneous (also called static or memoryless) mixtures of the
input signals, with two sources being in the same group if and only if they share the
same channel degree. In particular, the convolutive mixture is completely resolved if all
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users are exposed to distinct system orders, that is, they exhibit memory diversity. The
blind SOS-based whitening approach in [64, 65, 66] also converts a convolutive mixture
into a static one, with a substantial weakening on the channel assumptions: infinite-
impulse response (IIR) channels can be accommodated, as well as minimum-phase common
zeros among the subchannels. Furthermore, the usual column-reduced condition can be
dropped. Still, it is left with these approaches to resolve the residual static mixtures.
To handle the latter, several BSS techniques can be invoked depending mainly on the
characteristics of the sources, but also on the number of available samples, and the signal-
to-noise ratio. Examples of these BSS techniques include: i) high-order statistics (HOS)
approaches, e.g., the joint-diagonalization procedure in [9], which are feasible for non-
Gaussian sources (although estimates of cumulants converge slower than SOS, [61]); ii) the
analytical constant modulus algorithm (ACMA) [67], which separates constant modulus
(CM) sources; iii) separation of finite-alphabet (FA) sources, which may be tackled by
locally-convergent iterative algorithms [56, 57, 58, 25, 4, 73, 68].

Complete blind channel identification (that is, without requiring any BSS step) based
only on 2nd order statistics can by achieved by the techniques in [5, 38, 30, 31, 12, 11].
The methods in [5, 38, 30, 31] rely on colored inputs while [12, 11] rely on conjugate
cyclostationary inputs. The main drawback of the separation technique in [5] is that it
only applies to static (memoryless) mixtures. The matrix-pencil (MP) method introduced
in [38] can handle convolutive (with memory) mixtures and is formulated within the non-
stationary scenario. The MP technique processes a pair of output correlation matrices in
order to determine generalized eigenvectors. Each one of these eigenvectors can isolate a
filtered version of one of the inputs from the given observations. Thus, by carefully group-
ing the extracted signals (that is, identifying which extracted signals correspond to the
same source) the original multiple-user separation problem is reverted to several SIMO
deconvolution subproblems which can then be solved by the aforementioned mono-user
techniques. However, in the MP approach it is not clear which pair of output correlation
matrices should be selected to support this identification scheme. Moreover, by processing
only one pair of correlation matrices, the MP ignores important information conveyed by
the remaining ones. The techniques in [30, 31] exploit the concept of blind identification
by decorrelating subchannels (BIDS) introduced in [17, chapter 4]. The main advantage
over the MP technique is that the BIDS algorithm does not require the channel to be
simultaneously irreducible and column-reduced (as it is common in most multiple-user
scenarios [1, 2, 24, 68]). However, the implementation of the BIDS technique is not in
closed-form and global convergence is not proved for the iterative algorithm in [17, chap-
ter 4]. At this point, we would like to stress that, common to all the works in [5, 38, 30, 31]
is the fact that they do not assume the color of the input statistics to be known at the
receiver. The closed-form transmitter induced conjugate cyclostationarity (TICC) tech-
nique introduced in [12, 11] does not require colored inputs. Rather, a distinct conjugate
cyclic frequency per user is induced at each transmitter. This inserted structure in the
emitted signals is then exploited at the receiver to reduce the problem to several SIMO
channel estimation problems. The main drawback of TICC is its high sensitivity to car-
rier frequency misadjustments. In multi-user scenarios, this distortion may be expected to
appear in the baseband demodulated signals, as the receiver has to synchronize its local
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oscillator simultaneously with multiple independently generated carrier frequencies.

Contribution. In this chapter, we introduce a closed-form method for the blind identifi-
cation of MIMO channels, based only on 2nd order statistics (SOS). However, in contrast
with all aforementioned SOS-based techniques, we assume that the color of the 2nd order
statistics of the channel inputs are known at the receiver (in addition to the common
assumption that they are distinct). This is because, in our communication strategy, the
emitted signals are colored at each transmitter. More precisely, we use correlative filters
at the transmitters to assign distinct spectral patterns to the random messages emitted
by the sources. Thus, in particular, their spectral colors are under our control. It is this
extra piece of information available at the receiver (when compared with the remaining
techniques) which simplifies and enables an analytical solution for the blind channel iden-
tification problem. We establish sufficient conditions on the correlative filters to ensure
uniqueness of the MIMO channel matrix from the SOS of the channel outputs by proving
an identifiability theorem. We exploit this theoretical result to derive an algorithm that
blindly identifies the channel matrix by matching the theoretical and observed 2nd order
statistics.

As in the MP approach [38] we handle convolutive (with memory) channels, but we
take advantage of all correlation matrices of the channel outputs in an integrated iden-
tification scheme (not just a pair of them as in the MP approach). Compared with the
BIDS [17, chapter 4] (see also [30, 31]) and the TICC [12, 11] methodologies, our chan-
nel assumptions are more restrictive because we assume the channel to be irreducible
and column-reduced (as in the majority of multiple-user approaches [1, 2, 24, 68, 38]).
However, since our solution can be implemented in closed-form, we do not have the lo-
cal convergence issues of the BIDS algorithm [17, chapter 4]. When compared with the
(non-iterative) TICC technique, we gain robustness to baseband carrier phase drifts (as
we show through computer simulations).

Relation with previous work. We introduced the correlative framework in [71]. In that
paper, the closed form solution relies on a certain quasi-diagonal structure of the sources’s
correlation matrices. However, to attain this analytical solution, we have to restrict the
correlative filters to those that satisfy a minimal memory length condition. In loose terms,
the channel order of each correlative filter must exceed the degree of intersymbol interfer-
ence (ISI) experienced by each user. This condition imposes a significant lower bound on
the computational complexity of the Viterbi decoding algorithm, as the number of states
in the trellis diagram increases with the order of the correlative filters. Here, we drop the
quasi-diagonal property, which makes feasible correlative filters with arbitrary non-zero
degree. Thus, the computational complexity of the Viterbi decoding step is significantly
reduced. In fact, we prove that minimum phase finite impulse response (FIR) filters of
non-zero degree fulfill the requirements of the identifiability theorem. This allows for the
direct inversion of the filters, and leads to a simpler scheme to decode the original data
sequences that may have phase-tracking capability. Since the sources’s autocorrelation
matrices do not have the quasi-diagonal structure, the method in [71] no longer applies.
We develop here a new consistent closed form estimator for the MIMO channel.

Publications. Parts of the material contained in chapter 2 have been published in the
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conference papers [72, 74] and, in a more extended version, in the journal paper [75].
Although the main theoretical and simulation results included in chapter 2 can be found
in [75], the material is presented here with a different language. More precisely, we alert
the reader right from the start that, in fact, the MIMO channel cannot be fully identified
with SOS-only: a phase offset per user cannot be avoided. Of course, this is a well-known
result. However, instead of sweeping this fact under the carpet, we choose to construct an
appropriate mathematical setup which takes into account this impossibility right from the
beginning. This is accomplished by working with a quotient space of channel equivalence
classes (in which all MIMO channels that are equal up to a phase offset per column are
identified) rather than the set of MIMO channels directly. Obviously, this mathematical
setup does not contribute by itself to the solution of the blind channel identification prob-
lem at hand (which explains why it is ignored in most published identification schemes). In
fact, if blind channel identification is the only issue to be addressed, then we can even agree
that the introduction of this mathematical structure into the problem is rather pedantic.
But, the question here is that blind channel identification is not the only issue to be ad-
dressed in this thesis. For example, in chapter 3, we have to deal with the asymptotic
performance of our proposed closed-form channel identification algorithm. How can we
assess (in terms of a metric) the quality of the channel estimate with respect to the “true”
channel, in the presence of the phase channel ambiguities ? In fact, what is the “true”
channel, since all MIMO channels in the same equivalence class are equally valid ? The
usual approach taken in most performance studies consists in arbitrarily normalizing cer-
tain channel entries and then take the Euclidean distance between the channel estimate
and the true one (after both are normalized). In contrast, equipped with the quotient
space concept, we can avoid this awkward technique and work with a truly intrinsic dis-
tance, that is, a metric on the quotient space (thus, no channel “normalization” is needed
with the metric being invariant to phase modifications in channel columns). In fact, a
substantially stronger result applies, as the quotient space can be given quite naturally a
(Riemannian) geometry from which, in particular, the intrinsic distance pops out. Apart
the elegance of this approach, structuring the quotient space as a smooth (geometrical)
object in its own right, is a key theoretical step (almost mandatory) which enables a
rigorous intrinsic performance analysis (chapter 3) and the determination of intrinsic vari-
ance bounds of given estimators (chapter 4) which take values in that manifold. In sum,
within the geometrical framework of the (Riemannian) quotient space, we can address
many interesting theoretical problems in an elegant, intrinsic and unified manner. In fact,
the majority of our theoretical results are obtained in great generality, and might be of
interest for other parametric estimation scenarios with certain structured ambiguities.

Exploitation of differential-geometric tools within the context of statistical signal pro-
cessing is not new. The precursor paper by R. Bucy, J. M. F. Moura and S. Leung [8]
examines a highly relevant signal processing problem (multiple source localization by a
phased sonar or radar array) from a differential-geometric perspective. They showed that
the standard DOA estimation problem can be recast as the problem of estimating a point
in a certain submanifold of the Grassmannian manifold. This viewpoint not only brings
geometrical insight into the problem, but also potentiates the development of efficient algo-
rithms for the position estimation of multiple closely spaced targets. Another geometrical
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re-interpretation of a typical signal processing problem occurs in M. Rendas and J. M.
F. Moura [49]. By exploiting the geometrical structure behind ML parameter estimation
in exponential families, they set up an ambiguity function – an analysis tool which can
answer several (global) performance questions. Its application to passive and active sonar
and radar location mechanisms is exemplified in [49].

1.2.2 Chapter 3

Summary. In chapter 3, we carry out a performance analysis of the closed-form identifi-
cation algorithm proposed in chapter 2. The goal of this theoretical study is to assess the
impact of the correlative filters (placed at the transmitters) on the quality of the channel
estimate. More precisely, given a choice for the correlative filters and the MIMO channel,
we obtain a closed-form expression which approximates the mean-square distance between
the true channel equivalence class and the estimated one, when N channel output obser-
vations are available for processing. From this study, we can address the issue of optimal
(off-line) pre-filter design in communications scenarios where the MIMO channel is a ran-
dom object with a given a stochastic model. For obtaining our theoretical results, we
generalize certain key results in classical large-sample analysis (derived within the context
of Euclidean spaces) to the setting of Riemannian manifolds (see below). At the end of
the chapter, the theoretical study is validated through numerical simulations. The com-
puter experiments have shown a good agreement between the predicted (theoretical) and
observed accuracy of the channel estimate, thus qualifying this study as an effective tool
for attacking the problem of optimal pre-filter design.

Contribution. The main contribution and novelty of this chapter is contained in the
differential-geometric framework that we introduce in order to theoretically support the
aforementioned performance analysis. Indeed, notice that our estimator takes values in a
non-Euclidean space: the quotient space of identifiable channel equivalence classes. Thus,
our case is not covered by the standard theory of asymptotic analysis which is mainly
concerned with Euclidean spaces, e.g., see [37, 53]. In this chapter, we generalize some
classical concepts and results (such as asymptotic normal random sequences, the delta-
method, etc) to the Riemannian manifold setting. To attain this level of abstraction, we
were inspired by some definitions introduced in the work by Chang [10] which addresses
asymptotic analysis on the Lie group of special orthogonal matrices. Our results are ob-
tained in all generality (for example, they are applicable to either Euclidean submanifolds
or quotient spaces). This Riemannian extension of classical large-sample theory is useful
in our context because the quotient space of channel equivalence classes can easily (in
fact, quite naturally) acquire a Riemannian structure. This structure follows directly (is
uniquely defined) by requiring the projection map which sends each MIMO channel to its
equivalence class to be a Riemannian submersion. In loose terms, we make our choices
in order to have a nice interface between the geometry of the set of MIMO channels (a
canonical Euclidean space) and the geometry of the quotient space of channel equivalence
classes. This last property, together with the large-sample machinery developed for Rie-
mannian settings, simplifies the analysis and leads to elegant (computable) results. As
a last commentary, we would like to notice that as soon as a Riemannian structure is
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introduced on the quotient space, the concept of distance (also called intrinsic or Rieman-
nian distance in the sequel) becomes automatically available. In fact, this is the distance
mentioned in the expression “mean-square distance” appearing in the previous paragraph.
The point here is that a correct notion of distance between equivalence classes emerges
spontaneously from this setup. This removes the need for guessing what should be the ap-
propriate error measure for evaluating the performance of the estimator, as it is sometimes
required in other parametric estimation problems affected by parameter ambiguities, see
the discussion in [42].

Publications. Some techniques, tools and the spirit of the approach pursued in the
performance study in chapter 3 have been published in our conference papers [76, 77].
However, these works are not concerned with Riemannian manifolds. This is because,
in [76, 77], all data are assumed to take values in the set of real numbers R (for simplicity
of the analysis). Thus, with that assumption, the phase offset ambiguity which affects
each column of the MIMO channel transfer matrix boils down to a ±1 ambiguity. As a
consequence, each channel equivalence class contains only a finite number of channels, not
a continuum of channels like it happens when complex-valued data is allowed. This dis-
crete structure of the quotient space makes the formalism of Riemannian spaces perfectly
avoidable, and that is why it was not invoked in [76, 77]. All said, the whole Riemannian
viewpoint (together with all its related results) taken in chapter 3 is new and has not been
published.

1.2.3 Chapter 4

Summary. In the previous chapters 3 and 4, we proposed a SOS-based solution to the
blind MIMO channel identification problem and studied its performance, respectively. In
chapter 4, we interest ourselves with the performance of any estimator (SOS-based or
not) for this inference problem. More precisely, we aim at finding a lower bound on the
mean-square (Riemannian) distance which is valid for any estimator of the MIMO chan-
nel equivalence class, for a given signal-to-noise ratio and number of channel observations.
Notice that we face a parametric estimation problem where the parameter takes values in
the Riemannian manifold of channel equivalence classes. Therefore, the familiar bounding
tools such as the Cramér-Rao lower bound (CRLB), which were conceived for statistical
families indexed by parameters in open Euclidean subsets, do not apply. In this chapter,
we develop an extension of the Cramér-Rao bound to the Riemannian manifold setting,
which we call the intrinsic variance lower bound (IVLB). The IVLB is developed in all
generality and may be used in scenarios other than the blind MIMO channel identification
problem. In fact, chapter 4 contains examples involving statistical families indexed over
the Lie group of orthogonal matrices and the complex projective space. The IVLB limits
the accuracy of estimators taking values in Riemannian manifolds, within the framework
of parametric statistical models indexed over Riemannian manifolds. The accuracy men-
tioned here is the intrinsic (Riemannian) accuracy which is measured with respect to the
intrinsic Riemannian distance carried by the Riemannian manifolds. The IVLB depends
on the curvature of the Riemannian manifold where the estimators take values and on a
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coordinate-free extension of the familiar Fisher information matrix.

Contribution. The theory behind the classical CRLB inequality can be found in many
standard textbooks [63, 51, 34, 48]. It assumes that one is given a parametric statistical
family with the parameter taking values in open subsets of Euclidean spaces. However,
recently, several authors have achieved CRLB extensions to the context of parametric
statistical families indexed over submanifolds of Euclidean spaces, see [22, 41, 55]. This
is the natural setting for inference problems where the parameter indexing the family is
known to satisfy certain deterministic (perhaps physically imposed) smooth constraints.
The works in [22, 41, 55] do not deal with abstract Riemannian manifolds such as quotient
spaces. This drawback is eliminated in the studies in [27, 44, 54]. They work, right
from the start, with statistical families indexed over (abstract) Riemannian manifolds and
express their results with intrinsic-only tools (that is, the ambient Euclidean spaces are
discarded from the analysis or are even non-existent). Note that this level of abstraction
automatically covers more statistical families, like ones indexed over quotient spaces (the
problem treated in this thesis). The work in [27] extends the CRLB inequality in terms
of tensor-like objects, but a lower bound on the intrinsic variance of estimators is not
readily obtainable. The study in [44] expresses its results in terms of intrinsic distance.
However, the Riemannian structure of the manifold where the estimator takes values is not
arbitrary, but the one induced by its Fisher information metric (this choice of structure
corresponds to the familiar Rao distance). The work in [54] improves this result, that
is, it allows for arbitrary Riemannian metrics and applies to unbiased estimators. Our
contribution in this chaper is thus the following one. We derive the IVLB maintaining the
level of abstraction of the works in [27, 44]. That is, we express our results in the language
of Riemannian differential geometry. However, contrary to the works in [27, 44], we arrive
at a lower-bound which is formulated in terms of the intrinsic Riemannian distance (in
contrast with [27] which provides tensor inequalities) and applies to arbitrary Riemannian
structures (in contrast with [44] which assumes a specific one). Compared to [54], we allow
for biased estimators.

Publications. The material presented in chapter 4 can be found in the conference pa-
pers [78, 79]. The work in [78] deals with unbiased estimation only, while [79] extends
the IVLB to the general case of biased estimators. Here, we mainly refine the presentation
(more details are discussed) and gather the examples contained in both papers.

1.3 Notation

In the following, we introduce the notation common to all chapters in this thesis. As the
need arises, additional notation is defined within each chapter.

Mappings. Maps are usually denoted by capital letters in normal typeface (F,G, . . .)
or by greek letters (ψ,ϕ, . . .). The symbols domF and imageF denote the domain
and image of the map F , respectively. That is, if F : domF → S then imageF =
{F (x) ∈ S : x ∈ domF}.

Matrix algebra. N = {0, 1, 2, . . .}, Z = {0,±1,±2, . . .}, R, and C denote the set of
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natural, integer, real, and complex numbers, respectively. Matrices (uppercase) and (col-
umn/row) vectors are in boldface type. Scalars are usually in lowercase and non-boldface
type. Rn×m and Rn denote the set of n×m matrices and the set of n-dimensional column
vectors with real entries, respectively. A similar definition holds for Cn and Cn×m. The
notations (·)T , (·), (·)H , (·)+ and (·)−1 stand for the transpose, the complex conjugate,
the Hermitean, the Moore-Penrose pseudo-inverse and the inverse operator, respectively.
The symbols tr (·) and rank (·) represent the trace and the rank matrix functions. The
Frobenius norm of A is denoted by

‖A‖ =
√
tr

(
AHA

)
.

The kernel (nullspace) of A ∈ Cn×m is represented by ker (A) = {x ∈ Cm : Ax = 0} .
The symbols In, 0n×m and

Jn =


0
1 0

1 0
. . . . . .

1 0


stand for the n×n identity, the n×m all-zero, and the n×n Jordan block (ones in the first
lower diagonal) matrices, respectively. When the dimensions are clear from the context,
the subscripts are dropped. Also, if either n = 0 or m = 0, we let 0n×m be an empty
matrix. The symbol 1n = (1, 1, . . . , 1)T denotes the n-dimensional vector with all entries
equal to 1. For m ∈ Z, we define the n× n shift matrices

Kn[m] =
{

Jmn , if m ≥ 0
J−m
n , if m < 0

.

Direct sum (diagonal concatenation) of matrices is represented by diag (·),

A = diag (A1,A2, . . . ,An) ⇔ A =


A1

A2

. . .
An

 .

For a vector a = (a1, a2, . . . , an)
T , we define the corresponding diagonal matrix

Diag (a) =


a1

a2
. . .

an

 .

The vectorization operator is denoted by vec (·),

A =
[
a1 a2 · · · am

]
: n×m ⇒ vec (A) =


a1

a2
...

am

 : nm× 1.
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The Kronecker product of two matrices is represented by ⊗. If

A =

 a11 · · · a1m
... · · ·

...
an1 · · · anm

 : n×m

and B : k × l, then

A⊗B =

 a11B · · · a1mB
... · · ·

...
an1B · · · anmB

 : nk ×ml.

We let H(n) =
{
H ∈ Cn×n : HH = H

}
, K(n) =

{
K ∈ Cn×n : KH = −K

}
, U(n) ={

U ∈ Cn×n : UHU = In
}
and O(n) =

{
Q : Rn×n : QTQ = In

}
denote the set of Her-

mitean, skew-Hermitean, unitary and orthogonal matrices of size n× n, respectively.

Polynomials and signals. The set of polynomials with coefficients in C and indetermi-
nate z−1 is denoted by C[z]. The polynomial

f(z) =
d∑
k=0

f [k]z−k

is said to have degree d, written deg f(z) = d, if f [d] �= 0. The degree of the zero
polynomial is defined to be −∞. The set of polynomials with degree d is denoted by

Cd[z] = {f(z) ∈ C[z] : deg f(z) = d} .

Similar definitions apply for Cn[z] and Cn×m[z], the set of n × 1 polynomial vectors and
n×m polynomial matrices, respectively. The order of a polynomial matrix

F (z) =
[
f1(z) f2(z) · · · fm(z)

]
∈ Cn×m[z]

is defined as ordF (z) =
∑m
k=1 deg fk(z). For the polynomial vector

f(z) =
d∑
k=0

f [k]z−k ∈ Cnd [z],

and l ∈ N, we define the n(l + 1)× (d+ 1 + l) block Sylvester matrix

T l (f(z)) =


f [0] · · · f [d] 0 · · · 0

0 f [0] · · · f [d]
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 f [0] · · · f [d]

 .

In this thesis, we only consider discrete-time signals. Polynomial matrices

F (z) =
d∑
k=0

F [k]z−k ∈ Cp×q[z]



1.3 Notation 13

act on (input) signals x[n] ∈ Cq yielding (output) signals y[n] ∈ Cp:

y[n] = F (z) � x[n] ⇔ y[n] =
d∑
k=0

F [k]x[n− k].

Let x[n] = (x1[n], x2[n], . . . , xm[n])
T denote a discrete-time signal. For an integer l ≥ 0,

the symbol x[n; l] denotes the signal

x[n; l] =


x[n]
x[n− 1]

...
x[n− l]

 ,

which is (l+1)m-dimensional. For an m-tuple of integers l = (l1, l2, . . . , lm)T , lm ≥ 0, the
symbol x[n; l] stands for the signal

x[n; l] =


x1[n; l1]
x2[n; l2]

...
xm[n; lm]

 ,

which is (l1+ l2+ · · ·+ lm+m)-dimensional. The 1D delta signal δ : Z → R is defined as

δ[n] =
{

1, if n = 0
0, if n �= 0

.

The 2D delta signal δ : Z× Z → R is given by

δ[n,m] =
{

1, if (n,m) = (0, 0)
0, if (n,m) �= (0, 0)

.

We use the same symbol δ for both the 1D and 2D delta signals, as the context easily
resolves the ambiguity.
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Chapter 2

Blind Channel Identification
Based On 2nd Order Statistics

2.1 Chapter summary

Section 2.2 introduces the data model describing a discrete-time linear multiple-input
multiple-output (MIMO) system with finite memory and noisy outputs. In section 2.3,
we state the standard algebraic and statistical conditions which are assumed to hold with
regard to the inputs, transfer matrix and observation noise of the MIMO system. Also,
we formulate our blind channel identification problem (BCIP): we aim at identifying the
transfer matrix of the MIMO system, from the 2nd order statistics (SOS) of its outputs.
In section 2.4, we note that using only this statistical information, the MIMO channel is
not fully identifiable. For example, at the very least, a phase ambiguity per input can-
not be resolved. But other, much more severe ambiguities, can exist. We note that the
input phase ambiguities can be modeled as an equivalence relation in the set of MIMO
channels. Thus, after this set is partitioned into disjoint equivalence classes, we can, at
most, identify each one of these equivalence classes. This obliges us to explicitly shift
the target of our original BCIP: we abandon the identification of the MIMO channel (a
meaningless goal), and now aim at estimating its equivalence class. Mathematically, the
whole situation is described by introducing a mapping ϕ, which associates, to each MIMO
channel equivalence class, the set of correlation matrices that it induces at the MIMO
output. The mere fact that such map exists immediately asserts the unidentifiability of
the MIMO channel itself, leaving however open the question of the identifiability of its
equivalence class: is the mapping ϕ one-to-one ? In section 2.5, we settle this issue. We
show that, with the standard assumption of white sources as channel inputs, the intro-
duced map ϕ may fail to be injective, that is, two distinct channel equivalence classes may
induce the same SOS at the channel output. This motivates us to pre-differentiate the in-
puts in the correlation domain, by assigning them distinct spectral colors. In the common
multi-user digital communications context, this implies inserting a pre-filter in each trans-
mitter (each user acts as an input in the MIMO system). Each pre-filter correlates the
information symbols prior to transmission, thus coloring the previously flat spectral power
density of the information-bearing random process. This pre-processing scheme requires
no additional power or bandwidth. Furthermore, the original data rate is maintained and

15
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no synchronization or cooperation between the sources is needed. We state an identifia-
bility theorem (theorem 2.1). This theorem proves that, under a certain condition on the
pre-filters, the map ϕ indeed becomes one-to-one, that is, the MIMO channel equivalence
class becomes identifiable from the SOS of the channel output. We also state a feasibility
theorem (theorem 2.2). This theorem proves that the set of pre-filters which meet the suf-
ficient condition is dense in the set of all unit-norm, minimum-phase pre-filters. In other
words, the sufficient condition in the identifiability theorem is easily fulfilled in practice.
Having ensured the injectivity of ϕ and thereby the theoretical feasibility of the BCIP,
we solve it in section 2.6. More precisely, we present an algorithm which reconstructs the
MIMO channel equivalence class, given the correlation matrices observed at its output.
This algorithm may also be interpreted as a computational scheme realizing the inverse
map ϕ−1. The algorithm is in closed-form (non-iterative), and leads itself to a natural
implementation in parallel processors. We refer to this algorithm as the closed-form identi-
fication algorithm (CFIA). In section 2.7, we address the problem of decoding the sources’
emitted information symbols, after the channel has been identified. We perform this under
an additional channel impairment: baseband phase drifts due to carrier frequency misad-
justements or Doppler effects. In multi-user setups, this distortion may be expected to
appear in the baseband demodulated signals, as the receiver as to synchronize its local
oscillator simultaneously with multiple independently generated carrier frequencies. We
propose an iterative source separation and channel identification algorithm (IIA), which
also permits to refine the closed-form channel estimated provided by the CFIA. Section 2.8
evaluates the performance of our proposed algorithms. We compare it with the transmitter
induced conjugate cyclostationarity (TICC) approach in [12]. The simulation results show
that our proposed technique yields symbol estimates with lower probability of error than
TICC, in the presence of the aforementioned carrier frequency asynchronisms. Section 2.9
concludes this chaper.

2.2 Data model

MIMO channel. Consider a MIMO channel with P inputs s1[n], . . . , sP [n] andQ outputs
y1[n], . . . , yQ[n] as depicted in figure 2.1. In figure 2.1, the signals w1[n], . . . , wQ[n] model
observation noise. The pth input sp[n] appears at the qth output yq[n] through the sub-
channel hqp(z). Each sub-channel hqp(z) is a finite impulse response (FIR) filter of degree
Dqp,

hqp(z) = hqp[0] + hqp[1] z−1 + · · ·+ hqp[Dqp] z−Dqp . (2.1)

The qth output is given by

yq[n] =
P∑
p=1

hqp(z) � sp[n] + wq[n]

=
P∑
p=1

Dqp∑
d=0

hqp[d] sp[n− d]

+ wq[n]. (2.2)
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+ +

+
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+

s1[n]

sp[n]

sP [n]

h11(z)

hq1(z)

hQ1(z)

h1p(z)

hqp(z)

hQp(z)

h1P (z)

hqP (z)

hQP (z)

w1[n] wq[n] wQ[n]

y1[n]

yq[n]

yQ[n]

Figure 2.1: P -input/Q-output MIMO channel
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Thus, each MIMO channel output is a noisy linear superposition of filtered versions of all
inputs.

Matricial model. The MIMO channel in figure 2.1 is represented in more compact form
in the block diagram of figure 2.2.

+

P Q

Q

Q
s[n] H(z)

w[n]

y[n]

Figure 2.2: P -input/Q-output MIMO channel: block diagram

Here, s[n] = (s1[n], · · · , sP [n])T , y[n] = (y1[n], · · · , yQ[n])T , andw[n] = (w1[n], · · · , wQ[n])T ,
denote the input, output and noise vectors, respectively. The Q× P polynomial matrix

H(z) =


h11(z) · · · h1p(z) · · · h1P (z)

...
...

...
...

...
hq1(z) · · · hqp(z) · · · hqP (z)

...
...

...
...

...
hQ1(z) · · · hQp(z) · · · hQP (z)


is termed the MIMO transfer matrix, or MIMO channel, and contains all subchannels. Its
pth column is given by

hp(z) = (h1p(z), h2p(z), · · · , hQp(z))T

=


h1p[0]
h2p[0]
...
hQp[0]

+


h1p[1]
h2p[1]
...
hQp[1]

 z−1 + · · ·+


h1p[Dp]
h2p[Dp]
...
hQp[Dp]

 z−Dp

= hp[0] + hp[1]z−1 + · · ·+ hp[Dp]z−Dp ,

where Dp = max {D1p, D2p, . . . , DQp}. Thus, hp(z), the pth column of H(z), contains the
Q sub-channels activated by the pth input sp[n]. With this notation, equation (2.2) gives
rise to the matricial model

y[n] =
P∑
p=1

hp(z) � sp[n] +w[n] = H(z) � s[n] +w[n]. (2.3)

The identification H(z) � (d;H). The polynomial channel matrix

H(z) =
[
h1(z) h2(z) · · · hP (z)

]
is parameterized by i) discrete and ii) continuous variables. i) The discrete variables are
the column degrees of H(z), Dp = deghp(z), which we collect in the P -dimensional vector

d = (D1, D2, · · · , DP )T . (2.4)
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ii) The continuous variables are the coefficients of the column polynomial filters hp(z),
which we gather in the Q× (D + P ) matrix

H =
[

h1[0]h1[1] · · · h1[D1]︸ ︷︷ ︸
H1

h2[0]h2[1] · · · h2[D2]︸ ︷︷ ︸
H2

· · · hP [0]hP [1] · · · hP [DP ]︸ ︷︷ ︸
HP

]
.

(2.5)
Here, D = ordH(z) =

∑P
p=1Dp denotes the order of the polynomial matrix H(z), that

is, the sum of the degrees of its P column polynomial filters.
Equations (2.4) and (2.5) establish a one-to-one relationship between the object H(z)

and the ordered pair (d;H), denoted H(z) � (d;H) in the sequel. This alternative
representation for H(z) is more convenient for computations. Take the model (2.3), which
is written in terms of the transfer matrix H(z). In terms of (d;H), it reads as

y[n] = Hs[n;d] +w[n]. (2.6)

Table 2.1 summarizes our MIMO channel model.

Data object Dimension

y[n] = Hs[n;d] +w[n] Q× 1

d = (D1,D2, · · · ,DP )
T P × 1

H =
[
H1 H2 · · · HP

]
Q× (D + P ), D =

∑P
p=1Dp

Hp =
[
hp[0] hp[1] · · · hp[Dp]

]
Q× (Dp + 1)

Table 2.1: MIMO channel – data model

Stacked data model. For later use, it is also convenient to write down the equations of
the stacked data model of order L, defined here as the one corresponding to the stacked
observations y[n;L]. The data model in table 2.1 corresponds to the special case L = 0.
For the general situation, we have the stacked data model in table 2.2. Here, Dp = Dp+L

Data object Dimension

y[n;L] = H s[n;d] +w[n;L] Q(L+ 1)× 1

d = (D1,D2, · · · ,DP )T P × 1

H =
[

H1 H2 · · · HP

]
Q(L+ 1)× (D + P + LP )

Hp = T L (hp(z)) Q(L+ 1)× (Dp + 1 + L)

Table 2.2: MIMO channel – stacked data model of order L

and, recalling the definition of the Sylvester matrix operator T in page 12, we have

Hp =


hp[0] · · · hp[Dp]

hp[0] · · · hp[Dp]
. . . . . .

hp[0] · · · hp[Dp]

 : Q(L+ 1)× (Dp + 1 + L).
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2.3 The space H[z] and problem formulation

Assumptions. In the data model (2.3), we assume an algebraic property for the MIMO
transfer matrix H(z) and a statistical condition on the random vectors s[n] and w[n]:

A1. The Q×P polynomial matrix H(z) is: i) tall (Q > P ), ii) irreducible (rankH(z) =
P , for all z �= 0 and z =∞), iii) column-reduced (rank

[
h1(D1) · · · hP (DP )

]
=

P ), and iv) memory limited by some known degree Dmax (degH(z) ≤ Dmax).
Hereafter, we let H[z] denote the set of all Q × P polynomial matrices satisfying
condition A1 (P and Q are fixed);

A2. The inputs sp[n] and the noise wq[n] are zero-mean wide-sense stationary (WSS)

processes. The inputs have unit-power, E
{
|sp[n]|2

}
= 1, and are uncorrelated with

each other, E
{
sp[n]sq[m]

}
= 0, for all n,m ∈ Z and p �= q. The input and noise

signals are uncorrelated with each other, E
{
sp[n]wq[m]

}
= 0, for all n,m, p, q, and

the noise correlation matrices Rw[m] = E
{
w[n]w[n−m]H

}
are known.

Assumption A1 requires the MIMO polynomial matrixH(z) to be irreducible and column-
reduced. This is a common assumption in multi-user contexts, see [1, 2, 24, 68, 38], and
believed to hold almost surely in realistic multipath models [2]. See [24] for a more detailed
characterization and discussion on the generality of this channel assumption. However,
other methodologies can tackle less restrictive channels [12, 31]. The main characteristic
of irreducible and column-reduced channels is that they admit linear MIMO FIR inverses,
that is, for each such channel H(z), there exists a polynomial matrix E(z) such that
E(z)H(z) = IP , see [6]. The unit-power assumption in A2 entails no loss of generality,
as H(z) may absorb any multiplicative constant. The noise correlation matrices may be
assumed known, as they can be accurately estimated in the absence of input signals.

BCIP. In this chapter, we address the following blind channel identification problem
(BCIP): given the 2nd order statistics of the MIMO channel output, that is, the set of
output correlation matrices

Ry = {Ry[m] : m ∈ Z} , (2.7)

where Ry[m] = E
{
y[n]y[n−m]H

}
, find the MIMO transfer matrix H(z) ∈ H[z].

In standard statistical language, BCIP asks for an estimator of H(z) based on the
method of moments. We aim at extracting the transfer matrix H(z) from the 2nd-order
moments of the observations y[n]. To see the connection between the channel H(z) and
the SOS of the MIMO channel output Ry in (2.7), we express the output correlation
matrices Ry[m] in terms of the the transfer matrix H(z). More specifically, we use the
identification H(z) � (d;H) to give Ry[m] in terms of the vector of channel degrees d

and the matrix of channel coefficients H. For e = (E1, E2, . . . , EP )
T , we use the notation

Rs[m; e] = E
{
s[n; e]s[n−m; e]H

}
to designate the correlation matrix at lag m of s[n; e].

Note that, given the assumption A2 (uncorrelated inputs), this is a block diagonal matrix

Rs[m; e] =


Rs1 [m;E1]

Rs2 [m;E2]
. . .

RsP [m;EP ]

 , (2.8)
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with pth diagonal block

Rsp [m;Ep] = E
{
sp[n;Ep]sp[n−m;Ep]H

}
. (2.9)

Thus, with this notation, given the data model (2.6) and condition A2 (inputs and noise
are uncorrelated), we have

Ry[m] = HRs[m;d]HH +Rw[m]. (2.10)

Equation (2.10) shows how the transfer matrix H(z) � (d;H) affects the 2nd order
statistics of the observations.

2.4 The space H[z]/ ∼ and problem reformulation
In this section, we reformulate the BCIP and put it in firm mathematical ground. It will
be clear from the forthcoming discussion that the original formulation is not well-posed.
The correct formulation requires the introduction of a certain channel-to-statistics map ϕ.
This viewpoint simplifies and unifies the analysis: channel identifiability corresponds to
injectivity of ϕ (section 2.5) and solving the BCIP amounts to inverting ϕ (section 2.6).

We start by defining the set
CZ =

∏
m∈Z

Cm, (2.11)

where Cm = CQ×Q. Thus, CZ is the Cartesian product of countably many copies of
CQ×Q. Each copy of CQ×Q plays the role of a coordinate axis within the space CZ, as
each factor R in the Cartesian product Rn = R × · · · × R. If P is a point in CZ, we
let P [m] ∈ CQ×Q denote its mth coordinate (m ∈ Z). A point P in CZ is specified by
listing all its coordinates P [m], m ∈ Z. Figure 2.3 illustrates these concepts (only three
coordinate axis are shown).

CQ×Q

CQ×Q

CQ×Q

P [−1]

P [0]

P [1]

P

Figure 2.3: Sketch of space CZ and a point P in it

The set of all output correlation matrices Ry = {Ry[m] : m ∈ Z} in (2.7) is a point
in the space CZ. It depends on the underlying channel H(z) � (d;H) through (2.10). In
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fact, equation (2.10) defines a map Φ : H [z]→ CZ which maps a transfer matrix H(z) �
(d;H) to the point Φ (H(z)) with mth coordinate Φ (H(z)) [m] = HRs[m;d]HH +
Rw[m].

In the present context, it might be tempting to re-state BCIP as: given Ry ∈ imageΦ,
find Φ−1 (Ry), that is, invert the map Φ. However, it turns out that Φ is not injective
and, as such, its inverse does not exist. That is why the original formulation of BCIP is
incorrect. The non-injectivity of Φ can be readily established as follows. Let H(z) ∈ H[z]
and consider transfer matrices G(z) given by

G(z) = H(z)Θ (θ) , (2.12)

where θ = (θ1, θ2, · · · , θP )T ∈ RP and Θ (θ) = diag
(
eiθ1 , eiθ2 , . . . , eiθP

)
. Note that

G(z) ∈ H [z] and if some θp is not an integer multiple of 2π, then G(z) �= H(z). But,
more importantly, the equality Φ (G(z)) = Φ (H(z)) holds, irrespective of the input au-
tocorrelation sequences, rsp [m] = E

{
sp[n]sp[n−m]

}
. To check this, let (e;G) be defined

by the identification G(z) � (e;G). Given (2.12), we have e = d and G = HΛ, where

Λ = diag
(
eiθ1ID1+1, e

iθ2ID2+1, · · · , eiθP IDP+1

)
. (2.13)

Thus, the mth coordinate of the point Φ (G(z)) in the space CZ is given by

Φ (G(z)) [m] = GRs[m; e]GH +Rw[m]

= HΛRs[m;d]ΛHH +Rw[m]

= HRs[m;d]ΛΛHH +Rw[m]

= HRs[m;d]HH +Rw[m]

= Φ (H(z)) [m].

Notice that Rs[m;d] commutes with Λ because both share the same block diagonal struc-
ture, see (2.8) and (2.13), the pth block of Λ being the matrix eiθpIDp+1 which commutes
with all matrices of the same size. The non-injectivity of Φ, irrespective of the input au-
tocorrelation sequences rsp [m], corresponds to a well-known MIMO channel identifiability
bound: with 2nd order statistics, the channel H(z) can only be identified up to a phase
offset per user.

To bypass the non-injectivity of Φ, we must work with a version of Φ which acts on
equivalence classes of channels in H [z], rather than on single points (channels) in H [z].
We let ϕ denote this induced version. Formally, the construction is as follows. Introduce
the relation ∼ on the set of MIMO channel matrices H[z] by declaring G(z) ∼ H(z)
if (2.12) holds. Thus, ∼ denotes equality of polynomial matrices modulo a phase offset
per column. It is easily checked that ∼ is an equivalence relation. Recall that a relation ∼
on a set X is said to be an equivalence relation if it is reflexive (x ∼ x, for all x ∈ X),
symmetric (x ∼ y implies y ∼ x) and transitive (x ∼ y and y ∼ z imply x ∼ z). We let
H[z]/ ∼ denote the set of equivalence classes and π : H [z] → H [z]/ ∼ the map which
projects each H(z) to its equivalence class π (H(z)), also written [H(z)]. Now, we make
Φ descend to the quotient thereby inducing a quotient map ϕ such that the diagram in
figure 2.4 commutes, that is, Φ = ϕ ◦ π.
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H [z]

H [z]/ ∼ CZ

π
Φ

ϕ

Figure 2.4: The map Φ descends to a quotient map ϕ

In equivalent terms, we are defining ϕ ([H(z)]) = Φ (H(z)), and ϕ is well-defined (the
result does not depend on a particular representative of the equivalence class) because,
as shown previously, Φ (H(z)) = Φ (G(z)), whenever G(z) ∼ H(z). In the next section,
we prove that ϕ can be made injective by imposing a certain condition on the 2nd order
statistics of the inputs. This will lead to a correct map formulation of the BCIP, antici-
pated here: given Ry ∈ imageϕ, find ϕ−1 (Ry). In other words, we will shift our initial
formulation of the BCIP. We will no longer aim for the identification of a channel (as seen,
this is a meaningless goal). Rather, we will solve for its equivalence class.

2.5 Ensuring the identifiability of H[z]/ ∼
White inputs. Based only on assumptions A1 and A2, the map ϕ may also fail to
be injective. That is, distinct channel equivalence classes may induce the same 2nd order
statistics at the MIMO channel output. This also renders the BCIP meaningless. Consider
the most common scenario: P spectrally white sources a1[n], . . . , aP [n] are plugged to the
P inputs of the MIMO channel, see figure 2.5.

+ +

++

s1[n]

sP [n]

h11(z)

hQ1(z)

h1P (z)

hQP (z)

w1[n] wQ[n]

y1[n]

yQ[n]

a1[n]

aP [n]

Figure 2.5: P -input/Q-output MIMO channel with P spectrally white sources as inputs

A zero-mean WSS random signal x[n] is said to be spectrally white if its autocorrelation
sequence is a delta signal, rx[m] = E

{
x[n]x[n−m]

}
= δ[m]. Equivalently, the power

spectral density of x[n] is flat. Notice that spectrally white sources arise naturally from
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the common digital communication scenario. In that case, each ap[n] usually denotes an
infinite string of independent and identically distributed (iid) information symbols drawn
from a finite modulation alphabet A ⊂ C such as A = ABSK = {±1}. The independence
of the symbols implies, in particular, that they are uncorrelated.

The map ϕ can be seen to be non-injective with a simple example. Let P = 2, fix
Q > P and choose a channel with equal input degrees: H(z) � (d;H) with d = (D1, D2)

T ,
Dp = D0, for some D0 ∈ N. Since sp[n] = ap[n] and each ap[n] is spectrally white, it can
be checked that Rsp [m;Dp] = KDp+1[m]. Recall from page 11 that Kn[m] denotes the
mth shift matrix of size n× n. As a consequence,

Rs[m;d] =
[
Rs1 [m;D1] 0

0 Rs2 [m;D2]

]
= I2 ⊗KD0+1[m]. (2.14)

Therefore, the map ϕ sends [H(z)] to the point in CZ whose mth coordinate is

ϕ ([H(z)]) [m] = HRs[m;D]HH +Rw[m]

= H (I2 ⊗KD0+1[m])HH +Rw[m].

Define another channel G(z) = H(z)Q, where

Q =
1√
2

[
1 −1
1 1

]
.

Then, G(z) � (e;G) with e = d and

G = H (Q⊗ ID0+1) . (2.15)

Using (2.14) and (2.15), the image of [G(z)] under ϕ is the point in CZ withmth coordinate

ϕ ([G(z)]) [m] = GRs[m; e]GH +Rw[m]

= H
(
Q⊗ ID0+1

)(
I2 ⊗KD0+1[m]

)(
QH ⊗ ID0+1

)
HH +Rw[m]

= H
(
QQH ⊗KD0+1[m]

)
HH +Rw[m]

= H (I2 ⊗KD0+1[m])HH +Rw[m].

Here, we used the Kronecker product property (A⊗B) (C ⊗D) = AC ⊗BD, for con-
formable matrices A,B,C,D, see [39, page 28]. Since ϕ sends [G(z)] �= [H(z)] to the
same image, it is not one-to-one.

Colored inputs. Thus, if ϕ is to be injective, the random signals seen at the P inputs
of the MIMO channel cannot be all simultaneously white. The data sources must imprint
their information through colored signals. This means that we need a mechanism that,
within the pth source, transforms the uncorrelated signal ap[n] into a correlated one, say
sp[n] for convenience, which becomes the new source output. This mechanism must be
reversible, that is, ap[n] must be recoverable from sp[n], or else, information may be lost.
We propose to implement such a mechanism through unit-power minimum phase filters.
That is, the pth new information bearing signal sp[n] is a filtered version of the pth original
white signal ap[n],

sp[n] = cp(z) � ap[n]. (2.16)
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Figure 2.6: P -input/Q-output MIMO channel with P colored sources as inputs

Figure 2.6 depicts the new scenario discussed here. Compare with figure 2.5 which illus-
trates the original scenario.

For each p = 1, 2, . . . , P ,

cp(z) =
Cp∑
d=0

cp[d]z−d

denotes an unit-power, that is,
Cp∑
d=0

|cp[d]|2 = 1,

minimum phase filter of degree Cp. Moreover, without loss of generality, we assume
cp[0] �= 0 (nonzero precursor). For future reference, we define

MC [z] =

{
c(z) =

C∑
d=0

c[d]z−d ∈ CC [z] : c(z) is unit-power, minimum phase and c[0] �= 0

}
.

(2.17)
Thus, cp(z) ∈ MCp [z], for all p. The unit-power property of each pre-filter guarantees that
the transmission power is maintained relative to the original scenario, that is,

E
{
|sp[n]|2

}
= E

{
|ap[n]|2

}
,

as can be easily seen. The minimum phase property ensures the existence of a stable
inverse for the filter cp(z), hence, the reversibility of the transformation. Notice also that
this filtering mechanism preserves the original data rate.

By passing the white signal ap[n] through the filter cp(z), we induce a spectral color
in the random signal sp[n]. Note that the 2nd order statistics of sp[n] are completely
determined by cp(z). It is useful to expose this dependence in an explicit manner. We
do so by writing the correlation matrices of the pth colored signal sp[n;Ep], that is, the
matrices Rsp [m;Ep] in (2.9), in terms of the coefficients of the correlative filter cp(z).
Here, Ep ∈ N denotes a generic stacking parameter. Similarly, for N ∈ N and m ∈ Z, we
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define Rap [m;N ] = E
{
ap[n;N ]ap[n−m;N ]H

}
. Since ap[n] is a spectrally white signal,

Rap [m;N ] = KN+1[m]. (2.18)

Given (2.16), we have

sp[n;Ep] = T Ep (cp(z))ap[n;Ep + Cp]. (2.19)

Note that

T Ep (cp(z)) =


cp[0] · · · cp[Cp]

cp[0] · · · cp[Cp]
. . . . . .

cp[0] · · · cp[Cp]

 : (Ep + 1)× (Ep + Cp + 1) .

(2.20)
Finally, using (2.19) and then (2.18),

Rsp [m;Ep] = T Ep (cp(z)) Rap [m;Ep + Cp]T Ep (cp(z))
H

= T Ep (cp(z)) KEp+Cp+1[m]T Ep (cp(z))
H . (2.21)

Equation (2.21) shows how the pth input correlation matrices Rsp [m;Ep] depend on the
coefficients of the pth correlative filter cp(z).

Spectral diversity assumption. It turns out that, if the pre-filters induce sufficiently
distinct spectral colors to the random processes sp[n], then the map ϕ : H/ ∼→ CZ,
which sends equivalence classes of channels to output correlation matrices, becomes in-
jective, thereby turning the BCIP into a (at least, theoretically) feasible problem. In
equivalent words, the channel H(z) becomes identifiable, up to a phase offset per column,
from the 2nd order statistics of the MIMO channel output. Before stating this spectral
diversity condition, we must introduce new notation. For a matrix A ∈ Cn×n, we let
σ (A) = {λ1, λ2, . . . , λn} denote its spectrum, that is, the set of its eigenvalues (including
multiplicities). The normalized correlation matrix at lag m of a zero-mean WSS random
multivariate process x[n] is defined as

Γx[m] = Rx[0]−1/2Rx[m]Rx[0]−1/2,

where Rx[m] = E
{
x[n]x[n−m]H

}
. This is the matricial counterpart of the usual corre-

lation coefficient at lag m of a given zero-mean WSS scalar random process x[n],

γx[m] =
E
{
x[n]x[n−m]

}
√
E {|x[n]|2}

√
E {|x[n−m]|2}

=
rx[m]√

rx[0]
√
rx[0]

= rx[0]−1/2rx[m]rx[0]−1/2.

We let Γsp [m;Ep] denote the normalized correlation matrix at lag m of sp[n;Ep]. Thus,

Γsp [m;Ep] = Rsp [0;Ep]
−1/2Rsp [m;Ep]Rsp [0;Ep]

−1/2. (2.22)
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Notice that Γsp [m;Ep] in (2.22) is a function of cp(z) through the matrices Rsp [0;Ep] and
Rsp [m;Ep]. Similarly,

Γs[m; e] = Rs[0; e]−1/2Rs[m; e]Rs[0; e]−1/2 (2.23)

denotes the normalized correlation matrix at lag m of s[n; e]. Since the inputs are uncor-
related (condition A2 in page 20), this is a block diagonal matrix,

Γs[m; e] =


Γs1 [m;E1]

Γs2 [m;E2]
. . .

ΓsP [m;EP ]

 . (2.24)

We are now in position to state our final assumption.

A3. The pre-filters are memory limited by some known degree Cmax (deg cp(z) = Cp ≤
Cmax). The P data sources correlate their white information sequences ap[n], that is,
employ pre-filters cp(z), such that: for each p = 1, 2, . . . , P , there exists a correlation
lag m(p) ∈ Z satisfying

σ
(
Γsp [m(p);Ep]

)
∩

⋃
q �=p

σ
(
Γsq [m(p);Eq]

) = ∅, (2.25)

for all 0 ≤ E1, E2, . . . , EP ≤ E. Here, E is some pre-chosen constant which verifies

E ≥ (P + 1)Dmax + Cmax.

Condition A3 means that, for each source p = 1, 2, . . . , P , there must exist one cor-
relation lag m(p) which makes the spectra of Γsp [m(p);Ep] disjoint from those of the
remaining sources, that is, from the spectra of Γsq [m(p);Eq], for q �= p. Furthermore, this
non-overlapping spectral condition must hold (with the same correlation lag m(p)) for any
stacking parameters E1, E2, . . . , EP taken in {0, 1, 2, . . . , E}.

Identifiability theorem. As promised, the spectral richness introduced by the pre-
filters, quantified in condition A3, guarantees the injectivity of ϕ. We formally state this
result as theorem 2.1.

Theorem 2.1. Consider the signal model in (2.3), and assume that conditions A1-A3 are
fulfilled. Then, the map ϕ : H [z]/ ∼ → CZ is one-to-one, that is,

ϕ ([G(z)]) = ϕ ([H(z)]) ⇒ [G(z)] = [H(z)] .

Proof: See appendix A.

In terms of the non-injective map Φ (which acts on channels, not on equivalence classes,
recall figure 2.4), the theorem reads: Φ (G(z)) = Φ (H(z)) if and only if G(z) ∼ H(z).
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That is, two channels induce the same output 2nd order statistics if and only if they are
equal modulo a phase ambiguity per column. Finally, this theorem permits us to formulate
the BCIP as: given Ry ∈ imageϕ, find ϕ−1 (Ry). In words, solving the BCIP consists in
pinpointing the underlying equivalence class of the MIMO channel, given the 2nd order
statistics of the output.

Connection with [5]. Assumption A3 admits a drastic simplification when the column
degrees Dp = deghp(z) of the channel matrix H(z) = [h1(z)h2(z) · · · hP (z) ] are known
beforehand. In this very special case, it can be seen from the proof of theorem 2.1 that
it suffices that, for each pair of sources (p, q), with p �= q, there exists a correlation lag
m = m(p, q) such that

σ
(
Γsp [m; 1 +Dp + L)

)
∩ σ

(
Γsq (m; 1 +Dq + L)

)
= ∅. (2.26)

Here, L denotes a sufficiently large stacking parameter making the channel matrix H,
which corresponds to the stacked observations y[n;L] (recall table 2.2), full column-rank.
In particular, for the scenario of overdetermined static mixtures of sources (the case ad-
dressed in [5]), we have Dp = 0 and L = 0, and the condition in (2.26) recovers precisely
the spectral conditions of the identifiability theorem 2 in [5].

Correlative filters. In the remaining of this section we investigate the feasibility of con-
dition A3. This condition requires the pre-filters c1(z), . . . , cP (z) to insert a sufficiently
diverse spectral structure in the random signals s1[n], . . . , sP [n], through the normalized in-
put correlation matrices Γsp [m;Ep]. At first sight, this condition imposed on the pre-filters
might appear too restrictive. In the following, we prove that it is not. In fact, we show
that, in a certain sense to be explained shortly, almost every P -tuple (c1(z), . . . , cP (z))
of pre-filters fulfills the requirements of condition A3 . This result is formally stated in
theorem 2.2 below.

The first step towards theorem 2.2 is to endow each set MC [z] in (2.17) with a metric
space structure. This is accomplished by identifying MC [z] with a subset of CC+1 through
the map ι : MC [z]→ CC+1 given by

c(z) =
C∑
d=0

c[d]z−d ι�→ (c[0], c[1], · · · , c[C])T ,

and letting this identification induce a distance function d on MC [z]. More precisely,
d : MC [z] × MC [z] → R is defined by d (c(z), d(z)) = ‖ι (c(z))− ι (d(z))‖, where ‖·‖
denotes the usual Euclidean norm in CC+1. Hereafter, when we think of MC [z] as a
metric space, we are implicitly assuming it equipped with the metric d.

The next step is to define, for a given P -tuple of degrees, c = (C1, C2, · · · , CP )T ∈ NP ,
the Cartesian product Mc[z] = MC1 [z] ×MC2 [z] × · · · ×MCP

[z]. Thus, a point c(z) in
Mc[z] is a P -tuple of filters, the pth filter taken from the appropriate factor space MCp [z],
that is, c(z) = (c1(z), c2(z), · · · , cP (z))T ∈ Mc[z] if and only if cp(z) ∈ MCp [z]. As a
Cartesian product of metric spaces, Mc[z] is itself a metric space, with natural distance
function given by

d (c(z),d(z)) =

√√√√ P∑
p=1

d (cp(z), dp(z))
2.
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Notice that we are using the same symbol d to denote metrics on distinct spaces (in each
factor and the Cartesian product itself). We rely on the context to resolve the ambiguity.

Now, think of each point in the space Mc[z] as a P -tuple of candidate correlative filters.
We say candidate because some points satisfy condition A3 and others do not. We let
Fc[z] ⊂ Mc[z] denote the subset of those fulfilling condition A3. Theorem 2.2 asserts that
Fc[z] occupies almost all the totality of the space Mc[z], whenever c = (C1, C2, · · · , CP )T

is an all non-zero P -tuple of degrees (Cp �= 0 for all p). Of course, we must also have
Cp ≤ Cmax, in order to comply with condition A3. We say that the P -tuple c is upper-
bounded by Cmax.

Theorem 2.2. Let c be an all non-zero P -tuple of degrees upper-bounded by Cmax. Then,
Fc[z] is dense in Mc[z].

Proof: See appendix A.

Recall that a subset F of a given metric space M is said to be dense in M if and only if
every open ball in M intersects F . Thus, every open ball of radius ε > 0 (no matter how
small) and center c(z) (arbitrary) in Mc[z],

Bε (c(z)) = {d(z) ∈ Mc[z] : d (c(z),d(z)) < ε} ,

contains points of Fc[z], that is, P -tuples of filters which satisfy condition A3. On the
other hand, note that condition A3 assumes only the knowledge of an upper bound (Dmax)
for the unknown column degrees D1, . . . , DP . All said, the pre-filters can be easily (in
the sense of theorem 2.2) selected off-line, without knowing H(z), to meet the spectral
diversity assumption A3.

2.6 Closed-form identification algorithm (CFIA)

In this section, we solve the BCIP as formulated in section 2.5 (see page 28). More pre-
cisely, we present a closed-form (non-iterative) algorithm which, given the output correla-
tion matricesRy = {Ry[m] : m ∈ Z}, determines the equivalence class [H(z)] = ϕ−1(Ry)
of the underlying MIMO channel. Thus, the algorithm is a computational scheme which
implements the inverse map ϕ−1 : imageϕ ⊂ CZ → H [z]/ ∼, thereby solving the BCIP.
Hereafter, we term this algorithm the closed-form identification algorithm (CFIA). The
CFIA works in terms of the stacked observations yL[n] in table 2.2, page 19. We as-
sume that the choice for L makes the corresponding stacked channel coefficient matrix H
full column-rank. Note that, because we assumed the channel matrix H(z) to be tall,
irreducible and column-reduced (condition A1), then H is full column-rank for all L suf-
ficiently large, say L ≥ L0. The value L0 = ordH(z) works, see [24], but this is unknown
beforehand. Thus, a very conservative value is L0 = PDmax. The correlation matrices of
y[n;L], that is, Ry[m;L] = E

{
y[n;L]y[n−m;L]H

}
, are completely determined by those

of y[n]. Indeed, we have

Ry[m;L] =


Ry[m] Ry[m+ 1] · · · Ry[m+ L]
Ry[m− 1] Ry[m] · · · Ry[m+ L− 1]

...
...

. . .
...

Ry[m− L] Ry[m− L+ 1] · · · Ry[m]

 . (2.27)
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The same applies to the random vector w[n ; L]: just replace y by w in (2.27). Since
Ry[m] are given and Rw[m] are known (assumption A2), it follows that Ry[m;L] and
Rw[m;L] are available, for any m ∈ Z. We use them to define the (denoised) correlation
matrices R[m] = Ry[m;L]−Rw[m;L]. The latter satisfy the equality

R[m] = HRs[m;d]HH . (2.28)

Furthermore, the matricesRs[m; e] are also available, for arbitrary e = (E1, E2, · · · , EP )T .
By equation (2.8), each of them is a block diagonal matrix with P blocks. The pth
block, given in (2.21), depends only on the pth correlative filter. Since the pre-filters are
chosen beforehand, the matrices Rs[m; e] can thus be pre-stored (computed offline for
arbitrary e).

For later use, notice that Rs[0; e] is a positive definite matrix, irrespective of e. To
verify this, note that the Sylvester matrix in (2.20) has always full row rank because
cp[0] �= 0 (by definition). On the other hand, we have the identity Kn[0] = In, for
arbitrary n. Using this identity in equation (2.21) gives

Rsp [0;Ep] = T Ep (cp(z))T Ep (cp(z))
H .

Since T Ep (cp(z)) has full row rank, Rs[0;Ep] is positive definite (Gramian matrix). Fi-
nally, Rs[0; e], being the diagonal concatenation of positive definite matrices, is itself a
positive definite matrix.

CFIA: step 1. The CFIA involves three steps. The first step computes a matrix G0 which
will satisfy the equality

G0 = HRs[0;d]1/2QH , (2.29)

where Q denotes a residual unknown unitary matrix. To accomplish this, we exploit the
available denoised matrix R[0]. Based on (2.28), we have R[0] = HRs[0;d]HH . Defining
H0 = HRs[0;d]1/2, this can be rewritten as

R[0] = H0 HH
0 . (2.30)

By inspection, R[0] is positive semidefinite. Since H is full column rank and Rs[0;d] is
positive definite (in particular, nonsingular), it follows that H0 and H have the same rank
(the number of columns of H). Thus,

R = rank (H) = rank (H0) = (L+ 1)P +
P∑
p=1

Dp. (2.31)

To obtain G0, we proceed as follows. Perform the eigenvalue decomposition (EVD)

R[0] = UΛUH , (2.32)

where U denotes an unitary matrix, and Λ = diag (λ1, . . . , λR, 0, . . . , 0). Here, λ1 ≥ · · · ≥
λR > 0 (the nonzero eigenvalues are positive because R[0] is positive semidefinite). Thus,
the EVD of R[0] reveals R, its rank. Once R is known, we use it to define the matrix
U1 which contains the first R columns of U , counting from the left. Moreover, define
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Λ1 = diag(λ1, . . . , λR). Notice that both U1 and Λ1 are available from the EVD of R[0].
With these definitions, equation (2.32) reads as

R[0] = U1

[
λ1

. . . λR

]
︸ ︷︷ ︸

Λ1

UH1 . (2.33)

Thus, letting G0 = U1Λ
1/2
1 , we have

R[0] = G0 GH0 . (2.34)

Equations (2.30) and (2.34) assert that H0 HH
0 = G0 GH0 , which, in turn, by trivial matrix

algebra theory, implies that G0 = H0Q
H , for some unitary matrix Q : R×R.

CFIA: step 2. This step determines d = (D1,D2, · · · ,DP )T , Dp = Dp + L, the vector of
input degrees in the stacked data model (recall table 2.2), and the unknown unitary matrix
Q ∈ U(R) appearing in (2.29), modulo some phase ambiguities. Notice that although d

is unknown, its entries must sum up to R − P . This follows from (2.31) and the fact
Dp = Dp + L. Thus, d belongs to the finite set

E =

e = (E1, E2, · · · , EP )T ∈ NP :
P∑
p=1

Ep = R− P

 . (2.35)

For future convenience, we partition Q into P submatrices,

Q =
[
Q1 Q2 · · · QP

]
, (2.36)

where Qp : R× (Dp+1). We start by using the available data, G0 (from step 1) and R[m]
(given), to define the matrices

Υ[m] = G+
0 R[m]G+H

0 . (2.37)

We now relate the available matrices Υ[m] with the unknowns d and Q. By (2.29), we
have G+

0 = QRs[0;d]−1/2 H+. Plugging this in (2.37) and recalling (2.28) gives

Υ[m] = QΓs[m;d]QH , (2.38)

where Γs[m;d] follows the definition in (2.23). Equation (2.38) expresses the matrices
Υ[m], m ∈ Z, as a function of both the vector of integers d and the unitary matrix
Q. The remarkable fact here is that this factorization is essentially unique in terms
of (d,Q), as the second part of theorem 2.3 below shows. First, we need a definition. Let
e = (E1, E2, · · · , Ep)T denote a p-tuple of integers and A1,A2 two n × n matrices, where
n = p +

∑P
j=1 Ej . We say that A1 is similar to A2 with respect to e, written A1

e∼ A2,
if A1 = A2Λ for some diagonal matrix Λ = diag

(
λ1IE1+1, λ2IE2+1, . . . , λpIEp+1

)
, where

λj ∈ C, for j = 1, 2, . . . , p. If, in addition, all λj are of the form ei θj , with θj ∈ R, then
we write A1

e≈ A2.
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Theorem 2.3. Assume that conditions A1-A3 are fulfilled. Then,

Υ[m]X −X Γs[m;d] = 0 (2.39)

for all m ∈ Z if and only if X
d∼ Q. Moreover, let e = (E1, E2, · · · , EP )T ∈ E and

W ∈ U(R). Then,
Υ[m] = W Γs[m; e]WH , for all m ∈ Z, (2.40)

if and only if e = d and W
d≈ Q.

Proof: See appendix A.

We exploit both uniqueness results of theorem 2.3 as the basis of our strategy for deter-
mining d and Q. First, notice that, since the pre-filters cp(z) and the MIMO subchannels
hpq(z) have finite memory, the normalized correlation matrices Γs[m; e] are zero for |m|
sufficiently large. Thus, theorem 2.3 still holds if one replaces the condition m ∈ Z

in (2.40) by, say, m = ±1,±2, . . . ,±M , where M is chosen sufficiently large. A conserva-
tive value is, for example, M = R−P +Cmax +1. With this data, we define the function
χ : E× U(R) → R,

χ (e,W ) =
M∑

|m|=1

∥∥Υ[m]−W Γs[m; e]WH
∥∥2 . (2.41)

For a pair (e,W ), the value χ (e,W ) measures the mismatch of the factorization (2.40).

Theorem 2.3 asserts that χ (e,W ) = 0 if and only if e = d and W
d≈ Q. Now, suppose

W : E → U (R) is a map satisfying χ (d,W(d)) = 0, and define φ : E → R by φ(e) =
χ (e,W(e)). Then, d is the unique minimizer of this non-negative function φ over E,
because φ(d) = 0 (by the hypothesis on the map W) and, as soon as e �= d, φ (e) > 0 by
theorem 2.3. Thus, d can be found as

d = arg min
e ∈ E

φ (e) . (2.42)

Moreover, W(d)
d≈ Q, that is, W(d) would reveal Q up to phase ambiguities.

It remains to exhibit the map W . It must satisfy the equation χ (d,W(d)) = 0, that
is,

Υ[m] = W (d) Γs[m;d]W (d)H ⇔ Υ[m]W(d)−W (d)Γs[m;d] = 0, (2.43)

for m = ±1,±2, . . . ,±M . Here, we used the fact that W (d) is unitary (W (d)H W (d) =
IR). Writing W (d) = [W1 (d) W2 (d) · · · WP (d) ], Wp (d) : R × (Dp + 1), and using
the block diagonal structure of Γs[m;d] (see (2.24)), the equality in the right hand side
of (2.43) decouples into P equalities,

Υ[m]Wp (d)−Wp (d) Γsp [m;Dp] = 0, (2.44)

for p = 1, 2, . . . , P . Thus, the pth submatrix Wp (d) of W (d) must satisfy (2.44) for
m = ±1,±2, . . . ,±M . Since Υ[−m] = Υ[m]H and Γ[−m; e] = Γ[m; e]H , we conclude
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that each Wp must be a solution of the linear system

Υ[1] X − X Γsp [1;Dp] = 0
Υ[1]H X − X Γsp [1;Dp]H = 0

...
Υ[M ] X − X Γsp [M ;Dp] = 0
Υ[M ]H X − X Γsp [M ;Dp]H = 0

, (2.45)

which containts 2M homogeneous matricial linear equations inX : R×(Dp+1). According
to theorem 2.3, each solution X of (2.45) satisfies X = λQp, for some λ ∈ C. Here,
Qp denotes the pth submatrix of Q, see (2.36). A nonzero solution of (2.45) can be
computed as follows. Successively using the identity vec (ABC) =

(
CT ⊗A

)
vec (B), for

conformable matrices A,B and C [39, page 30], on each matricial equation of (2.45) and
stacking the results, we obtain T p x = 0, where x = vec (X) and

T p =


T p[1]
T p[2]
...

T p[M ]

 , T p[m] =

 IDp+1 ⊗Υ[m]− Γsp [m;Dp]T ⊗ IR

IDp+1 ⊗Υ[m]H − Γsp [m;Dp]⊗ IR

 . (2.46)

Thus, x ∈ ker (T p) = ker
(
THp T p

)
. Let Sp = THp T p and Sp = UΛUH , be an EVD of Sp,

with the entries of the non-negative diagonal matrix Λ = diag
(
λ1, . . . , λR(Dp+1)

)
sorted in

decreasing order. Then, λR(Dp+1) = 0, and x can be set as the last column (counting from
the left) of U , say, uR(Dp+1). Reshaping this unit-norm vector into a R× (Dp+1) matrix,
Up = vec−1

(
uR(Dp+1

)
, and scaling by

∥∥Qp∥∥, that is, defining X p =
√
Dp + 1Up, yields

a solution of (2.45) with the same norm as Qp. Thus, this solution satisfies X p = eiθp Qp,

for some θp ∈ R, and, as a consequence, X = [X 1 X 2 · · · X P ]
d≈ Q.

In conclusion, if we knew d = (D1,D2, · · · ,DP )T , then we could compute a matrix

X d≈ Q as described above: it suffices to take X p : R × (Dp + 1), the pth submatrix of
X , to be

√
Dp + 1 times vec−1 of the unit-norm eigenvector associated with the smallest

eigenvalue of Sp = THp T p, with T p as in (2.46). Now, viewing d as a generic point in E,
this scheme gives a map from E to CR×R. We let e ∈ E �→ X (e) ∈ CR×R denote this
map. As just seen, X (d) is unitary and is similar to Q with respect to d. For e �= d,
the matrix X (e) is not necessarily unitary. We define W(e) to be the projection of X (e)
onto the unitary group U(R). That is, we define W (e) = Π (X (e)), where Π : CR×R →
U(R) denotes the projection onto U(R). This nonlinear projector may be computed as
follows. Let X ∈ CR×R be given and perform the singular value decomposition (SVD)
X = U ΣV H , where U ,V ∈ U(R) and Σ (diagonal) contains the singular values of X.
Then Π (X) = UV H is the unitary factor in the polar form of X [28, page 412], and
minimizes the distance from X to U(R),

‖X −Π (X)‖ = min
W ∈ U(R)

‖X −W ‖ .

That is, it is the solution of a special Procrustes problem [28, page 431]. Since X (d) is

already unitary, W (d) = X (d)
d≈ Q and χ (d,W (d)) = 0 as required.
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Some remarks are in order before proceeding to the next step of the CFIA. i) Even
for moderate values of inputs P , the cardinality of the finite set E in (2.35) can be quite
high. Thus, minimization of φ in (2.42) by enumeration may jeopardize this approach
for real-time applications. Fortunately, in many communication scenarios, previous field
studies are available which determine the typical profile of the propagation space-time
channels, that is, good estimates of the column degrees Dp (hence, Dp) of the channel
matrix H(z) are available beforehand. This knowledge can be exploited to minimize φ

only over a highly restricted domain (the vicinity of the typical channel orders). ii) As in
most subspace-based approaches [61, 43, 24], the performance of our technique depends
strongly on the accuracy of the estimated channel orders. In our case, this is connected
with the ability of correctly detecting the zero of φ in (2.42) over E, using only finite-length
data packets. That is, when the CFIA operates on estimated correlation matrices, say,

R̂y[m] =
1
N

N∑
n=1

y[n]y[n−m]H ,

where {y[n] : n = −M, . . . , N} denotes the available packet of observations, rather than
on exact (theoretical) correlation matrices Ry[m]. In order to increase the robustness
of this detection step, the matching cost proposed in (2.41) should be computed with
an appropriate weighting matrix rather than the identity matrix. The optimal weighting
matrix could be obtained on the basis of a more detailed theoretical study. Another
possible approach is to assess theoretically the impact of the correlative filters on φ, in
order to obtain an optimal design to minimize the probability of detection error. These
issues are not pursued further in this thesis. See however the performance analysis in
chapter 3, which may be used to design the correlative filters in order to minimize the
estimation error, that is, the mean-square distance between true and estimated channel
equivalence class, under the assumption that the column degrees Dp are known.

CFIA: step 3. This step determines H(z) up to a phase offset per column, that is,
the equivalence class [H(z)] ∈ H[z]/ ∼. We use the matrix H0 in (2.29) and the pair
(d,W (d)), which are available from the first and second steps, respectively. Recall that
W (d) = QΛ, where Λ = diag

(
ei θ1ID1+1, e

i θ2ID2+1, . . . , e
i θpIDP+1

)
, for some θp ∈ R.

We define
G = H0 W (d) Rs[0;d]−1/2 = HΛ. (2.47)

Here, we used the fact that Rs[0;d]1/2 commutes with Λ, since they share the same block
diagonal structure, the pth block of Λ being ei θpIDp+1. Equation (2.47) means that if one
parses G = [G1 G2 · · · GP ] accordingly to H in table 2.2, then Gp = ei θp Hp, or,

Gp = ei θp


hp[0] · · · hp[Dp]

hp[0] · · · hp[Dp]
. . . . . .

hp[0] · · · hp[Dp]

 .

Note that d = (D1, D2, · · · , DP )T is obtained from d = (D1,D2, · · · ,DP )T , as Dp =
Dp − L. Thus, the coefficients of the pth filter hp(z) =

∑Dp

d=0 hp[d]z
−d may be read

out directly (modulo a phase offset) from Gp, or, for improved estimation, by averaging
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the L + 1 copies available in Gp yielding Gp = eiθp Hp. Defining G = [G1G2 · · · GP ]
and letting G(z) be the channel matrix which satisfies G(z) � (d;G), it follows that
[G(z)] = [H(z)].

2.7 Iterative identification algorithm (IIA)

After the channel matrix H(z) is identified, we face the problem of detecting the unfil-
tered information-bearing sequences ap[n], recall figure 2.5, from the packet of available
observations, say, {y[n] : n = 1, 2, . . . , N}. In the sequel, we assume the common digital
communication scenario, that is, the pth data sequence ap[n] consists of iid symbols drawn
from a given finite modulation alphabet Ap ⊂ C. Furthermore, for simplicity, we assume
that w[n] denotes white spatio-temporal Gaussian noise,

Rw[m] = E
{
w[n]w[n−m]H

}
= σ2IQδ[m]. (2.48)

In the present context, the optimal maximum likelihood (ML) detector leads to a general-
ized (multi-user) maximum likelihood sequence estimation (MLSE) Viterbi algorithm [15].
However, the computational cost of this approach is very high, due to the trellis size in-
volved. Here, we pursue a computationally simpler, yet sub-optimal technique, to detect
the data symbols ap[n] from the samples y[n]. The proposed technique exploits the fact
that the correlative filters are minimum-phase and permits to handle carrier frequency
asynchronisms. In the context of SDMA systems, these may be induced by, for example,
Doppler effects due to the relative motion between the mobile sources and the base station
antenna array. This distortion induces a baseband rotation in the received signals. We
have a data model similar to (2.3), except for the inclusion of the residual phase drifts,

y[n] =
P∑
p=1

hp(z) � s̃p[n] +w[n] (2.49)

where
s̃p[n] = eiωpnsp[n], (2.50)

and ωp denotes the baseband rotation frequency corresponding to the pth user. Although
the filters hp(z) in (2.49) are not exactly the same as in (2.3) because, in all rigor, some
phase offset corrections are needed, we maintain the notation for the sake of clarity.

Each iteration of the proposed iterative procedure consists of two steps. In the first
step, the data symbols ap[n] are detected, given the current estimate of the channel H(z).
In the second step, the channel matrix H(z) is re-evaluated on the basis of the newly
estimated data symbols ap[n]. This resembles, in spirit, the methodology of the ILSP
and ILSE approaches in [56, 57, 58]. The added difficulty here is that the data symbols
are pre-filtered and distorted by baseband rotations. Hereafter, we refer to our proposed
iterative algorithm as the iterative identification algorithm (IIA). We now discuss the two
steps, in each iteration of the IIA, in more detail.

IIA: step 1. We are at the (k + 1)th iteration cycle. Let

H(k)(z) =
[
h
(k)
1 (z) h

(k)
2 (z) · · · h

(k)
P (z)

]



36 Blind Channel Identification Based On 2nd Order Statistics

denote the estimate of the MIMO channel matrix H(z) obtained from the previous iter-
ation cycle. The algorithm is initialized with H(0)(z), the closed-form solution furnished
by the CFIA presented in section 2.6, and k = 0. We reason as if the current channel
estimate is exact, that is, H(k)(z) = H(z). Focus on the pth user. First, we extract the
baseband rotated sequence

s̃p[n] = eiωpnsp[n]

from the observations y[n]. To accomplish this, we employ a zero-forcing row polynomial
filter

fp(z) =
Fp∑
d=0

fp[d]z
−d, (2.51)

where fp[d] ∈ C1×Q, satisfying

fp(z)H
(k)(z) =

[
0 · · · 0 z−dp 0 · · · 0

]
, (2.52)

for some non-negative delay dp in the pth entry. That is, fp(z) exactly nulls the inter-
symbol and co-channel interferences affecting the user p. Notice that the existence of such
a zero-forcing filter is guaranteed by the irreducibility of the channel matrix in assump-
tion A1, if the degree Fp is taken sufficiently high. The coefficients of the filter, arranged
in the row vector,

fp =
[
fp[0] fp[1] · · · fp[Fp]

]
,

correspond to the ((p− 1)(1+Fp)+D1+ · · ·+Dp−1+ dp+1)th row of the pseudo-inverse
of the matrix

H(k) =
[

T Fp

(
h
(k)
1

)
T Fp

(
h
(k)
2

)
· · · T Fp

(
h
(k)
P

) ]
.

Apply the filter fp(z) to the observations y[n + dp] (the delay dp is introduced for
notational convenience), and denote the resulting scalar sequence by αp[n]. That is,

αp[n] = fp(z) � y[n+ dp]

= eiωpn

 Cp∑
d=0

cp[d]ap[n− d]

+ np[n], (2.53)

where
np[n] = fp(z) � w[n+ dp].

We have to detect the data symbols ap[n] ∈ A from the samples αp[n] in (2.53). The two
main obstacles are: i) the presence of the correlative filter cp(z), and ii) the baseband
rotation eiωpn. We address each distortion separately.
i) First we get rid of the correlative filter. Rewrite (2.53) as

αp[n] =
Cp∑
d=0

c̃p[d]ãp[n− d] + np[n],

where c̃p[d] = cp[d]eiωpd and ãp[n] = ap[n]eiωpn denote “rotated” versions of the filter cp(z)
and the information-bearing signal ap[n], respectively. Now, for typical values of ωp and
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pre-filter degrees, say, ωp = 2π/1000 and Cp = 5, we have c̃p[d] � cp[d], since eiωpd � 1 for
small integers d. Therefore, within this approximation,

αp[n] = cp(z) � ãp[n] + np[n].

Since the correlative filter cp (z) is minimum-phase, we use its stable inverse, denote dp(z),
to recover the rotated signal ãp[n],

βp[n] = dp(z) � αp[n] = eiωpnap[n]︸ ︷︷ ︸
ãp[n]

+up[n], (2.54)

where up[n] = dp(z) � np[n].
ii) Now, we handle the baseband rotation. Split the available samples βp[n] in B

consecutive blocks of equal size T . Making T small enough, we have, within each block
b = 1, 2, . . . , B, the approximation

βp[n] = eiθp[b]ap[n] + up[n], (2.55)

for some phase θp[b] ∈ R.
We process the samples βp[n] block by block. Within each block, we jointly detect

the symbols ap[n] and the corresponding phase offset θp[b]. Assume we are processing
the bth block. This scheme starts with θp[0] = 0 and b = 1. We use the estimate of the
phase offset in the previous block, and the fact that the phase varies smoothly between
adjacent blocks, to make the approximation θp[b] ≈ θp[b−1], from which we obtain almost
phase-corrected symbols,

γp[n] = e−iθp[b−1]βp[n] ≈ ap[n] + vp[n],

where vp[n] = e−iθp[b−1]up[n] denotes circular complex Gaussian noise. The data symbol
ap[n] is detected by projecting the soft estimate γp[n] onto the finite modulation alphabet
A ⊂ C. That is, a least-squares (LS) criterion is adopted, leading to

âp[n] = argmin
a ∈ Ap

|γp[n]− a|2 .

Now, we turn to the problem of refining the estimate of θp[b] in (2.55), using ap[n] =
âp[n]. Again, we follow a LS model-fitting approach,

θ̂p[b] = argmin
θ ∈ R

∑
n

∣∣∣βp[n]− eiθap[n]
∣∣∣2 , (2.56)

where it is understood that the summation in (2.56) only involves those time-indexes n
contained in the bth block. It is easily seen that the solution of (2.56) is characterized by
the necessary and sufficient optimality condition

eiθ̂p[b]

(∑
n

βp[n]ap[n]

)
≥ 0,

which yields a simple computational scheme for retrieving θ̂p[b].
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It should be noticed that the estimation of ωp in (2.54) may also be efficiently solved
by exploiting the fact that ωp is a conjugate cyclic frequency of the signal βp[n]. The main
advantage of the proposed methodology is that it permits to handle more generic phase
drifts, that is, phase distortions of the form eiθp[n] where the time-varying phase signal
θp[n] does not necessarily follows a linear dynamic such as θp[n] = ωpn.

IIA: step 2. Take the detected symbols ap[n] and phase offsets {θp[b] : b = 1, 2, . . . , B}
in step A and reconstruct the signal s̃p[n] in (2.50) as

s̃p[n] = eiθp[b] cp(z) � ap[n],

whenever the time index n falls in the bth block. Rewrite (2.49) in matrix form

Y =
[
y[1] y[2] · · · y[N ]

]
= H S̃ +W , (2.57)

where
S̃ =

[
s̃[1] s̃[2] · · · s̃[N ]

]
,

with s̃[n] = s̃[n;d], and

W =
[
w[1] w[2] · · · w[N ]

]
.

We now re-evaluate the coefficient channel matrix H in (2.57) by adopting a LS perfor-
mance criterion, that is,

H(k+1) = argmin
G ∈ CQ×D

∥∥∥Y −GS̃
∥∥∥2 .

This yields
H(k+1) = Y S̃

+
.

Now, if H(k+1) �H(k), then stop the iterations. Else, set k = k+1 and return to step A.

2.8 Computer simulations

We present two sets of simulations. In the first set, we consider P = 2 users, without carrier
misadjustments. The performance of the proposed blind channel identification technique
is evaluated in terms of the mean-square error (MSE) of the MIMO channel estimate.
For separation of the sources and the equalization step, the performance criterion is the
symbol error rate (SER) of the estimated data symbols. In the second set of simulations,
we consider P = 3 users with residual phase drifts. We compare our technique with the
TICC approach [12], both in terms of the MSE of the channel estimate and the SER of
the resulting symbol detection scheme.

Scenario with two users. We consider P = 2 users, with distinct digital modulation
formats. User 1 employs the quaternary amplitude modulation (QAM) digital format
normalized to unit-power,

A1 = AQAM =
{
± 1√

2
± i

1√
2

}
,
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while user 2 employs the binary phase keying modulation format (BPSK),

A2 = ABSK = {±1} .

Both users pass their iid symbol information sequences ap[n] through correlative filters
cp(z) prior to transmission, as explained in section 2.5, recall also figure 2.6. We used
correlative filters with minimal memory, that is, with just one zero,

cp (z) = κp
(
1− zpz

−1
)
.

The zeros of the correlative filters for users 1 and 2 are z1 = 1
4e

−iπ/2 and z2 = 1
2e
iπ/4,

respectively. The constants κp are adjusted accordingly to ensure unit-power filters. For
both users, the analog transmitter shaping filter p(t) is a raised-cosine with α = 80%
excess-bandwidth. Each communication channel, activated between each user and one of
the receiving antennas, is a random realization of the continuous-time multipath model

g(t) = g0δ(t) + gmaxδ(t−∆max) +
K∑
k=1

gkδ (t−∆k) , (2.58)

where δ(t) denotes the continuous-time Delta dirac signal. In (2.58), we have two fixed
paths at ∆ = 0 and ∆max = 2.8Ts, where Ts denotes the symbol period. The integer K is
the random number of extra paths. We take K to be uniformly distributed in the finite
set {5, 6, . . . , 15}. For all paths k = 1, . . . ,K, the delays ∆k are uniformly distributed in
the interval [0,∆max]. The complex fading coefficients gk, q = k, . . . ,K, as well as g0 and
gmax denote unit-power complex circular Gaussian random variables. Thus, each path
experiences independent Rayleigh fading. Each composite continuous-time channel h(t) =
p(t) � g(t), where � denotes here convolution in continuous-time, is then sampled at the
baud rate and truncated at 4Ts. This truncation, forcing the channel h(t) to have compact
support (hence the polynomial filters to have finite degree), is a reasonable approximation
since it deletes, at most, 4% of the channel power. As a consequence, the channel matrix
H(z) = [h1(z)h2(z) ] has equal column degrees Dp = deghp(z) = 3, which are assumed
known at the receiver. The receiver has Q = 4 antennas, and identifies the MIMO channel
H(z) on the basis of one packet of N = 350 data samples, {y[n] : n = 1, . . . , N}.

The CFIA is runned with the stacking parameter L = 3, recall (2.27). The exact
correlation matrices Ry[m] are replaced everywhere by their corresponding finite-sample
estimates,

R̂y[m] =
1

N −m

N∑
n=m+1

y[n]y[n−m]H .

The choice M = 3 is adopted in step 2 of the CFIA, recall (2.41). After channel identifica-
tion, the proposed IIA is runned. In the IIA, the sources are extracted from the observa-
tions y[n] by zero-forcing filters fp(z) of degree Fp = 2Dp = 6 and delay dp = Dp+1 = 4,
recall (2.51) and (2.52). In our simulations, the additive observation noise w[n] is taken
as spatio-temporal white Gaussian noise with power σ2, recall (2.48). The signal-to-noise
ratio (SNR) is defined as

SNR =

∑P
p=1 E

{
‖hp(z) � sp[n]‖2

}
E
{
‖w[n]‖2

} =
‖H‖2

Qσ2
,
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where H came from the identification H(z) � (d;H).
We start by illustrating a typical run of our technique. Figure 2.7 plots in the complex

plane C one of the Q observed signals at the MIMO channel output, that is, an entry yq[n]
of the data vector y[n]. The joint effect of the intersymbol and co-channel interference is
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Figure 2.7: Output of the unequalized channel

clearly noticeable. Figures 2.8 and 2.9 (notice the difference in the vertical scale relative
to figure 2.7) show the output of the equalized channel, that is, the signals β1[n] and
β2[n] in (2.54). As seen, the algorithm recovers valid user signals from the observations.
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Figure 2.8: Signal estimate for user 1 (β1[n])

Note that the digital constellations are rotated in the signals βp[n] because the proposed
derotating mechanism (recall step ii) in page 37) has not yet been runned. Moreover, note
that this initial phase rotation cannot be avoided, since the CFIA can only estimate the
channel modulo a phase ambiguity per user. The example pictured here corresponds to
SNR = 15dB.
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Figure 2.9: Signal estimate for user 2 (β2[n])
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Figure 2.10: MSE of the CFIA (dashed) and the IIA (solid) channel estimate: SNR varies

We evaluated more extensively the performance of our proposed technique. We varied
the SNR between SNRmin = 10dB and SNRmax = 20dB, in steps of SNRstep = 2.5 dB.
For each SNR, J = 500 statistically independent trials were considered. For each trial, we
generated N = 350 data samples y[n], and ran the two proposed algorithms, CFIA and
IIA. For both, we recorded the square-error (SE) of the channel estimate, that is,

SE =
∥∥∥Ĥ −H

∥∥∥2 .
The symbol error rates for both sources were obtained by error counting. Figure 2.10
displays the average results over the J = 500 trials, for the mean-square error (MSE) of
the channel estimate. This is monotonically decreasing, as expected. The dashed and solid
curves refer to the channel estimate provided by the CFIA and IIA, respectively. As seen,
the iterative technique IIA improves significantly over the closed-form estimate CFIA.
This is expected, since it exploits all the available statistical information, for example, the
fact that the sources are discrete (digital), whereas the closed-form technique only exploits
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SNR (dB) User 1 User 2
10.0 0.0646 0.0276
12.5 0.0124 0.0032
15.0 0.0011 0.0001
17.5 0.0000 0.0000
20.0 0.0000 0.0000

Table 2.3: Symbol error rate (SER): CFIA (N = 350, SNR varies)

SNR (dB) User 1 User 2
10.0 0.0014 0.0040
12.5 0.0002 0.0002
15.0 0.0000 0.0000
17.5 0.0000 0.0000
20.0 0.0000 0.0000

Table 2.4: Symbol error rate (SER): IIA (N = 350, SNR varies)

the 2nd order moments. However, the CFIA is needed to start the iterations in IIA, that
is, to provide an accurate initial channel estimate, which is then subsequently refined by
the iterations.

In tables 2.3 and 2.4, we show the symbol error rates (SER) associated to the two
sources. These correspond to the symbol detectors implemented from the closed-form
and iterative channel estimators, respectively. Notice that, as user 1 employs the QAM
format, the SNR per symbol is lower and, as a consequence, the SER is higher. Moreover,
as expected, the better accuracy of the iterative MIMO channel estimate results in a lower
probability of error.

We also studied the performance of the proposed techniques with respect to the packet
size N . We fixed SNR = 10dB and varied N between Nmin = 200 and Nmax = 1000 in
steps of Nstep = 200. Figure 2.11 shows the average results for the MSE, and tables 2.5
and 2.6 display the SER of both sources.

Scenario with three users. In this set of computer simulations, we consider P = 3
binary users, Ap = ABSK, and compare our results with the TICC approach [12]. The
TICC technique permits to identify the MIMO channel using only 2nd order statistics.
It relies on a distinct data pre-processing scheme. This consists, at each transmitter,
in multiplying the information sequence ap[n] by a cyclic frequency αp, that is, sp[n] =
ap[n] ei αpn, in order to induce a conjugate cyclostationary frequency in the signal sp[n].

N User 1 User 2
200 0.1527 0.0675
400 0.0461 0.0230
600 0.0218 0.0109
800 0.0168 0.0091
1000 0.0106 0.0075

Table 2.5: Symbol error rate (SER): CFIA (SNR = 10dB, N varies)
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Figure 2.11: MSE of the CFIA (dashed) and the IIA (solid) channel estimate: N varies

N User 1 User 2
200 0.0204 0.0156
400 0.0014 0.0041
600 0.0012 0.0041
800 0.0012 0.0041
1000 0.0012 0.0039

Table 2.6: Symbol error rate (SER): IIA (SNR = 10dB, N varies)

See figure 2.12 and [12] for more details.

Each user employs a correlative filter with two zeros,

cp (z) = κp
(
1− zp,1 z

−1
) (

1− zp,2 z
−1

)
.

Table 2.7 discriminates the zeros of the correlative filters for each user. The constants κp
are adjusted to guarantee unit-norm pre-filters. The multipath propagation model in (2.58)
is maintained, but now ∆max = 2.5Ts, and the composite channel is truncated at 3Ts. This
suppresses, at most, 4% of the channel power. Due to this truncation, the column degrees
of the MIMO channel are given by Dp = 3. An Q = 8 antenna array sampled at the baud
rate is assumed at the receiver. Also, the data packet size N = 750.

For the CFIA, we take the stacking parameter L = 2 in (2.27), and the value M = 3 is
used in (2.41). For the IIA, we the degrees and delays of the zero-forcing filters fp(z) are

User p zp,1 zp,2

1 1
2 −1

2

2 1
3e
iπ/3 1

4e
iπ/2

3 1
2e
i3π/4 −1

4e
−iπ/2

Table 2.7: Zeros of the correlative filters (P = 3 users)
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Figure 2.12: P -input/Q-output MIMO channel with P induced cyclic frequencies
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Figure 2.13: MSE (left) and BER of user 1 (right) for the proposed and TICC (with square
marks) approaches : closed-form (dashed) and iterative (solid) algorithms (SNR = 5 dB)

Fp = 2Dp = 6 and dp = Dp + 1 = 4, respectively. Also, we considered blocks of T = 10
samples in the derotating mechanism, see step ii) in page 37.

For the TICC approach, the three users employ cyclic frequencies given by α1 = −0.35,
α2 = 0 and α3 = 0.35, respectively. Also, the Wiener filters in [12] are implemented with
parameters δ = 4 and L = 7. The nominal baseband rotations for the three users in (2.49)
are given by ω1 = 2π

750 , ω2 = − 2π
1000 and ω3 = 2π

900 , respectively. The channel degrees are
assumed known for both approaches.

We performed computer simulations to compare the performance of our proposed
technique and the TICC approach. We considered residual baseband rotations given
by λωp, where the drift factor λ is varied between λmin = 0% (no baseband rotation)
and λmax = 100% (moderate baseband rotation), in steps of λstep = 12.5%. For each
λ, J = 500 statistically independent trials were performed. Each trial consisted in the
generation of N = 750 data samples, and subsequent channel estimation and symbol de-
tection as in the previous scenario with two users. The left plot in Figure 2.13 displays
the average results, over the J = 500 trials considered. The SNR was fixed at 5 dB. For
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Figure 2.14: BER of user 2 (left) and user 3 (right) for the proposed and TICC (with
square marks) approaches : closed-form (dashed) and iterative (solid) algorithms (SNR =
5 dB)

both approaches, the dashed and solid curves correspond to the closed-form and iterative
channel estimates, respectively. Additionally, the curves associated with the TICC ap-
proach are labeled with a square mark. As seen, the accuracy of the channel estimate of
our techniques (either closed-form or iterative) is almost insensitive to the drift baseband
rotation factor λ. In contrast, the performance of the TICC estimators degrades as the
carriers misadjustment gets worst. The right plot in Figure 2.13 and Figure 2.14 display
the bit error rates (BER) associated with the two approaches, for the P = 3 users consid-
ered. As seen, the proposed technique outperforms TICC. A similar set of simulations was
performed under SNR = 10dB. The results are displayed in figures 2.15 and 2.16. We can
infer the same conclusions as above. The fact that, in the face of uncontrollable baseband
rotations, the TICC channel estimate performs worst than our channel estimate is hardly
surprising. The vulnerability of the TICC technique to carrier frequency misadjustements
is acknowledged already in [12], and can be explained quite easily: the presence of an
unpredictable baseband rotation shifts all conjugate frequencies to unpredictable places,
thereby destroying the structure previously inserted at each transmitter.

2.9 Conclusions

We started by formulating the blind channel identification problem (BCIP) over the set of
MIMO channels H[z]. The BCIP is an inverse problem. It asks for the point in H[z] which
is consistent with the correlation matrices observed at the channel’s output. However,
irrespective of the spectral colors seen at the input of the MIMO system, two polynomial
matrices in H[z] which are equal (modulo a phase offset per column) always induce the
same 2nd order statistics at the output. Thus, infinitely many points in H[z] are consistent
with the given correlation matrices. This implies that the original formulation of the BCIP
is meaningless. We took the viewpoint of modelling the phase ambiguities as an equiv-
alence relation ∼ in the set H[z], and reformulated the BCIP over the induced quotient
space of channel equivalence classes H[z]/ ∼. However, under the standard assumption of
each channel input being a time decorrelated sequence, the problem is still not well-posed:
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Figure 2.15: MSE (left) and BER of user 1 (right) for the proposed and TICC (with square
marks) approaches : closed-form (dashed) and iterative (solid) algorithms (SNR = 10 dB)
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Figure 2.16: BER of user 2 (left) and user 3 (right) for the proposed and TICC (with
square marks) approaches : closed-form (dashed) and iterative (solid) algorithms (SNR =
10 dB)
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distinct channel equivalence classes, that is, points in H[z]/ ∼, may be consistent with
the correlation matrices at the channel’s output. That is, the map ϕ : H[z]/ ∼→ CZ,
which associates to each channel equivalence class the set of correlation matrices induced
at the channel’s output, may fail to be injective. We have shown how to circumvent this
difficulty. More precisely, we proved an identifiability theorem (theorem 2.1) which asserts
that, under a certain spectral diversity condition on the random signals seen at the input,
there is one and only one point in H[z]/ ∼ which is consistent with the given 2nd order
statistics of the channel’s output. Next, we proved a feasibility theorem (theorem 2.2).
It asserts that the sufficient spectral condition which ensures identifiability can be easily
induced by unit-norm minimum-phase pre-filters located at the sources. The proof of
the identifiability theorem is not constructive. We proceeded to develop a closed-form
identification algorithm (CFIA) which achieves the predicted identifiability bound. The
CFIA takes the 2nd order statistics of the channel output and reconstructs the underly-
ing channel equivalence class. An iterative source separation and channel identification
algorithm (IIA) was also presented. The IIA is an iterative scheme, initializated by the
CFIA, which decodes the emitted sources’ information symbols and refines the channel
estimate, while tracking residual phase drifts in the baseband signals. In the final part of
this chapter, we compared our approach, through computer simulations, with the trans-
mitter induced conjugate cyclostationary (TICC) technique. The TICC approach consists
in pre-processing the symbol information sequences in a distinct manner. It does not
use correlative filters. Instead, a conjugate cyclostationary frequency is induced at each
transmitter. Like our pre-processing, this inserted structure in the transmitted signals
ensures channel identifiability (modulo a phase offset per column) from the 2nd order
statistics of the channel’s output. The simulation results have shown that, in contrast to
the TICC approach, our pre-processing is resilient to baseband phase drifts induced by
carrier frequency misadjustments.
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Chapter 3

Performance Analysis

3.1 Chapter summary

In this chapter, we carry out a theoretical performance analysis of the closed-form identifi-
cation algorithm (CFIA) introduced in chapter 2. More precisely, we assess the quality of
the CFIA’s estimate in the quotient space H[z]/ ∼ for a given (finite) number N of channel
output observations. Section 3.2 starts by motivating this theoretical study. The main
reason for embarking in such a study lies in the fact that this is a necessary step for the
more ambitious project of optimally designing the pre-filters. Our analysis is developed
under a strong simplification. We assume that the column degrees of the MIMO channel
polynomial matrix H(z) are known. Thus, their detection is unnecessary and the CFIA
focus only on the estimate of the sub-channels’ coefficients. In equivalent terms, given the
identification H(z) � (d;H), we assume that the discrete component d is known, and
thereby, the CFIA only estimates the channel’s continuous component H. This simplifica-
tion is invoked to maintain the analysis tractable. Therefore, we deal in this chapter with
a somewhat “truncated” version of the space H[z] and its quotient H[z]/ ∼, in addition to
a simplified CFIA. After these modifications are carefully explained, section 3.2 provides
a macroscopic view of the strategy employed in the performance analysis. Four main
phases are identified and briefly delineated. In a nutshell, we resort to the large-sample
regime (N → ∞) and make the distributions of all random objects of interest converge
to corresponding normal distributions. These latter distributions can be characterized in
closed-form and, for all practical N , approximate quite well the exact distributions. How-
ever, we face a rather non-standard performance study because our estimator takes values,
not on an usual Euclidean space, but on an abstract space: the quotient space of identi-
fiable channel classes H[z]/ ∼. Furthermore, because we want the concept of distance to
be available in H[z]/ ∼ (in order to measure the quality of the estimate with respect to
the true channel class), the quotient space (up to this point only a purely algebraic ob-
ject) must experience a metamorphosis and became a Riemannian manifold. Some special
machinery must be developed to tackle an asymptotic statistical analysis in this peculiar
setting. This is done in section 3.3. We present the necessary theoretical framework to
handle random objects on manifolds. More precisely, a proper definition of asymptotic
normality of random sequences on Riemannian manifolds is needed, and some well known
results for Euclidean spaces are then extended to this Riemannian context. Equipped with
these theoretical tools, section 3.4 implements the four main phases previously enumerated

49



50 Performance Analysis

in the performance study. We devote a subsection to each phase. i) The first phase is
implemented in subsection 3.4.1. It endows the quotient space H[z]/ ∼ with a smooth
geometrical structure, making it a connected Riemannian manifold. Some pertinent ge-
ometrical features of H[z]/ ∼ are then investigated. ii) Subsection 3.4.2 implements the
second phase of the performance analysis. Roughly, it re-interprets the CFIA as a smooth
map between manifolds and computes its derivative at any given point in its domain (this
data is needed in the sequel). iii) The third phase is implemented in subsection 3.4.3. It
establishes the asymptotic normality (as N → ∞) of the finite-sample estimates of the
MIMO channel output correlation matrices. These estimated correlation matrices consti-
tute the input of the CFIA. iv) The performance analysis is closed in subsection 3.4.4. It
brings together all the pieces developed so far and establishes the asymptotic normality
of the CFIA’s estimate in the Riemannian manifold H[z]/ ∼. Moreover, a closed-form
expression which approximates the mean-square error of the CFIA estimate is obtained.
Section 3.5 validates the theoretical analysis. We compare the closed-form expression
obtained for the mean-square error of the CFIA’s estimate with Monte-Carlo computer
simulations, as a function of the number of available channel observations. Section 3.6
contains the main conclusions of this chapter.

3.2 Performance analysis: macroscopic view

Motivation. In this chapter, we analyze the accuracy of the CFIA as a point estimator
in H[z]/ ∼, the quotient space of identifiable channel equivalence classes. More precisely,
let N designate the number of available measurements of the MIMO channel output, and

̂[
HN (z)

]
the corresponding channel equivalence class estimate provided by the CFIA. Our

goal is to derive a closed-form expression for

J [N ; c(z), [H(z)]] = E

{
d

(
[H(z)] , ̂[

HN (z)
])2

}
, (3.1)

the mean-square distance between the true and estimated channel equivalence classes,
when N observations are available and given that c(z) = (c1(z), c2(z), . . . , cP (z))

T is the
P -tuple of pre-filters coloring the 2nd order statistics of the underlying MIMO channel
class [H(z)]. In (3.1), d : H[z]/ ∼ ×H[z]/ ∼→ R denotes a metric on the quotient
space H[z]/ ∼ (to be discussed soon). The interest in obtaining an expression for (3.1) is
twofold. i) At the very least, it permits to avoid unnecessary massive computer simulations
(Monte-Carlo runs) to assess the quality (as measured by the distance d) of a N -sample
based estimate of the channel class [H(z)] given the choice c(z) for the P -tuple of pre-
filters. ii) More importantly, it permits to address the issue of optimum pre-filter design,
when known random environments dictate the statistics of the MIMO channelH(z). That
is, suppose one disposes of a probabilistic model for the entries (sub-channel coefficients)
of H(z). Such statistical characterization of the channel could be based, for example,
on field measurements. A sensible approach for designing the pre-filters, supposing data
packets of length N , could be the constrained (cp(z): unit-power, minimum-phase, etc)
minimization of

J (c(z)) = E

{
d

(
[H(z)] , ̂[

HN (z)
])2

}
, (3.2)
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where the expectation is over the ensemble of transmitted information symbols, noise and

channel realizations. Although not explicit in (3.2), ̂[
HN (z)

]
denotes the estimate based

on the choice c(z) for the pre-filters. A more exact but cumbersome notation would be
̂[
HN (z)

]
(c(z)). We employ the former symbol for brevity. Since (3.2) can be rewritten as

J (c(z)) = EH(z)

{
E

{
d

(
[H(z)] , ̂[

HN (z)
])2

|H(z)

}}
(3.3)

= EH(z) {J [N ; c(z), [H(z)]]} , (3.4)

we see that knowledge of J [N ; c(z), [H(z)]] is necessary for implementing such an ap-
proach. Notice that, in the right-hand side of (3.3), the inner expectation is only over the
information symbols and noise, whereas the outer expectation denotes an average over the
ensemble of channel realizations. The identity in (3.4) is valid since we are assuming that
the MIMO channel is a random object statistically independent of transmitted information
symbols and noise (thus, it can be treated as a constant in the inner expectation).

Simplification. Guessing the channel matrix H(z) = [h1(z)h2(z) · · · hP (z) ] from the
SOS of the observations is a joint detection-estimation problem. We must detect the
degrees Dp = deghp(z) of the P column polynomial filters

hp(z) =
Dp∑
d=0

hp[d]z−d, p = 1, 2, . . . , P,

which we collected in the vector of integers d = (D1, D2, . . . , DP )
T , and estimate the

corresponding filter coefficients Hp = T 0 (hp(z)), which we gathered in the Q× (D + P )
complex matrix

H =
[

h1[0]h1[1] · · · h1[D1]︸ ︷︷ ︸
H1

h2[0]h2[1] · · · h2[D2]︸ ︷︷ ︸
H2

· · · hP [0]hP [1] · · · hP [DP ]︸ ︷︷ ︸
HP

]
,

(3.5)
where D = ordH(z) =

∑P
p=1Dp. This is just the identification H(z) � (d;H) discussed

in page 18. In order to obtain (3.1), we will make a major simplification: we assume
that the vector of column degrees d is known, and focus only on the estimation of H.
We avoid the detection problem in order to keep the theoretical analysis tractable. This
is an exact performance analysis of the proposed receiver in scenarios where the statis-
tical characterization of the channel clearly indicates a strong (probability 1) mode for
a certain delay-spread user configuration, that is, for a certain configuration of channel
column degrees d. In these cases, the receiver runs a simplified version of the CFIA which
estimates H on the assumption that the discussed dominant mode d is the activated one.
For the generic case where the receiver runs the full CFIA, the results we are about to
obtain for (3.1) must be interpreted, in fact, only as a lower-bound, since they are derived
on the optimistic assumption that the discrete part d of the MIMO channel is correctly
detected.

Apart from the mentioned simplification we will work under some additional assump-
tions:
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B1. The degrees Dp = deghp(z) of the channel polynomial filters are equal, that is,
d = (D1, D2, . . . , DP )

T = d0 = (D0, D0, . . . , D0)
T , for a known D0 ∈ N. The

same applies to the degrees Cp = deg cp(z) of the correlative pre-filters, that is,
c = (C1, C2, . . . , CP )

T = (C0, C0, . . . , C0)
T , for a certain C0 ∈ N;

B2. The number of MIMO channel outputs exceeds the order of the channel plus the
number of its inputs, that is, Q > D = ordH(z) + P = P (D0 + 1);

B3. The unfiltered and uncorrelated information signal ap[n] (recall figure 2.6 in page 25)
denotes a sequence of independent and identically symbols drawn from the QPSK
alphabet (normalized to unit-power) AQPSK =

{
± 1√

2
± i 1√

2

}
. Moreover, the obser-

vation noise w[n] is taken to be white spatio-temporal Gaussian noise with power σ2,
that is, Rw[m] = E

{
w[n]w[n−m]H

}
= σ2IQδ[m].

These additional assumptions are only introduced for notational convenience. In loose
terms, they symmetrize the problem and lead to more compact matrix formulas. This is
clearly the justification for assumption B1. Assumption B2 permits us to run the CFIA
with non-stacked data samples, that is, to take the value L = 0 as the choice for the
stacking parameter in the CFIA. As a consequence, the algorithm manipulates smaller
data objects. Finally, in assumption B3, we are only picking a choice for the informa-
tion sources’ and noise statistical models. This is necessary to make computations. We
emphasize that the general case, that is, distinct channel degrees, Q ≤ D, other digital
sources ap[n], and so on, follows easily from the particular setup in B1-B3. The analysis
of this particular case captures the flavor of the generic situation.

Redefinition of H[z] and H[z]/ ∼. Recall that the set H[z] was defined in page 20 as
the set of tall, irreducible, column-reduced Q× P polynomial matrices that are memory-
limited by Dmax. Since for any H(z) ∈ H[z], we have the identification H(z) � (d;H),
we may view H[z] as a finite stack of disjoint leaves indexed by the vector of integers

d = (D1, D2, . . . , DP )
T , Dp ∈ {0, 1, . . . , Dmax} , (3.6)

see figure 3.1. The exact number of leaves is (Dmax+1)P . The leaf corresponding to a con-

{H[z]

Hd[z]

Figure 3.1: The set H[z] as a finite stack of leaves

figuration of column degrees d = (D1, D2, . . . , DP )
T , called the d-leaf and denoted Hd[z], is
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the subset of H[z] consisting of those polynomial matrices H(z) = [h1(z)h2(z) · · ·hP (z) ]
satisfying deghp(z) = Dp, for p = 1, 2, . . . , P . That is,

H[z] =
∐
d

Hd[z],

where
∐

stands for disjoint union and it is understood that the index d runs over all
possible configurations satisfying (3.6). Furthermore, each single d-leaf may be viewed as
a subset of a complex space through the identification (3.5), that is, via the one-to-one
mapping ι : Hd[z]→ C∗Q×(D1+1) ×C∗Q×(D2+1) × · · · ×C∗Q×(DP+1), where C∗Q×(Dp+1) =
CQ×(Dp+1) −

{
0Q×(Dp+1)

}
, given by

H(z) = [h1(z)h2(z) · · ·hP (z) ] ι�→ (H1,H2, . . . ,HP ) , (3.7)

where Hp = T 0 (hp(z)). Note that the “dimensionality” of the leaves is not constant.
Lemma 3.1 asserts that each leaf of H[z] occupies almost all the totality of its host complex
space.

Lemma 3.1. Consider the d-leaf identification mapping ι defined in (3.7). Then, ι (Hd[z])
is an open and dense subset of C∗Q×(D1+1) × C∗Q×(D2+1) × · · · × C∗Q×(DP+1).

Proof: See appendix B.

Now, in this context, the aforementioned simplification means that both the MIMO chan-
nel H(z) and its estimate Ĥ

N
(z) belong to the leaf Hd0 [z]. Since all the action takes

place there we may cut the remaining leaves from the analysis. Furthermore, in light of
lemma 3.1, we may view the d0-leaf as an open, dense subset of

C∗
d0

= C∗Q×(D0+1) × C∗Q×(D0+1) × · · · × C∗Q×(D0+1)︸ ︷︷ ︸
P

.

We do not have the full identification Hd0 [z] = C∗
d0

because the injective mapping ι :
Hd0 [z]→ C∗

d0
defined in (3.7) is not onto. Its image misses the whole host complex space

by a nowhere dense subset. However, the full identification is highly desirable since the
set C∗

d0
is much easier to work with than its subset ι (Hd0 [z]) ⊂ C∗

d0
. Note that, although

ι (Hd0 [z]) is also open, it cannot be written as a Cartesian product of P copies of a single
set. For example, the entries in distinct columns of H(z) must “cooperate” in order to
ensure column-reducedness. But C∗

d0
has this decoupling property. To achieve the full

identification, we perform a slight enlargement of the domain of ι to

H≤d0 [z] =
{
H(z) = [h1(z)h2(z) · · ·hP (z) ] ∈ CQ×P [z] : deghp(z) ≤ D0

}
.

Note that Hd0 [z] ⊂ H≤d0 [z]. Now, we redefine H[z] as the inverse image of C∗
d0

under this
(still one-to-one) extended mapping. That is, we set H[z] = ι−1

(
C∗

d0

)
, which gives

H[z] =
{
H(z) = [h1(z)h2(z) · · ·hP (z) ] ∈ CQ×P [z] : hp(z) �= 0 and deghp(z) ≤ D0

}
.

(3.8)
In sum, based on our previous assumptions, we started by simplifying the structure of H[z]
by dropping the irrelevant leaves. Then, we enlarged a bit (in the topological sense of
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lemma 3.1) the remaining leaf in order to attain a pleasant, full identification with an
open “rectangular” subset of a Cartesian product of complex spaces. With respect to the
quotient H[z]/ ∼ we maintain its definition, but now H[z] denotes the space in (3.8). That
is, H[z]/ ∼ is the set of equivalence classes of H[z] under the equivalence relation ∼, where
G(z) ∼H(z) if and only ifG(z) = H(z)Θ (θ) for some θ = (θ1, θ2, · · · , θP )T ∈ RP , where
Θ (θ) = diag

(
eiθ1 , eiθ2 , . . . , eiθP

)
. Thus, ∼ continues to denote equality of polynomial

matrices modulo a phase offset per column. Moreover, we keep the notation π : H[z] →
H[z]/ ∼, π (H(z)) = [H(z)] for the projection map merging all equivalent polynomial
matrices into the corresponding equivalence class.

Redefinition of CFIA. Given that the column degrees of H(z) are known and assump-
tions B1-B3 are in force, the CFIA can be simplified to the algorithm shown in table 3.1,
page 55. The CFIA takes an ordered (M + 1)-tuple of Q×Q matrices, the finite-sample
estimates of the MIMO output correlation matrices, and delivers a point in the quotient

space H[z]/ ∼, which is the estimated channel equivalence class ̂[
HN (z)

]
. Here, we defined

R̂
N

y [m] =
1
N

N∑
n=1

y[n]y[n−m]H , m = 0, 1, . . . ,M,

and indexed the available N +M data samples as {y[−M + 1], . . . ,y[0],y[1], . . . ,y[N ]}.
Thus, in all rigor, we should have denoted the CFIA output by ̂[

HN+M (z)
]
, since N +M

is the number of observations. However, we always have N � M in practice, so the
approximation N+M ≈ N is valid. In fact, since we will perform an asymptotic (N →∞)
analysis of the CFIA this distinction is irrelevant. Note that, at the exit of step 4), we are

invoking the discussed enlarged identification mapping ι to view the matrix Ĥ
N ∈ C∗

d0
as

a polynomial matrix Ĥ
N
(z) in H[z].

In step 1), we assumed that the D largest eigenvalues of the Hermitean matrix R̂
N

y [0]
are distinct. The subset of matrices satisfying this property is open and dense in the
set of Q × Q Hermitean matrices, so the assumption that R̂

N

y [0], built on the basis of
noisy observations, falls in this set is realistic. More importantly, note the presence of D
reference vectors r1, . . . , rD, which are supposed to be fixed beforehand. The dth vector
rd is introduced to desambiguate the choice of the eigenvector ûd, which is only defined
modulo a phase ambiguity. In other words, the reference vectors enable a smooth selection
of the corresponding eigenvectors. This mechanism is based on the assumption that each
ûd does not fall in the Lebesgue measure zero hyperplane orthogonal to the previously
chosen reference vector rd. Again, because this property holds almost everywhere in the
space where ûd (obtained from noisy observations) lives, we consider it to be realistic.
Similar remarks apply to step 3), where the minimum eigenvalues of the P Hermitean
matrices Ŝ1, . . . , ŜP , are assumed to be simple (that is, with multiplicity 1) and the P

reference vectors s1, . . . , sP are employed. It is important to show that the CFIA output
is invariant with respect to the particular choice of reference vectors adopted in steps 1)
and 3). To establish this, assume that one feeds the (M + 1)-ordered tuple of estimated
correlation matrices to another version of the CFIA, that is, one which is based on distinct
reference vectors from those in table 3.1. We label the inner variables of this new version
with a tilde rather than a hat. Thus, λ̃ is the counterpart of λ̂ in table 3.1, Ũ is the
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input:
(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)

step 1) compute λ̂ =
(
λ̂1, λ̂2, . . . , λ̂D

)T
and Û = [ û1 û2 · · · ûD ] such

that

R̂
N

y [0] ûd = λ̂dûd, ûHd ûd = 1, Re rHd ûd > 0, Im rHd ûd = 0,

for d = 1, 2, . . . , D. Moreover, the entries of λ̂ are
arranged in decreasing order, λ̂1 > λ̂2 > · · · > λ̂D, and
denote the D = (D0 + 1)P = ordH(z) largest eigenvalues

of R̂
N

y [0];

step 2) compute

Υ̂[m] = Ĝ+

0 R̂
N

y [m] Ĝ+H

0 ,

for m = 1, 2, . . . ,M, where

Ĝ0 = Û
(
Λ̂− σ2ID

)1/2
,

with
Λ̂ = diag

(
λ̂1, . . . , λ̂D

)
;

step 3) compute ŵp, the eigenvector associated with the minimum

eigenvalue of Ŝp and satisfying

ŵHp ŵp = 1, Re sHp ŵp > 0, Im sHp ŵp = 0.

Here, Ŝp = T̂ p
H
T̂ p, where

T̂ p =


T̂ p[1]
T̂ p[2]
...

T̂ p[M ]

 , T̂ p[m] =

 ID0+1 ⊗ Υ̂[m]− Γsp [m;D0]T ⊗ ID

ID0+1 ⊗ Υ̂[m]H − Γsp [m;D0]⊗ ID

 .

Define Ŵ =
[
Ŵ1 Ŵ2 · · · ŴP

]
, where

Ŵp =
√
D0 + 1 vec−1 (ŵp) : D × (D0 + 1);

step 4) set Ĥ
N
= Ĝ0 Ŵ Rs[0;d0]−1/2 and Ĥ

N
(z) = ι−1

(
Ĥ
N
)
.

output: ̂[
HN (z)

]
= π

(
Ĥ
N
(z)

)

Table 3.1: Simplified CFIA



56 Performance Analysis

counterpart of Û , and so on. At the end of step 1) in the new version, we have Ũ = ÛΩ,
for some Ω = diag

(
eiω1 , . . . , eiωD

)
, because ũd and ûd can only differ by a phase factor.

Moreover, λ̃d = λ̂d, since the eigenvalues cannot change. Thus, in step 2), we have

G̃0 = Ũ
(
Σ̃− σ2ID

)1/2
= ÛΩ

(
Σ̂− σ2ID

)1/2
= Û

(
Σ̂− σ2ID

)1/2
Ω

= Ĝ0Ω. (3.9)

Notice that Ω commutes with
(
Σ̂− σ2ID

)1/2
because they are both D × D diagonal

matrices. As a consequence of (3.9), G̃+

0 = Ω Ĝ+

0 , and

Υ̃[m] = ΩΥ̂[m]Ω, (3.10)

for m = 1, . . . ,M . To attack step 3), we start by noting that, as can be easily seen, the
matrix Ŵp in table 3.1 can also be obtained as follows: compute

X̂p = arg min
‖X‖ = 1

f̂ (X) ,

where

f̂ (X) =
∑

m=1,...,M

∥∥∥Υ̂[m]X −XΓsp [m;D0]
∥∥∥2 + ∥∥∥Υ̂[m]HX −XΓsp [m;D0]

H
∥∥∥2 ,

and find δp ∈ R such that Ŵp =
√
D0 + 1 X̂p e

iδp satisfies

Re
{
sHp vec

(
Ŵp

)}
> 0, Im

{
sHp vec

(
Ŵp

)}
= 0.

Thus, in what respects the new version of CFIA, we have

X̃p = arg min
‖X‖ = 1

f̃ (X) .

Since f̃ (X) = f̂ (ΩX) (use (3.10) and the fact that Ω is unitary), we must have

ΩX̃p = Xp e
iθp , (3.11)

for some θp ∈ R, because the left-hand side of (3.11) is also an unit-norm global minimizer
of the quadratic form f̂ . This implies W̃p = ΩŴp e

iθp , where the θp’s may have changed
relative to (3.11) due to the new reference vectors. Thus, in a more compact form,

W̃ = ΩŴ∆, (3.12)

where ∆ = Θ(θ)⊗ ID0+1, with θ = (θ1, . . . , θP )
T and Θ(θ) = diag

(
eiθ1 , . . . , eiθP

)
. This

means that in step 4) of the new version

H̃
N

= G̃0 W̃ Rs [0;d0]
−1/2

= Ĝ0 Ŵ∆Rs [0;d0]
−1/2 (3.13)

= Ĝ0 Ŵ Rs [0;d0]
−1/2 ∆ (3.14)

= Ĥ
N
∆. (3.15)
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To establish (3.13), we used (3.9) and (3.12). Equation (3.14) is valid because ∆ and
Rs [0;d0]

−1/2 commute: they share the same block diagonal structure, with the pth block
of ∆ being eiθpID0+1 (which commutes with any square matrix of the same size). Now,

the equality in (3.15) implies H̃
N
(z) = Ĥ

N
(z)Θ(θ). Thus, H̃

N
(z) ∼ Ĥ

N
(z) and both

project to the same point in the quotient H[z]/ ∼. In other words, both versions of the
CFIA deliver the same output.

Approach outline. We address the problem of finding an expression for (3.1) through
asymptotic analysis. More precisely, we activate the large-sample regime, that is, we let
N → ∞, and find the asymptotic distribution of the statistic

[
Ĥ
N
(z)

]
in the quotient

space H[z]/ ∼. Truncating the asymptotic study at any given N yields a distribution
which is only an approximation to the true (exact) distribution. However, the asymptotic
distribution can be found in closed-form (in contrast to the exact one, which seems very
difficult to tame analytically) and it is easy to evaluate the expectation operator appearing
in (3.1) with respect to this asymptotic distribution. Moreover, it turns out that the
approximation for J [N ; c(z), [H(z)]] thus obtained is already tight for small N , as shown
through numerical computer simulations in section 3.5.

We now give a macroscopic view of our asymptotic analysis. Four main phases can be
identified and we make the whole theory tick as follows. i) We start by turning the quo-
tient space H[z]/ ∼ into a differentiable manifold. This differential structure is introduced
by identifying H[z]/ ∼ with the space of orbits generated by a Lie group action on H[z].
Then, we induce in a natural way a geometry on the quotient space by equipping it with a
Riemannian tensor. With this added structure, H[z]/ ∼ is a connected Riemannian man-
ifold and the concept of distance between any two of its points is available (the function d

mentioned in (3.1)). Note that H[z] has a canonical Riemannian manifold structure which
comes from its identification with C∗

d0
. The geometry on the quotient space is induced

by requiring the projection map π : H[z]→ H[z]/ ∼ to be a Riemannian submersion. In
loose terms, we make our choices in order to have the two geometries interfacing nicely
through their natural link π. ii) The next step is to view CFIA in table 3.1 as a map-
ping CFIA : U ⊂ CQ×Q × · · · × CQ×Q → H[z]/ ∼, which sends an ordered (M + 1)-tuple
of Q×Q complex matrices lying in a certain open set U to a MIMO channel equivalence
class. We proceed to show that, in fact, CFIA is smooth as a mapping between manifolds
at the point (Ry[0],Ry[1], . . . ,Ry[M ]), where Ry[m] = E

{
y[n]y[n−m]H

}
. That is, the

mapping CFIA is smooth on an open neighborhood of (Ry[0],Ry[1], . . . ,Ry[M ]). More-
over, we obtain its derivative at this point. This is achieved by writing CFIA = π ◦ ψ,
where ψ : U ⊂ CQ×Q × · · · × CQ×Q → H[z] is the mapping which, given a (M + 1)-tuple
of Q × Q matrices, performs steps 1) to 4) of the CFIA. Since π is smooth (essentially
by construction) it suffices to prove that ψ is smooth at (Ry[0],Ry[1], . . . ,Ry[M ]), in
order to establish the smoothness of their composition CFIA = π ◦ ψ. We further decom-
pose ψ as a concatenation of 4 mappings, ψ = ψ4 ◦ψ3 ◦ψ2 ◦ψ1, where the ith mapping ψi
corresponds to the ith step of the CFIA in table 3.1. Figure 3.2 puts in perspective
all the mappings discussed here. iii) The next ingredient in our analysis consists in es-
tablishing the asymptotic normality of the ordered (M + 1)-tuple of random matrices(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)

appearing at the CFIA’s input. iv) The analysis is then
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U ⊂ CQ×Q × · · · × CQ×Q ψ1 ψ2 ψ3 ψ4

ψ

H[z]

H[z]/ ∼

π
CFIA

Figure 3.2: Mappings involved in the asymptotic analysis

closed by invoking a straightforward generalization of the delta-method to our manifold
setting (the delta-method, for Euclidean spaces, is recalled later in more detail). Basi-
cally, this extension asserts that smooth maps between manifolds transform asymptotic
normal inputs into asymptotic normal outputs. Thus, since

(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)

is asymptotically normal with center (Ry[0],Ry[1], . . . ,Ry[M ]) and the mapping CFIA is
smooth at (Ry[0],Ry[1], . . . ,Ry[M ]), the statistic

[ ̂HN (z)] = CFIA
(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)
,

behaves in the limit (N → ∞) as a normal variable in the quotient H[z]/ ∼, with center
[H(z)] = CFIA (Ry[0],Ry[1], . . . ,Ry[M ]). Moreover, its asymptotic covariance can be
found in closed-form and it yields an immediate approximation for

E

{
d

(
[H(z)] , ̂[

HN (z)
])2

}
,

for any given N .

3.3 Differential-geometric framework

The purpose of this section is to define, in an intrinsic manner, asymptotic normality of
random sequences on Riemannian manifolds and develop the corresponding extension of
the delta-method to this setting. This is accomplished incrementally. First, coordinate-
free generalizations of familiar statistical concepts in Euclidean spaces are obtained for
finite-dimensional vector spaces. Then, the theoretical jump to Riemannian spaces is
made by exploiting their natural local identifications with linear tangent spaces via the
exponential mapping.

Euclidean spaces: random objects. Throughout this section, we assume fixed a
probability space (Ω,A, µ), where Ω denotes the sample space, A is a σ-algebra, and
µ stands for a probability measure. When we think of each Euclidean space Rm as a
measure space, we let the Borel sets denote its σ-algebra and associate to it the Lesbesgue
measure. A random vector in Rm is a measurable mapping x : Ω → Rm, ω → x(ω).
Let x = (x1, x2, . . . , xm)T denote a random vector in Rm. We denote by Fx : Rm → R

its distribution function, that is, Fx(t) = Prob {x ! t}. Here, and for further reference,
the notation a ! b, where a = (a1, . . . , am)

T ∈ Rm and b = (b1, . . . , bm)
T ∈ Rm, means
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that ai ≤ bi for all i. The notation a ≺ b means that we have strict inequality, that is,
ai < bi for all i. Similar definitions hold for # and $. Let x1,x2, . . . denote a sequence
of random vectors in Rm. The sequence xn is said to converge in distribution to the
random vector x, written xn

d→ x, if Fxn(t) → Fx(t) as n → ∞, for all t at which Fx

is continuous. The sequence xn is said to converge to x in probability, written xn
P→ x,

if for every ε > 0, Prob {‖xn − x‖ > ε} → 0 as n → ∞. The normal distribution in
Rm, with mean µ ∈ Rm and covariance matrix Σ ∈ Rm×m is denoted by N (µ,Σ). Let
x ∈ Rm denote a random vector and let d= denote equality in distribution. We recall
that x

d= N (µ,Σ) if and only if tTx d= N (tTµ, tTΣt), for all t ∈ Rm. Let an denote a
sequence of positive numbers converging to infinity. We say that the sequence of random
vectors xn is an-asymptotically normal with mean µ ∈ Rm and covariance Σ ∈ Rm×m,
written xn ∼ an − AN (µ,Σ), if an(xn − µ) d→ N (0,Σ). Random matrices are reverted
to random vectors through the vec(·) operator. Thus, for example, Xn

d→X, means that
vec (Xn)

d→ vec (X). In terms of notation regarding matrix normal distributions, it is
convenient to denote the mean in matrix form. More precisely, for a random matrix X ∈
Rn×m, the notation X ∼ N (Υ,Σ), where Υ ∈ Rn×m and Σ ∈ Rnm×nm, means that
vec (X) ∼ N (vec (Υ) ,Σ). The same notational principle applies to asymptotic normal
distributions of random matrices.

Complex random objects are handled by embedding them in real Euclidean spaces and
applying the previous definitions. We define three identifications which permit to embed
complex vectors, ordered k-tuples of complex vectors, and ordered k-tuples of complex
matrices. These are defined recursively as follows. We identify Cm with R2m via the
mapping ı : Cm → R2m,

ı(z) =
[
Re z
Im z

]
. (3.16)

The remaining identifications to be used are: ı : Cm1×Cm2 · · ·×Cmk → R2(m1+m2+···+mk)

given by

ı (z1, z2, . . . ,zk) =


ı (z1)
ı (z2)
...

ı (zk)

 ,

and ı : Cn1×m1 × Cn2×m2 · · · × Cnk×mk → R2(n1m1+n2m2+···+nkmk) defined by

ı (Z1,Z2, . . . ,Zk) = ı (vec (Z1) , vec (Z2) , . . . , vec (Zk)) . (3.17)

Notice that the symbol ı designate all identifications. It suffices to look at the argument
to sort out the ambiguity. In the sequel, these identifications are implicitly used whenever
complex random objects are involved. As illustrative examples: i) saying that z ∈ Cm is
random means that ı (z) is random; ii) saying that

(z1, z2, . . . ,zk) ∼ N ((µ1,µ2, . . . ,µk) ,Σ) ,

where zj ,µj ∈ Cmj and Σ ∈ R2(m1+m2+···+mk)×2(m1+m2+···+mk), means that

ı (z1, z2, . . . ,zk) ∼ N (ı (µ1,µ2, . . . ,µk) ,Σ) ;
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iii) let an denote a sequence of positive numbers converging to infinity. Saying that a
sequence (indexed by n) of ordered k-tuples of complex random matrices (Zn1 ,Z

n
2 , . . . ,Z

n
k),

where Znj ∈ Cnj×mj , is an-asymptotically normal with mean (Υ1,Υ2, . . . ,Υk), where
Υj ∈ Cnj×mj , and covariance Σ ∈ R2(n1m1+n2m2+···+nkmk)×2(n1m1+n2m2+···+nkmk), written

(Zn1 ,Z
n
2 , . . . ,Z

n
k) ∼ an −AN ((Υ1,Υ2, . . . ,Υk) ,Σ) ,

means that
ı (Zn1 ,Z

n
2 , . . . ,Z

n
k) ∼ an −AN (ı (Υ1,Υ2, . . . ,Υk) ,Σ) .

It is worth mentioning some basic properties of the embeddings, which will prove to
be handy in the sequel. We state them without proof, since all of them are rather trivial
to check. For Z ∈ Cn×m, zj ∈ Cmj and conformable matrices A and B, we have:

ı
(
Z
)

= An,m ı (Z) (3.18)

ı
(
ZT

)
= Bn,m ı (Z) (3.19)

ı
(
ZH

)
= Cn,m ı (Z) (3.20)

ı (Az) =  (A) ı (z) (3.21)

ı (AZB) = 
(
BT ⊗A

)
ı (Z) (3.22)

ı (

 z1
...
zk

 ) = Πm1,...,mk

 ı (z1)
...

ı (zk)

 . (3.23)

Here, and for further reference, we used the notation An,m = diag (Inm,−Inm) and
Bn,m = diag (Kn,m,Kn,m), where the symbol Kn,m denotes the commutation matrix
of size nm × nm [39]. It is a permutation matrix which acts on n × m matrices A as
Kn,mvec (A) = vec

(
AT

)
. The notation Kn = Kn,n is also used. Moreover, we define

Cn,m = diag (Kn,m,−Kn,m), and

 (A) =
[
ReA −ImA
ImA ReA

]
.

The matrix Πm1,...,mk
denotes a permutation matrix which is implicitly (and uniquely)

defined by (3.23).

Derivatives of complex mappings. Let f : Rm → Rp, x = (x1, x2, . . . , xm)
T �→

f(x) = (f1(x), f2(x), . . . , fp(x))
T denote a real differentiable mapping. We recall that its

derivative at x0 is given by the p×m matrix

Df (x0) =


∂f1
∂x1

(x0) · · · ∂f1
∂xm

(x0)
...

. . .
...

∂fp
∂x1

(x0) · · · ∂fp
∂xm

(x0)

 .

The mapping f is said to be continuously differentiable at x0 if it is continuously differ-
entiable in some open neighborhood of x0. Complex mappings are handled in a natu-
ral way through the identifications discussed above. For example, consider the mapping
f : Cm → Cp. Then, there is an unique mapping f̂ : R2m → R2p such that the diagram
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Cm Cp

R2m R2p

f

f̂

ı ı

Figure 3.3: The complex mapping f induces the real mapping f̂

in figure 3.3 commutes, that is, f̂ ◦ ı = ı ◦ f . The mapping f is said to be differentiable if
f̂ is. In such case, its derivative at z0 ∈ Cm is defined as Df̂(ı(z0)). The derivatives of
mappings f : Cm1 × · · · × Cmk → Cp1 × · · · × Cpl and

F : Cn1×m1 × · · · × Cnk×mk → Cp1×q1 × · · · × Cpl×ql (3.24)

are defined similarly by working with the appropriate embeddings. With these definitions,
the chain rule continues to hold. For example, suppose that f : Cm → Cp and g : Cp →
Cq, and let h = g ◦f . Then, for z ∈ Cm, we have Dh(z) = Dg (f(z)) Df(z). To establish
this, simply notice that ĥ = ĝ ◦ f̂ . Furthermore, we can generalize the delta-method in
a straightforward manner. We recall that, for Euclidean spaces, the delta-method asserts
that if f : Rm → Rp is smooth on an open neighborhood of µ and xn ∼ an −AN (µ,Σ),
then f(xn) ∼ an − AN

(
f(µ), Df(µ)ΣDf(µ)T

)
, see [53, corollary 1.1, page 45]. Now,

let F be as in (3.24), and suppose it is continuously differentiable at (Υ1, . . . ,Υk), where
Υj ∈ Cnj×mj . Let an denote a sequence of positive numbers converging to infinity and
suppose

(Zn1 , . . . ,Z
n
k) ∼ an −AN ((Υ1, . . . ,Υk) ,Σ) .

Then,

F (Zn1 , . . . ,Z
n
k) ∼ an −AN

(
F (Υ1, . . . ,Υk) , DF (Υ1, . . . ,Υk)ΣDF (Υ1, . . . ,Υk)

T
)
.

Linear spaces: general definitions. Let V denote a finite-dimensional vector space
over R, with dimV = m. We denote by V ∗ its dual space, that is, the set of linear
functionals from V to R. The elements of V ∗ are called covectors. To each basis E1, . . . , Em
of V corresponds a unique dual basis ω1, . . . , ωm of V ∗ such that ωi(Ej) = δ[i − j]. A
tensor Φ on V of type (k, l) is a multilinear map

Φ : V × · · · × V︸ ︷︷ ︸
k copies

×V ∗ × · · · × V ∗︸ ︷︷ ︸
l copies

→ R.

Such a map is also called a k-covariant, l-contravariant tensor on V , and we define its
rank as k + l. Therefore, the rank of a tensor is the total number of arguments that it
takes. The space of all (k, l) tensors on V is denoted by T kl (V ). To simplify notation, we
let T k(V ) = T k0 (V ) and Tl(V ) = T 0

l (V ). We have the identifications T 1(V ) = V ∗ and
T1(V ) = V ∗∗ = V . Moreover, End(V ), the set of linear mappings from V to V , can be
identified with T 1

1 (V ) by assigning to A : V → V , the (1, 1) tensor ΦA acting on pairs
(X,σ) ∈ V ×V ∗ as ΦA(X,σ) = σ(AX). This identification is used to define the trace of a
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(1, 1) tensor Φ, written trΦ, as the trace of its corresponding linear mapping in End(V ).
With these definitions, it is easily seen that if E1, . . . , Em and ω1, . . . , ωm denote dual basis
in V and V ∗, respectively, then

trΦ =
m∑
i=1

Φ(Ei, ωi).

The space T kl (V ) has a natural vector space structure. For tensors Φ,Ψ ∈ T kl (V ), and
scalars α, β ∈ R, the (k, l) tensor αΦ+ βΨ is defined by

(αΦ+ βΨ) (X1, . . . , Xk, σ1, . . . , σl) =

αΦ(X1, . . . , Xk, σ1, . . . , σl) + βΨ(X1, . . . , Xk, σ1, . . . , σl),

whereXi ∈ V and σj ∈ V ∗. Let V andW denote finite-dimensional vector spaces. A linear
mapping A : V →W can be used to pull back covariant tensors on W and push forward
contravariant tensors on V . More precisely, for given covariant order k and contravariant
order l, we have the linear pull back mapping A∗ : T k(W )→ T k(V ), Φ �→ A∗Φ, where

(A∗Φ) (X1, . . . , Xk) = Φ (AX1, . . . , AXk) , (3.25)

for Xi ∈ V , and the linear push forward mapping A∗ : Tl(V )→ Tl(W ), Φ �→ A∗Φ, where

(A∗Φ) (σ1, . . . , σl) = Φ (A∗σ1, . . . , A∗σl) , (3.26)

for σj ∈W ∗. An inner product on V is a bilinear form g on V (equivalently, a (2, 0) tensor
on V ), which is symmetric (g(X,Y ) = g(Y,X)) and positive definite (g(X,X) ≥ 0, with
equality if and only if X = 0). The existence of an inner-product g on V induces many
constructions. The length of a vector X ∈ V , written |X|, is defined as |X| =

√
g(X,X).

The vectors X1, . . . , Xk are said to be orthonormal if g(Xi, Xj) = δ[i − j]. The inner
product also provides a natural identification between V and its dual V ∗, as follows. To
each vector X ∈ V we associate the covector X% ∈ V ∗ defined by

X%(Y ) = g(Y,X), (3.27)

for Y ∈ V . The notation X% = g(·, X) is also used. This identification V → V ∗ is one-to-
one and onto, hence invertible. Therefore, to each covector σ ∈ V ∗ corresponds a unique
vector in V , which we denote σ&. In this manner, an inner product is introduced in the
dual space V ∗, denoted g% : V ∗ × V ∗ → R, by letting g%(σ, ω) = g(σ&, ω&). Also, we can
use these identifications to convert a given tensor on V on any other of the same rank.
An important example, that we shall use in the sequel, consists in converting Φ ∈ T2(V )
in Φ% ∈ T 1

1 (V ) given by
Φ%(X,σ) = Φ(X%, σ),

for (X,σ) ∈ V × V ∗. Since Φ% is a (1, 1) tensor its trace is defined, and we also call it the
trace of Φ, that is, we define trΦ = trΦ%. With these definitions, it easily seen that, if
ω1, . . . , ωm denotes an orthonormal basis for V ∗ and Φ ∈ T2(V ), then

trΦ =
m∑
i=1

Φ (ωi, ωi) . (3.28)
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Linear spaces: random objects. Let V denote an m-dimensional vector space over R.
The vector space V acquires a topology by identifying it with Rm through a choice of
basis. This topology is well-defined, that is, it does not depend on which particular basis
of V is chosen. We think of V as a measurable space by equipping it with the σ-algebra
generated by its class of open sets, that is, by its topology. A random vector in V is
a measurable mapping X : Ω → V , ω �→ X(ω). With this definition, it follows that
for a given covector σ ∈ V ∗, σ(X) denotes a random variable in R, that is, the mapping
ω ∈ Ω �→ σ(X(ω)) ∈ R is measurable, because it is a composition of measurable mappings.
The random vectorX is said to have mean µ ∈ V if E {σ(X)} = σ(µ), for all σ ∈ V ∗. Here,
E {·} denotes the expectation operator. The covariance ofX is a symmetric 2-contravariant
tensor on V , denoted Cov(X), and defined by Cov(X) (σ, ψ) = E {σ(X − µ)ψ(X − µ)},
for (σ, ψ) ∈ V ∗ × V ∗ and where µ denotes the mean value of X. A random vector X in
V is said to have the normal distribution with mean µ ∈ V and covariance Σ ∈ T2(V ),
written X ∼ N (µ,Σ), if for any given σ ∈ V ∗ the random variable σ(X) in R has
the distribution N (σ(µ),Σ(σ, σ)). Let X1, X2, . . . denote a sequence of random vectors
in V . We say that the sequence Xn converges in distribution to the random vector X,
written Xn

d→ X, if for any σ ∈ V ∗, the sequence of random variables σ(Xn) converges in
distribution to the random variable σ(X). Similarly, the sequence Xn is said to converge
in probability to µ ∈ V , written Xn

P→ µ, if for any σ ∈ V ∗, we have σ(Xn)
P→ σ(µ).

The sequence Xn converges in probability to the random vector X, written Xn
P→ X, if

Xn−X
P→ 0. Let an denote a sequence of positive numbers converging to infinity. We say

that the sequence of random vectors Xn is an-asymptotically normal with mean µ ∈ V

and covariance Σ ∈ T2(V ), written Xn ∼ an − AN (µ,Σ), if an(Xn − µ) d→ N (0,Σ).
The previous definitions did not require an inner product on the vector space V . If
such an inner product exists, we define the variance of the random vector X in V as
var(X) = E

{
|X − µ|2

}
, where µ denotes the mean value of X. Is is straightforward to

check that var(X) = trCov(X), as it should be.

Manifolds: general definitions. We assume the reader to be familiar with basic con-
cepts of differential Riemannian geometry, such as those at the level of [7, 16, 32]. Here,
we mainly settle notation which, whenever possible, is compatible with the notation in [7].
For a smooth (C∞) manifold M , the tangent space to M at p is denoted by TpM and the
respective cotangent space by T ∗

pM = (TpM)∗. The symbol T kl (M) stands for the bundle
of mixed tensors of type (k, l) on M , and T kl (M) denotes the vector space of smooth sec-
tions of T kl (M). Thus, a section Φ ∈ T kl (M) assigns a tensor of type (k, l) to each tangent
space TpM , p ∈M , denoted

Φp : TpM × · · · × TpM︸ ︷︷ ︸
k copies

×T ∗
pM × · · · × T ∗

pM︸ ︷︷ ︸
l copies

→ R.

To simplify notation, we let T k(M) = T k0 (M), Tl(M) = T 0
l (M), T k(M) = T k0 (M) and

Tl(M) = T 0
l (M). The tangent bundle of M is denoted by TM = T1M . We assume TM

to be equipped with its canonical smooth structure, and we let T (M) = T1(M) stand
for the space of smooth sections of TM , that is, the set of smooth vector fields on M .
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The cotangent bundle of M is denoted by T ∗M = T 1M , and it is assumed equipped
with its canonical smooth structure. The set of smooth covector fields on M , that is, the
space of smooth sections of T ∗M , is denoted by T ∗(M). The set of smooth real-valued
functions defined on M is denoted by C∞ (M). If M and N denote smooth manifolds,
and F : M → N is a smooth mapping, F∗ : TM → TN denotes its derivative. We also
use the symbol F∗ to denote the push forward operator F∗ : Tl(M) → Tl(N) induced
by the derivative of F . That is, at each p ∈ M , we let the linear (derivative) mapping
F∗ : TpM → TF (p)N between linear spaces induce the corresponding linear push forward
operator F∗ : Tl (TpM) → Tl

(
TF (p)N

)
which acts on contravariant tensors on TpM .

Exterior differentiation is represented by d.
Let M denote a Riemannian manifold with metric g, denoted sometimes by (M, g).

This means that g is a tensor field g ∈ T 2(M) which is symmetric (g(X,Y ) = g(Y,X),
for all X,Y ∈ TM) and positive definite (g(X,X) ≥ 0 for all X ∈ T (M), with equality
if and only if X = 0). Thus, g is a smooth assignment of an inner-product gp : TpM ×
TpM → R to each tangent space TpM , p ∈ M . For Xp ∈ TpM , we use the notation
|Xp| =

√
gp (Xp, Xp) to designate the norm of the vector Xp with respect to the inner-

product gp. We let ∇ denote simultaneously the Levi-Civita connection on M , and the
induced connection on all bundles T kl (M). The gradient of f ∈ C∞(M), denoted grad f ,
is the unique smooth section of TM satisfying df(X) = g(grad f,X), for all X ∈ T (M).
Moreover, the Hessian of f ∈ C∞(M), denoted Hess f , is defined as Hess f = ∇df , see [16,
example 2.64, page 74]. It is a symmetric form and belongs to T 2

0 (M). The exponential
mapping is given by Exp : D ⊂ TM →M , where the open set D denotes its domain. We
recall that, for a given tangent vector Xp ∈ D ⊂ TM , the exponential mapping is defined
as ExpXp = γ(1), where γ(t) designates the unique geodesic which emanates from p ∈M

along the tangent direction Xp, that is, γ(0) = p and γ̇(0) = Xp [7, definition 6.3, page
337]. For p ∈ M , we let Expp denote the restriction of Exp to the tangent space TpM .
A geodesic ball centered at p ∈ M and radius ε > 0, denoted Bε(p), is the diffeomorphic
image under Expp of the tangent ball

TBε(p) = {Xp ∈ TpM : |Xp| < ε} ,

that is, Bε(p) = Expp (TBε(p)). Recall that, in general, geodesic balls with center p are
only defined for all positive ε below a certain threshold (which depends on p), see [16,
corollary 2.89, page 85]. We say that a smooth map F : M → TpM is a linearization of
M at p if it agrees with the inverse mapping of Exp on some geodesic ball Bε(p). The
length of a smooth curve γ : [a, b]→M is defined as

L(γ) =
∫ b

a
|γ̇(t)| dt.

The curve γ is said to be regular if it is an immersion, that is, γ̇(t) �= 0. A continuous
map γ : [a, b] → M is said to be a piecewise regular curve if there is a finite partition
a = a0 < a1 < · · · < an = b such that the restriction of γ to each subinterval [ai−1, ai]
is a regular curve. In such case, the length of γ is the sum of the lengths of the regular
subsegments. If M is connected, the Riemannian distance between two points p, q ∈ M ,
denoted d(p, q), is defined as the infimum of the lengths of all piecewise regular curves
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from p to q. Note that we use the same symbol d for both the exterior derivative and the
geodesic distance. The context easily resolves the ambiguity. Let γ : [a, b] → M denote
a smooth curve, and V a vector field along γ, that is, a smooth map V : [a, b] → TM .
We let DtV : [a, b]→ TM denote the covariant derivative of the vector field V along the
curve γ. The vector field V is said to be parallel along γ if DtV ≡ 0. Recall that the curve
γ is a geodesic if its velocity vector γ̇ : [a, b] → TM is parallel, that is, Dtγ̇ ≡ 0. The
Riemannian curvature tensor of M is denoted by R. It is the C∞(M)-multilinear map
R : T (M)× T (M)× T (M)× T (M)→ R defined by

R(X,Y, Z,W ) = g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W ), (3.29)

where X,Y, Z,W ∈ T (M) and [X,Y ] = XY − Y X ∈ T (M) stands for the Lie bracket
of the vectors fields X and Y . Let Xp, Yp denote linearly independent vectors in TpM .
The sectional curvature of the plane Π = span{Xp, Yp} ⊂ TpM is denoted by K(Xp, Yp)
or K(Π). Recall that

K(Xp, Yp) =
R(Xp, Yp, Yp, Xp)

g(Xp, Xp)g(Yp, Yp)− g(Xp, Yp)2
. (3.30)

Manifolds: random objects. Let M denote a connected Riemannian manifold. It
is also a measurable space by letting its topology generate a σ-algebra, called the Borel
σ-algebra of M . A random point in M is a measurable mapping x : Ω → M , ω �→
x(ω). Let x1, x2, . . . denote a sequence of random points in M . The sequence xn is said
to converge in probability to the random point x, written xn

P→ x, if the sequence of
random variables d(xn, x) converges to zero in probability. Recall that d(p, q) denotes the
Riemannian distance from p to q. Let an a sequence of positive numbers converging to
infinity. We say that the sequence of random points xn is an-asymptotically normal with
mean p ∈M and covariance form Σ ∈ T2 (TpM), written xn ∼ an −AN (p,Σ), if xn

P→ p

and F (xn) ∼ an − AN (0,Σ) for all linearizations F : M → TpM of M at p. Note that
F (xn) denotes a random vector in the linear space TpM . Lemma 3.2 shows that, in fact,
the analysis of one linearization is sufficient to establish asymptotic normality of random
sequences.

Lemma 3.2. Suppose xn
P→ p and let F and G denote linearizations of M at p. Then,

F (xn) ∼ an −AN (0,Σ) ⇔ G(xn) ∼ an −AN (0,Σ) .

Proof: See appendix B.

If xn is an-asymptotically normal with mean p and covariance form Σ, we have lemma 3.3
which connects the asymptotic distribution of the random square-distance d(xn, p)2 to the
covariance Σ.

Lemma 3.3. Suppose xn ∼ an −AN (p,Σ). Then,

a2n d(xn, p)
2 d→ z,

where E {z} = trΣ.
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Proof: See appendix B.

Thus, if xn ∼ an − AN (p,Σ), lemma 3.3 suggests the approximation E
{
a2n d(xn, p)

2
}
�

E {z}, that is,
E
{
d(xn, p)2

}
� tr Σ

a2n
, (3.31)

for large n. It is an important fact that asymptotic normality is preserved by smooth
mappings of manifolds. Lemma 3.4 generalizes to the setting of Riemannian manifolds
the well known delta-method for Euclidean spaces.

Lemma 3.4. Let M,N denote Riemannian manifolds and F : M → N a smooth map.
Suppose xn ∼ an −AN (p,Σ). Then, F (xn) ∼ an −AN (F (p), F∗Σ).

Proof: See appendix B.

Note that the result still holds if F is only smooth on an open neighborhood U of p,
because it suffices to replace U by M in the lemma (a look at the proof clarifies this point
even better).

3.4 Performance analysis: microscopic view

In this section, we zoom in our performance analysis and work out the details of its four
main phases. The four phases were defined in page 57. We devote a subsection to each
phase. i) In subsection 3.4.1, we equip the quotient space H[z]/ ∼ with a Riemannian
manifold structure and dissect a bit its geometry. ii) In subsection 3.4.2, we concern
ourselves with the map ψ, which, essentially, performs steps 1) to 4) of the CFIA. We
define it, show that it is a smooth map and compute its derivative at any given point.
iii) In subsection 3.4.3, we establish the asymptotic (N → ∞) normality of the random

ordered P -tuple
(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)

appearing at the input of the CFIA. A
closed-form expression is obtained for its asymptotic covariance. iv) Subsection 3.4.4 is
the last one. It assembles all the analytical pieces developed so far and, together with
results from the differential-geometric framework in section 3.3, proves the asymptotic

(N → ∞) normality of the random point [ ̂HN (z)] in the Riemannian manifold H[z]/ ∼.
Furthermore, its asymptotic covariance is obtained in closed-form and an approximation

to J [N ; c(z), [H(z)]] = E

{
d

(
[H(z)] , ̂[

HN (z)
])2

}
in (3.1) is deduced.

3.4.1 The geometry of H[z]/ ∼

In this subsection, we turn the quotient space H[z]/ ∼ into a Riemannian manifold. This
smooth geometric structure is induced naturally by requiring the projection map π :
H[z]→ H[z]/ ∼ to be a Riemannian submersion. That is, we make the geometries on the
two spaces H[z] and H[z]/ ∼, linked canonically by π, to interface nicely. As soon as the
space H[z]/ ∼ acquires its Riemannian structure, it becames a geometrical object in its
own right (for example, the concept of distance becomes available). We proceed to study
its main geometric features. More precisely, we develop a closed-form expression for the
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distance between any two of its points, and obtain its sectional curvatures at any given
point. This data will be used in the sequel: the distance is needed later in this chapter,
whereas an upper-bound on the sectional curvatures is required in chapter 4.

The Riemannian manifold H[z]. We start by noticing that the space H[z] has a natural
Riemannian manifold structure. It comes from the identification provided by the bijective
map

ι : H[z]→ C∗
d0

= C∗Q×(D0+1) × C∗Q×(D0+1) × · · · × C∗Q×(D0+1)︸ ︷︷ ︸
P

, (3.32)

which operates as

H(z) = [h1(z)h2(z) · · ·hP (z) ] ι�→ (H1,H2, . . . ,HP ) , (3.33)

where Hp = T 0 (hp(z)), recall the discussion in page 53. Moreover, because

C∗
d0
⊂ Cd0 = CQ×(D0+1) × CQ×(D0+1) × · · · × CQ×(D0+1)︸ ︷︷ ︸

P

,

we can use the embedding ı : Cd0 → R2PQ(D0+1) (as defined in (3.17)),

(Z1,Z2, . . . ,ZP )
ı�→


Revec (Z1)
Imvec (Z1)

...
Re vec (ZP )
Imvec (ZP )

 . (3.34)

to further identify Cd0 with the real space R2PQ(D0+1). In sum, through the one-to-one
composition map ı◦ ι : H[z]→ R2PQ(D0+1), we are identifying H[z] with an open subset of
the real Euclidean space R2PQ(D0+1), which is assumed equipped with its usual Riemannian
structure. With this identification, the space H[z] is a real smooth manifold with dimen-
sion dim H[z] = 2PQ(D0 + 1). It is a connected topological space, because each factor
space C∗Q×(D0+1) is connected (it consists of CQ×(D0+1) with the origin removed), and the
Cartesian product of connected spaces is connected. Let H(z) = [h1(z)h2(z) · · ·hP (z) ]
denote a point in H[z]. The tangent space to H[z] at H(z), written TH(z)H[z], is naturally
identified with the vector space Cd0 over the field R. We denote by 〈·, ·〉H(Z) the inner
product on the tangent space TH(z)H[z], or simply by 〈·, ·〉 when the point H(z) is clear
from the context. For any tangent vectors∆ = (∆1,∆2, . . . ,∆P ) ,Γ = (Γ1,Γ2, . . . ,ΓP ) ∈
TH(z)H[z], where ∆p,Γp ∈ CQ×(D0+1), it is given by

〈∆,Γ〉H(z) =
P∑
p=1

Re tr
(
ΓHp ∆p

)
. (3.35)

Moreover, the geodesic γ : I ⊂ R → H[z] which emanates from H(z) in the direction ∆,
that is, which satisfies γ(0) = H(z) and

d

dt
γ(t)

∣∣∣∣
t=0

=∆,
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is given by
γ(t) = ι−1 ((H1 + t∆1,H2 + t∆2, . . . ,HP + t∆P )) ,

with Hp = T 0 (hp(z)). Its domain is given by I = (a, b), where

a = inf {t < 0 : Hp + t∆p �= 0, for all p }

and
b = sup {t > 0 : Hp + t∆p �= 0, for all p } .

The values a = −∞ and b = +∞ are possible.

The smooth manifold H[z]/ ∼. Recall that the space H/ ∼ is the set of equiva-
lence classes induced by the equivalence relation ∼ on H[z], where G(z) ∼ H(z) if
and only if G(z) = H(z)Θ (θ) for some θ = (θ1, θ2, · · · , θP )T ∈ RP , where Θ (θ) =
diag

(
eiθ1 , eiθ2 , . . . , eiθP

)
. Consider the P -dimensional torus Lie group

TP = S1 × S1 × · · · × S1︸ ︷︷ ︸
P

,

where S1 = {u ∈ C : |u| = 1}, with multiplication law

u · v = (u1, u2, . . . , uP ) · (v1, v2, . . . , vP ) = (u1v1, u2v2, . . . , uP vP ) .

Define a right action of TP on H[z] as λ : H[z]× TP → H[z],

λ (H(z),u) =
[
h1(z)u1 h2(z)u2 · · · hP (z)uP

]
. (3.36)

In the sequel, we use the notation λ (H(z),u) = H(z) · u. For given H(z) ∈ H[z], the
subset

H(z)TP =
{
H(z) · u : u ∈ TP

}
⊂ H[z]

is termed the orbit of H(z) under the action of TP . It is obtained by acting on the point
H(z) with all elements of the group TP . Note that the space H[z] is the disjoint union of
all orbits generated by TP . The set of orbits is called the orbit space and is denoted by
H[z]/TP . We define the canonical projection map ρ : H[z] → H[z]/TP , which associates
to each point H(z) its corresponding orbit ρ (H(z)). Figure 3.4 illustrates the concepts
introduced here. Now, it is clear that H(z) ∼ G(z) if and only if H(z) and G(z) are in
the same orbit. Thus, the quotient space H[z]/ ∼ has a natural identification with the
orbit space H[z]/TP . Within this identification, π = ρ. It is readily seen that the action λ

of the Lie group TP on the manifold H[z] is smooth. Moreover, it is free and proper. We
recall that the action of a topological group G on a topological space M , is said to be free
if, for all p ∈M , the identity p · g = p implies g = e, where e denotes the identity element
of the group. That is, only g = e can fix points. The action is said to be proper if, for
each compact subset K ⊂ M the set GK = {g ∈ G : Kg ∩K �= ∅} is compact, see [16,
page 32]. The action λ is free, because H(z) ·u = H(z) implies hp(z)up = hp(z), for all p.
Since hp(z) is a nonzero polynomial, we conclude that up = 1, that is, u = (1, 1, . . . , 1) is
the identity element of the group TP . The action λ is proper because any smooth action
by a compact Lie group on a smooth manifold is proper [16, page 32], and TP is a compact
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H[z]

H(z)

H[z]/TP

ρ (H(z))

ρ

H(z)TP

Figure 3.4: The space H[z], an orbit H(z)TP and the orbit space H[z]/TP

space (Cartesian product of P compact circles). Thus, we are covered by theoreom 1.95
in [16, page 32]. It states that the orbit space H[z]/TP is a topological manifold and has a
(in fact, unique) smooth structure making the canonical projection ρ : H[z]→ H[z]/TP a
smooth submersion. We recall that a smooth map F : M → N between smooth manifolds
is said to be a submersion if, for any p ∈ M , the corresponding linear push forward map
Fp∗ : TpM → TF (p)N is surjective, that is, rankFp∗ = dimFp∗ (TpM) = dimTpN =
dimN . Hereafter, we consider the quotient space H[z]/ ∼= H[z]/TP equipped with such
smooth structure. Its dimension is dim H[z]/TP = dimH[z]−dimTP = 2PQ(D0+1)−P .

The Riemannian manifold H[z]/ ∼. Up to this point, the quotient space is only a
smooth manifold. We have not yet inserted in it a Riemannian structure. To induce
such geometric structure, we exploit proposition 2.28 in [16, page 64]. This proposition
asserts that if a Lie group G acts smoothly, freely and properly on a smooth Riemannian
manifold (M, g) by isometries, say, λ : M×G→M , then there exits one and only one Rie-
mannian metric on the orbit space M/G making the canonical projection ρ : M →M/G

a Riemannian submersion. We recall that a map � : (M, g) → (N,h) between Rieman-
nian manifolds is said to be a Riemannian submersion if � is a smooth submersion and,
for each p ∈M , the restriction of the push forward map �∗ : TpM → T,(p)N to the hori-
zontal linear subspace HpM ⊂ TpM is a linear isometry, that is, h,(p) (�∗ (Xp) , �∗ (Yp)) =
gp (Xp, Yp), for all Xp, Yp ∈ HpM , see [16, definition 2.27, page 63]. Note that gp and h,(p)
denote inner-products on the linear spaces TpM and T,(p)N , respectively. The horizontal
subspace HpM is the orthogonal complement in TpM (with respect to the inner product
gp) of the vertical linear subspace

VpM = ker �∗ = {Xp ∈ TpM : �∗ (Xp) = 0} ⊂ TpM.

Since � is a submersion, it follows that dim �∗ (TpM) = dimT,(p)N = dimN , and thereby
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dimVpM = dimM −dimN and dimHpM = dimN . Figure 3.5 illustrates these concepts.
This figure must be interpreted with some care. We are not suggesting that the tangent

HpM
θ

θ

T,(p)N

�(p)

�∗ (Xp)
�∗ (Yp)

Xp
Ypp

VpM

M

�∗

N

Figure 3.5: A Riemannian submersion � : M → N

space TpM is a subset of the manifold M . We have chosen to draw it inside M (and
not above it, as we did for N) to save space and keep the idea that this is a linear space
“attached” to the point p ∈ M . We also recall the Lie group G acts on the Riemannian
manifold M by isometries if, for all g ∈ G, the map λg : M → M , p �→ λg(p) = p · g is
a Riemannian isometry. That is, λg is a diffeomorphism (one-to-one, onto smooth map
with a smooth inverse) and, for any p ∈ M , the push forward map λg∗ : TpM → Tp·gM
is a linear isometry, see [16, definition 2.5, page 54].

To apply proposition 2.28 in [16, page 64], we take M = H[z], G = TP and consider
the action λ : H[z]× TP → H[z] defined in (3.36). We have already seen that this action
is smooth, free and proper. It remains only to show that, for any given u ∈ TP , the map
λu : H(z)→ H(z), λu(H(z)) = H(z) ·u is a Riemannian isometry. It is clear that λu is a
diffeomorphism since λu is a smooth inverse. LetH(z) ∈ H[z]. It is easily seen that, under
the identification TH(z)H[z] = Cd0 , the push forward linear λu∗ : TH(z)H[z]→ TH(z)H[z]
is given by

∆ = (∆1,∆2, . . . ,∆P ) ∈ TH(z)H[z]
λu∗�→ (∆1u1,∆2u2, . . . ,∆PuP ) ∈ TH(z)·uH[z].

To prove that λu∗ is a linear isometry it suffices to show that it preserves norms, that is,
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〈λu∗ (∆) , λu∗ (∆)〉H(z)·u = 〈∆,∆〉H(z). But, according to (3.35),

〈λu∗ (∆) , λu∗ (∆)〉H(z)·u =
P∑
p=1

tr
(
upup∆Hp ∆p

)
=

P∑
p=1

tr
(
∆Hp ∆p

)
= 〈∆,∆〉H(z),

where we used the identity upup = |up| = 1, which is due to the fact that up ∈ S1. Thus,
proposition 2.28 in [16, page 64] can be applied in the present context. In the sequel,
we consider the smooth manifold H[z]/ ∼ to be equipped with this unique Riemannian
structure making the canonical projection π : H[z] → H[z]/ ∼, π (H(z)) = [H(z)], a
Riemannian submersion.

Distance between points in H[z]/ ∼. Note that H[z]/ ∼ is a connected topological
space, since it is the image of the connected space H[z] under the continuous map π. Thus,
the concept of distance between points in H[z]/ ∼ is well-defined (recall the definition of
Riemannian distance in page 64). This is the distance function mentioned in (3.1). We now
obtain a closed-form expression for d ([H(z)] , [G(z)]), the Riemannian distance between
any two given points [H(z)] and [G(z)] in H[z]/ ∼.

Let H = (H1, . . . ,HP ) = ι (H(z)) and G = (G1, . . . ,GP ) = ι (G(z)). Recall that
Hp = T 0 (hp(z)) and Gp = T 0

(
gp(z)

)
. We assume that

Re tr
(
GHp Hp

)
≥ 0, Im tr

(
GHp Hp

)
= 0, (3.37)

for all p. This entails no loss of generality. Suppose (3.37) does not hold for some p. Then,
tr

(
GHp Hp

)
is a nonzero complex number. Define

g̃p(z) = gp(z)
tr

(
GHp Hp

)
|tr

(
GHp Hp

)
|
, (3.38)

and g̃q(z) = gq(z), for all q �= p. Let G̃(z) = [ g̃1(z) g̃2(z) · · · g̃P (z) ]. It is clear that G(z)

and G̃(z) are in the same orbit, that is, [G(z)] =
[
G̃(z)

]
. Moreover, from (3.38), it follows

that

G̃p = T 0

(
g̃p(z)

)
= Gp

tr
(
GHp Hp

)
|tr

(
GHp Hp

)
|
,

and tr
(
G̃
H

p Hp

)
= |tr

(
GHp Hp

)
|. Thus, Re tr

(
G̃
H

p Hp

)
≥ 0 and Im tr

(
G̃
H

p Hp

)
= 0.

Redefine G(z) = G̃(z). If (3.37) does not hold for another p, we can repeat this procedure.
In sum, for a given G(z), we see that, in at most P movements in its orbit, we can find
an orbit representative satisfying (3.37).

Using the identification H[z] = C∗
d0
, consider the geodesic in H[z] given by γ : [0, 1] ⊂

R → H[z],

γ(t) = (H1 + t (G1 −H1) ,H2 + t (G2 −H2) , . . . ,HP + t (GP −HP )) , (3.39)



72 Performance Analysis

which connects the point γ(0) = H(z) to the point γ(1) = G(z). Note that, indeed,
γ(t) ∈ C∗

d0
for all t ∈ (0, 1), that is,

Hp + t (Gp −Hp) �= 0, (3.40)

for all t ∈ (0, 1) and any p. To check this, assume Hp + t0 (Gp −Hp) = 0, for some
t0 ∈ (0, 1) and some p. Then,

(1− t0)Hp + t0Gp = 0. (3.41)

Multiplying both sides of (3.41) on the left by GHp , taking the trace and using (3.37),
yields

(1− t0) |tr
(
GHp Hp

)
|+ t0 ‖Gp‖2 = 0.

This implies ‖Gp‖ = 0, that is, gp(z) = 0, which is impossible. Thus, γ is a curve
in H[z] = C∗

d0
.

Under the natural identification TH(z)H[z] with the vector space Cd0 over R, the
tangent vector γ̇(t) ∈ Tγ(t)H[z] is given by

γ̇(t) = (G1 −H1,G2 −H2, . . . ,GP −HP ) . (3.42)

Thus, using (3.35), the length of the curve γ is

L (γ) =
∫ 1

0
〈 ˙γ(t), ˙γ(t)〉1/2γ(t) dt

=

√√√√ P∑
p=1

‖Gp −Hp‖2

=

√√√√ P∑
p=1

‖Gp‖2 + ‖Hp‖2 − 2|tr
(
GHp Hp

)
|. (3.43)

It is important to note that L (γ) in (3.43) is the distance from the point H(z) to the orbit
G(z)TP , that is,

L (γ) = min
G̃(z) ∈ G(z)TP

d
(
H(z), G̃(z)

)
.

To see this, let G̃(z) ∈ G(z)TP , that is, G̃(z) = G(z) · u, for some u in the torus TP .
Thus, G̃p = Gp up with |up| = 1, and

d
(
H(z), G̃(z)

)2
≥

P∑
p=1

∥∥∥Hp − G̃p

∥∥∥2 (3.44)

=
P∑
p=1

‖Hp‖2 + ‖Gp‖2 − 2Re
{
up tr

(
GHp Hp

)}
(3.45)

≥
P∑
p=1

‖Gp‖2 + ‖Hp‖2 − 2|tr
(
GHp Hp

)
| (3.46)

= L(γ)2.
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The inequality (3.44) is valid because under the Riemannian identification H[z] = C∗
d0

the shortest distance between points is the usual Euclidean distance. In (3.45), we simply
replaced G̃p by Gpup. Inequality (3.46) follows from the fact that, for any z ∈ C, we have
Re z ≤ |z|.

Note that the tangent vector γ̇(0) is horizontal, that is, γ̇(0) ∈ Hγ(0)H[z]. In general,
if � : M → N is a Riemannian submersion, a smooth curve γ : I → M is said to be
horizontal if the tangent vector γ̇(t) belongs to the horizontal subspace Hγ(t)M , for all
t ∈ I. The tangent vector γ̇(0) can be seen to be horizontal as follows. The vertical space
at any given point H(z) ∈ H[z] = C∗

d0
is the P -dimensional subspace of TH(z)H[z] = Cd0

given by

VH(z)H[z] = span {(iH1,0, . . . ,0) , (0, iH2, . . . ,0) , . . . , (0, . . . ,0, iHP )} . (3.47)

This is precisely the tangent space to the orbit H(z)TP at the point H(z). See figure 3.6
for a sketch. From (3.47) and (3.35), we conclude that the horizontal subspace at H(z) is

H[z]

H(z)

VH(z)H[z]

HH(z)H[z]

H(z)TP

Figure 3.6: The horizontal HH(z)H[z] and vertical VH(z)H[z] subspaces of TH(z)H(z)

the 2PQ(D0 + 1)− P -dimensional subspace of TH(z)H[z] = Cd0 given by

HH(z)H[z] =
{
(∆1,∆2, . . . ,∆P ) : Im tr

(
∆Hp Hp

)
= 0, for all p

}
. (3.48)

Since γ(0) = H(z), we have Hγ(0)H[z] = HH(z)H[z]. Let (∆1,∆2, . . . ,∆P ) = γ̇(0).
From (3.42), ∆p = Gp −Hp, and, as a consequence,

tr
(
∆Hp Hp

)
= tr

(
GHp Hp

)
− ‖Hp‖2 . (3.49)

Taking the imaginary part of both sides of (3.49) and using (3.37) yields Im tr
(
∆Hp Hp

)
=

0. That is, the tangent vector γ̇(0) is horizontal. Let the curve γ descend to the quotient
space, that is, define the smooth curve η : [0, 1]→ H[z]/ ∼ by η(t) = π(γ(t)). Note that η
connects the point η(0) = [H(z)] to the point η(1) = [G(z)]. Since γ is a geodesic of H[z]
which starts with an horizontal velocity vector, proposition 2.109 [16, page 97] asserts that
the whole curve γ is horizontal and, more importantly, that the curve η is a geodesic of
H[z]/ ∼ with the same length of γ, that is, L (η) = L (γ). Figure 3.7 provides an illustration.



74 Performance Analysis

H[z]

H(z)

H[z]/ ∼

[H(z)]

π

H(z)TP

G(z)TP

G(z)

γ(t)

η(t)

[G(z)]

Figure 3.7: The geodesic γ(t) in H[z] descends to the geodesic η(t) in H[z]/ ∼

We now show that if η̃ : [a, b]→ H[z]/ ∼ denotes any piecewise regular curve connecting
η̃(a) = [H(z)] to η̃(b) = [G(z)], then its length is greater or equal than that of η, that
is, L(η̃) ≥ L(η). This proves that the Riemannian distance d ([H(z)] , [G(z)]) = L(η), that
is, it is given by (3.43). We need lemma 3.5 below. It is an easy exercise in differential
geometry and it is certainly a known result. However, because a specific reference to it
could not be located in [16, 7], we include a proof for completness.

Lemma 3.5. Let the Lie group G act smoothly, freely and properly on the smooth mani-
fold M by isometries. Thus, M/G can be given a Riemannian structure making the canon-
ical projection ρ : M →M/G a Riemannian submersion. Let q : [a, b]→M/G denote a
piecewise regular curve and x an arbitrarily chosen point in the orbit ρ−1 (q(a)) ⊂M , that
is, ρ(x) = q(a). Then, there is an unique horizontal piecewise regular curve p : [a, b]→M

starting at x and projecting to the curve q under ρ. That is, p(a) = x, ṗ(t) ∈ Hp(t)M and
ρ (p(t)) = q(t), for all t.

Proof: See appendix B.

Now, let η̃ : [a, b]→ H[z]/ ∼ be any piecewise regular curve connecting η̃(a) = [H(z)] to
η̃(b) = [G(z)]. Let γ̃ : [a, b] → H[z] denote the corresponding horizontal curve starting
at H(z), whose existence is guaranteed by lemma 3.5. Note that γ̃ connects H(z) to
the orbit G(z)TP , because π (γ̃(a)) = η̃(a) = [H(z)] and π (γ̃(b)) = η̃(b) = [G(z)]. As
shown previously, L(γ) is the distance from the point H(z) to the orbit G(z)TP . Thus,
L (γ̃) ≥ L(γ). But, since γ̃(t) is an horizontal curve and projects to η̃(t) = π (γ̃(t)), the
curve η̃(t) has the same length, see [16, page 98]. That is, L (η̃) = L (γ̃) ≥ L (γ) = L (η).
Thus, we conclude that the Riemannian distance between the points [H(z)] and [G(z)] is
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given by

d ([H(z)] , [G(z)]) =

√√√√ P∑
p=1

‖Gp‖2 + ‖Hp‖2 − 2|tr
(
GHp Hp

)
|. (3.50)

Notice that the assumption (3.37), although used initially in the deduction, is not needed
in (3.50). That is, H(z) and G(z) can be any orbit representatives. To see this, notice
that the right-hand side of (3.50) remains the same, as it should, if one replaces Hp by
Hpup (or Gp by Gpup), with |up| = 1, as this simply correspond to shifts of H(z) (or
G(z)) along the corresponding orbit, without changing the equivalence class [H(z)] (or
[G(z)]).

Sectional curvatures of H[z]/ ∼. We compute the sectional curvatures of the Rieman-
nian manifold H[z]/ ∼ at a given point [H(z)] (recall the definition of sectional curvature
in (3.30)). As mentioned previously, this data will be used in chapter 4. In loose terms,
the sectional curvatures of a Riemannian manifold M encode the local geometry of M .
Given a point p ∈ M , they probe the geometric structure of M around p by analysing
the Gaussian curvature of the two-dimensional submanifolds Expp (Π) ⊂ M , as Π varies
over the set of two-dimensional planes in the tangent space TpM . In fact, due to its in-
trinsic symmetries, the Riemannian curvature tensor at p can be fully recovered from the
sectional curvatures at p, see [7, theorem 3.5, page 385].

Let X[H(z)] and Y[H(z)] denote two orthonormal vectors in T[H(z)]H[z]/ ∼. From (3.30),
we must compute

K
(
X[H(z)], Y[H(z)]

)
= R

(
X[H(z)], Y[H(z)], Y[H(z)], X[H(z)]

)
, (3.51)

where R denotes the Riemannian curvature tensor of H[z]/ ∼. Recall (3.29) for the
definition of the curvature tensor. To obtain (3.51), we exploit O’Neill’s formula, see [16,
theorem 3.61, page 127]. It asserts that, if � : M → N is a Riemannian submersion, and
X,Y denote smooth orthonormal vector fields on N , then

K(X,(p), Y,(p)) = K̃
(
X̃p, Ỹp

)
+

3
4
|[X̃, Ỹ ]Vp |2,

for all p ∈ M , where X̃, Ỹ ∈ T (M) denote the horizontal lifts of X,Y ∈ T (N), K̃

stands for the sectional curvature on M , and the smooth vector field [X̃, Ỹ ]V denotes the
vertical part of [X̃, Ỹ ]. That is, X̃p, Ỹp ∈ HpM and �p∗

(
X̃p

)
= Xp, �p∗

(
Ỹp

)
= Yp, for

all p ∈ M . Moreover, [X̃, Ỹ ]Vp ∈ VpM denotes the orthogonal projection of the tangent
vector [X̃, Ỹ ]p ∈ TpM onto the vertical subspace VpM ⊂ TpM . In our context, we may
take M = H[z], N = H[z]/ ∼, p = H(z) and � = π. Furthermore, we let X,Y ∈ T (U)
denote smooth orthonormal vector fields defined in an open neighborhood U ⊂ H[z]/ ∼ of
π (H(z)) = [H(z)], which extend (locally) the given tangent vectors X[H(z)] and Y[H(z)].
Their corresponding horizontal lifts, defined in the open set Ũ = π−1 (U) ⊂ H[z], are
denoted by X̃ and Ỹ . Thus,

K(X[G(z)], Y[G(z)]) = K̃
(
X̃G(z), ỸG(z)

)
+

3
4
|[X̃, Ỹ ]VG(z)|2, (3.52)

for all G(z) ∈ Ũ and where K̃ denotes the sectional curvature of H[z]. Recall that we are
identifying H[z] with an open subset of R2PQ(D0+1) through the composition ı◦ ι : H[z]→
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R2PQ(D0+1), see (3.32), (3.33) and (3.34). But, the real Euclidean spaces with their usual
Riemannian structure are flat, that is, they are spaces of constant zero curvature. Thus,

K̃
(
X̃G(z), ỸG(z)

)
= 0, (3.53)

see [7, page 386]. Now, consider the P smooth vector fields E1, . . . , EP ∈ T (Ũ) defined,
under the identification TG(z)H[z] = Cd0 , by

E1G(z) = (iG1,0, . . . ,0) , . . . , EP G(z) = (0, . . . , iGP ) , (3.54)

at each point G(z) ∈ Ũ . As seen in (3.47), the frame E1G(z), . . . , EP G(z) denotes a basis
for the vertical subspace VG(z)H[z] ⊂ TG(z)H[z]. Furthermore, it is an orthogonal basis,
because, from (3.35), we have

〈EpG(z), EqG(z)〉G(z) = rp (G(z)) δ[p− q],

where rp : Ũ → R denotes the smooth function rp (G(z)) = ‖Gp‖2. Define the P smooth
vector fields F1, . . . , FP ∈ T (Ũ), by

Fp = 1/
√
rpEp. (3.55)

It is clear that, when evaluated at each point G(z) ∈ Ũ , they materialize into an or-
thonormal basis for VG(z)H[z]. Let σ1, . . . , σP ∈ T ∗(Ũ) denote the dual covector fields.
That is, σ1G(z), . . . , σPG(z) denotes the basis of T ∗

G(z)H[z] which is dual to the basis

F1G(z), . . . , FPG(z) of TG(z)H[z], at each point G(z) ∈ Ũ . Thus,

σp (Fq) = δ[p− q]. (3.56)

From (3.56), and since F1, . . . , FP are orthonormal, it follows that σpG(z) = F %pG(z), at

each G(z) ∈ Ũ . Recall from (3.27) that this means

σp
(
XG(z)

)
= 〈XG(z), FpG(z)〉,

for any XG(z) ∈ TG(z)H[z]. Thus, for an arbitrary tangent vector XG(z), we have

|XVG(z)|2 =
P∑
p=1

σp
(
XG(z)

)2
. (3.57)

It is more convenient to work with the covector fields ω1, . . . , ωP ∈ T ∗(Ũ), defined by

ωp =
√
rp σp. (3.58)

From (3.57) and (3.58), we have

|XVG(z)|2 =
P∑
p=1

1
rp(G(z))

ωp
(
XG(z)

)2
. (3.59)

Using (3.53) and (3.59) in (3.52) yields

K(X[H(z)], Y[H(z)]) =
3
4

P∑
p=1

1

‖Hp‖2
ωp

(
[X̃, Ỹ ]H(z)

)2
. (3.60)
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From (3.55), we see that ωp is the dual covector field of Ep, that is, ωp = E%p. Furthermore,
from [7, lemma 8.4, page 224] we have

ωp

(
[X̃, Ỹ ]

)
= X̃ωp(Ỹ )− Ỹ ωp(X̃)− dωp(X̃, Ỹ ), (3.61)

where d denotes the exterior differentiation operator. But,

ωp(Ỹ ) = 〈Ỹ , Ep〉 = 0, ωp(X̃) = 〈X̃, Ep〉 = 0, (3.62)

because X̃ and Ỹ denote horizontal vector fields, whereas Ep is a vertical vector field.
Again, we recall that we are identifying H[z] with an open subset of R2PQ(D0+1) through
the composition ı ◦ ι : H[z]→ R2PQ(D0+1). Let n = Q(D0 + 1) and label the coordinates
of R2Pn as x11, . . . , x

n
1 , y

1
1, . . . , y

n
1 , . . . , x

1
P , . . . , x

n
P , y

1
P , . . . , y

n
P . Within this identification the

vertical vector fields Ep defined in (3.54) are given by

Ep =
n∑
k=1

xkp
∂

∂ykp
− ykp

∂

∂xkp
, (3.63)

where, as usual,
{
∂/∂xkp, ∂/∂y

k
p : k = 1, . . . , n, p = 1, . . . , P

}
denote the tangent vector

fields induced by the coordinates
{
xkp, y

k
p : k = 1, . . . , n, p = 1, . . . , P

}
. From (3.63), it

follows that

ωp = E%p =
n∑
k=1

xkp dy
k
p − ykp dx

k
p.

Consequently,

dωp =
n∑
k=1

dxkp ∧ dykp − dykp ∧ dxkp = −2
n∑
k=1

dykp ∧ dxkp, (3.64)

where ∧ stands for the wedge product of differential forms. Plugging (3.62) and (3.64)
in (3.61) yields

ωp

(
[X̃, Ỹ ]

)
= 2

n∑
k=1

dykp ∧ dxkp(X̃, Ỹ )

= 2
n∑
k=1

dykp(X̃) dxkp(Ỹ )− dykp(Ỹ ) dxkp(X̃). (3.65)

Under the identification TH(z) H[z] = Cd0 , write X̃H(z) = (X̃1, . . . , X̃P ) and ỸH(z) =
(Ỹ 1, . . . , Ỹ P ). Evaluating (3.65) at H(z) gives

ωp

(
[X̃, Ỹ ]H(z)

)
= 2 tr

{(
Re Ỹ p

)T (
Im X̃p

)}
− 2 tr

{(
Im Ỹ p

)T (
Re X̃p

)}
= 2Re tr

{(
iỸ p

)H
X̃p

}
. (3.66)

Finally, inserting (3.66) in (3.60) yields

K(X[H(z)], Y[H(z)]) = 3
P∑
p=1

1

‖Hp‖2

[
Re tr

{(
iỸ p

)H
X̃p

}]2
. (3.67)
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In chapter 4, we will need an upper-bound on the sectional curvatures at a given point
[H(z)], that is, an upper-bound on

C[H(z)] = max
X[H(z)], Y[H(z)] : orthonormal

K(X[H(z)], Y[H(z)]).

From (3.67), we have

K(X[H(z)], Y[H(z)]) ≤ 3
P∑
p=1

1

‖Hp‖2
∥∥∥X̃p

∥∥∥2 ∥∥∥Ỹ p∥∥∥2 (3.68)

≤ 3max

{
1

‖Hp‖2
: p = 1, 2, . . . , P

}
. (3.69)

In (3.68) we used the inequality |Re z| ≤ |z| for z ∈ C together with the Cauchy-Schwartz
inequality |tr(AHB)| ≤ ‖A‖ ‖B‖. In (3.69) we used the fact that the tangent vectors
X̃H(z) = (X̃1, . . . , X̃P ) and Ỹ H(z) = (Ỹ 1, . . . , Ỹ P ) have unit-norm, that is,

P∑
p=1

∥∥∥X̃p

∥∥∥2 = P∑
p=1

∥∥∥Ỹ p∥∥∥2 = 1.

Thus,
∥∥∥Ỹ p∥∥∥2 ≤ 1 and

P∑
p=1

∥∥∥X̃p

∥∥∥2 ∥∥∥Ỹ p∥∥∥2 ≤ P∑
p=1

∥∥∥X̃p

∥∥∥2 = 1,

which, given (3.68), implies (3.69). In sum,

C[H(z)] ≤ 3max

{
1

‖Hp‖2
: p = 1, 2, . . . , P

}
. (3.70)

3.4.2 The map ψ

In this subsection, we define the mapping ψ which, in brief, is the mapping performing
steps 1) to 4) of the CFIA in table 3.1. Furthermore, we compute its derivative at the
point (Ry[0],Ry[1], . . . ,Ry[M ]). This data is needed to close the asymptotic analysis in
section 3.4.4. The mapping ψ will be of the form

ψ : U ⊂ CQ×Q × · · · × CQ×Q︸ ︷︷ ︸
M + 1

→ H[z],

for a certain open set U . We will write ψ as a composition of four mappings,

ψ = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1.

The mapping ψi essentially executes the ith step of the CFIA in table 3.1. More precisely,
in terms of the inner variables of the CFIA, we will make our choices for the four mappings
in order to have the input-output relationships expressed in figure 3.8.
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ψ1

ψ2

ψ3

ψ4

(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)

(
λ̂, Û , R̂

N

y [1], . . . , R̂
N

y [M ]
)

(
Ĝ0, Υ̂[1], . . . , Υ̂[M ]

)

(
Ĝ0,Ŵ1, . . . ,ŴP

)

Ĥ
N

ψ

Figure 3.8: The map ψ as the composition ψ = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1
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We start by defining the mappings ψi in the reversed order. That is, we begin with ψ4

and finish with ψ1. For each mapping ψi, we prove that it is smooth, and compute its
derivative at an arbitrary point of its (open) domain. The actual computational details
are left to the appendix C. The derivative of ψ at (Ry[0],Ry[1], . . . ,Ry[M ]) ∈ U is then
obtained by the chain rule.

Mapping ψ4: definition. This mapping performs step 4) of the CFIA in table 3.1, see
also figure 3.8. In particular, we must have(

Ĝ0,Ŵ1, . . . ,ŴP

) ψ4�−→ Ĥ
N
.

We let it be of the form

ψ4 : U4 ⊂ CQ×D × CD×(D0+1) × · · · × CD×(D0+1)︸ ︷︷ ︸
P︸ ︷︷ ︸

C4

→ CQ×D

where

U4 = { (Z0,Z1, . . . ,ZP ) ∈ C4 : rankZ0 = D, rank [Z1 · · · ZP ] = P (D0 + 1) = D } .

We define
ψ4 (Z0,Z1, . . . ,ZP ) = Z0 [Z1 · · · ZP ] Rs[0;d0]−1/2. (3.71)

Note that U4 is an open subset of C4 and imageψ4 ⊂ C∗
d0

= H[z] ⊂ Cd0 = CQ×D.
Moreover, ψ4 is smooth on all of its domain U4, since only elementary operations (matrix
multiplications, and so forth) are involved. The derivative of ψ4 at an arbitrary point
(Z0,Z1, . . . ,ZP ) of its domain U4 is computed in appendix C, section C.1.

Mapping ψ3: definition. Before defining the mapping ψ3, we state the technical
lemma 3.6 which establishes the local differentiability of simple eigenvalues and associ-
ated unit-norm eigenvectors of Hermitean matrices, as functions of the matrix entries.
This lemma will be invoked to compute the derivative of ψ3 (and also ψ1). The issue
of differentiability of simple eigenvalues and associated eigenvectors of complex matrices
is addressed in [39]. However, the result therein is inadequate for our purposes for two
reasons. i) Let λ0 denote a simple (that is, with multiplicity 1), possibly complex, eigen-
value of a n× n complex matrix Z0. Let q0 denote an associated unit-norm eigenvector,
that is, Z0q0 = λ0q0 with qH0 q0 = 1. The result in [39] states that there exists an open
set U ⊂ Cn×n containing Z0 and smooth mappings λ : U → C and q : U → Cn such
that λ (Z0) = λ0, q (Z0) = q0 and

Z q (Z) = λ (Z) q (Z)

qH0 q (Z) = 1, (3.72)

for all Z ∈ U . The first reason this result is inadequate for our purposes lies in the way
the eigenvector q extending q0 is normalized in (3.72). It is not normalized to unit-power,
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as we want it to be. Instead, it is scaled to satisfy a linear constraint. ii) The second,
and more important, reason lies in the fact that the implementation of this version of
the EVD requires the previous knowledge of an eigenvector q0 of Z0. As can be seen
in (3.72), this knowledge is needed to scale eigenvectors of matrices Z in a vicinity of Z0.
In our context, this means that, to code the CFIA with this version of the EVD, we
should know beforehand, for example, the eigenvectors of Z0 = Ry[0], because in step 1)

of the CFIA we calculate eigenvalues and eigenvectors of matrices Z = R̂
N

y [0] in the
vicinity of Z0 = Ry[0]. Clearly, such knowledge is not available in practice. But, even
so, this would make the CFIA unable to handle more than one MIMO channel (if the
channel changes, the correlation matrix at the output may change, and, as a consequence,
also its eigenstructure). Thus, what we need is a version of the EVD which allows for
differentiable unit-norm eigenvectors along with a more realistic normalization procedure.
This is proposed in lemma 3.6. Before stating lemma 3.6 we need some notation. Let
V ⊂ Cn denote a linear subspace. We say that the vector c ∈ Cn is oblique to V , if it
does not lie in the orthogonal complement of V , that is,

c �∈ V ⊥ =
{
z : zHv = 0, for all v ∈ V

}
.

If λ denotes an eigenvalue of a n×n complex matrix Z, we let Vλ (Z) denote its associated
eigenspace. That is,

Vλ (Z) = {q ∈ Cn : Zq = λq } .

Suppose λ is a simple eigenvalue of Z and c is oblique to Vλ (Z). It is clear that there is
one and only one unit-norm eigenvector q ∈ Vλ (Z) such that Re cHq > 0 and Im cHq = 0.
We denote such eigenvector by q (Z;λ; c).

Lemma 3.6. Let λ0 ∈ R denote a simple eigenvalue of a n × n Hermitean matrix Z0.
Suppose c0 ∈ Cn is oblique to Vλ0 (Z0) and let q0 = q (Z0;λ0; c0). Then, there exist open
sets U ⊂ Cn×n and V ⊂ C × Cn containing Z0 and (λ0, q0), respectively, such that, for
each Z ∈ U there exists one and only one (λ, q) ∈ V satisfying Zq = λq, qHq = 1,
Re cH0 q > 0, Im cH0 q = 0 and λ is a simple eigenvalue of Z. Denote this implicit mapping
by Z ∈ U �→ (λ(Z), q(Z)) ∈ V . Note that, for each Z ∈ U , c0 is oblique to Vλ(Z) (Z) and
q (Z) = q (Z;λ(Z); c0). The implicit mapping is smooth (infinitely differentiable) and the
differentials dλ and dq, evaluated at Z0, are given by

dλ = qH0 dZq0 (3.73)

dq = (λ0In −Z0)
+ dZq0 − i

Im
{
cH0 (λ0In −Z0)

+ dZq0
}

cH0 q0
q0. (3.74)

Proof: See appendix B.

To implement this version of the EVD it is only required that c0 does not lie in the
orthogonal complement of the one-dimensional eigenspace Vλ0 (Z0). Although, in practice,
Vλ0 (Z0) is not known beforehand, almost all c0 do satisfy this condition. More precisely,
those which do not verify it are confined to a Lebesgue measure zero set, the linear slice
orthogonal to Vλ0 (Z0).
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For our purposes, we need the derivatives, as defined in page 60, of the complex
mappings λ : U ⊂ Cn×n → C and q : U ⊂ Cn×n → Cn at Z0. These are straightforward
to obtain from the differentials in (3.73) and (3.74). More precisely, Dλ (Z0) and Dq (Z0)
are uniquely defined by

ı (dλ) = Dλ (Z0) ı (dZ)

ı (dq) = Dq (Z0) ı (dZ) .

Plugging dZ = Re {dZ} + i Im {dZ} in (3.73) and (3.74), and working out the details
yields

Dλ (Z0) = 
(
qT0 ⊗ qH0

)
(3.75)

Dq (Z0) =

(
I2n −

1

cH0 q0

[
Im q0
−Re q0

] [
Im cT0 −Re cT0

])

(
qT0 ⊗ (λ0In −Z0)

+) .
(3.76)

We use the notation Dλ (Z0;λ0; c0) and Dq (Z0;λ0; c0) to designate the matrices on the
right-hand sides of (3.75) and (3.76), respectively. The symbol q0 is not included in this
notation, because q0 is not an independent entity. Recall that it is just a shorthand for
q (Z0;λ0; c0).

The mapping ψ3 must perform step 3) of the CFIA in table 3.1. Recall also figure 3.8.
It must satisfy (

Ĝ0, Υ̂[1], . . . , Υ̂[M ]
) ψ3�−→

(
Ĝ0,Ŵ1, . . . ,ŴP

)
.

We will define it in terms of auxiliary mappings ηp and ϑp in order to have the input-output
relationships described in figure 3.9.

ηP

ϑ1 ϑP

η1

T̂ 1 T̂ P

(
Ĝ0, Υ̂[1], . . . , Υ̂[M ]

)

(
Ĝ0,Ŵ1, . . . ,ŴP

)

ψ3

Ŵ1 ŴP

Figure 3.9: The internal structure of the map ψ3
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The pth mapping

ηp : CD×D × · · · × CD×D︸ ︷︷ ︸
M

→ C2MD(D0+1)×D(D0+1)

is given by

ηp (Z1, . . . ,ZM ) =



ID0+1 ⊗Z1 − Γsp [m;D0]T ⊗ ID

ID0+1 ⊗ZH1 − Γsp [m;D0]⊗ ID
...

ID0+1 ⊗ZM − Γsp [m;D0]T ⊗ ID

ID0+1 ⊗ZHM − Γsp [m;D0]⊗ ID


. (3.77)

Note that, with this definition, T̂ p = ηp

(
Υ̂[1], . . . , Υ̂[M ]

)
. To introduce the mappings ϑp,

we need a bit of terminology. If Z is an Hermitean matrix, we denote its minimum
eigenvalue by λmin (Z). Also, to simplify notation, we let Vmin (Z) = Vλmin(Z) (Z). The
pth mapping

ϑp : Vp ⊂ C2MD(D0+1)×D(D0+1) → CD×D(D0+1),

where
Vp =

{
Z : dimVmin

(
ZHZ

)
= 1, sp �∈ V⊥

min

(
ZHZ

)}
,

is given by
ϑp (Z) =

√
D0 + 1vec−1

(
q
(
ZHZ;λmin

(
ZHZ

)
; sp

))
.

Here, vec−1 denotes the inverse mapping of vec : CD×(D0+1) → CD(D0+1). Note that the
domain of ϑp, denoted above by Vp, consists of those 2MD(D0 +1)×D(D0 +1) complex
matricesZ for which the minimum eigenvalue ofZHZ is simple and the vector sp is oblique

to the corresponding eigenspace. Moreover, note that Ŵp = ϑp ◦ ηp
(
Υ̂[1], . . . , Υ̂[M ]

)
.

We define the mapping

ψ3 : U3 ⊂ CQ×D × CD×D × · · · × CD×D︸ ︷︷ ︸
M︸ ︷︷ ︸

C3

→ C4,

where

U3 =
{
(Z0,Z1, . . . ,ZM ) ∈ C3 : (Z1, . . . ,ZM ) ∈ η−1

p (Vp) , for all p = 1, . . . , P
}
,

to be given by

ψ3 (Z0,Z1, . . . ,ZM ) = (Z0, ϑ1 ◦ η1 (Z1, . . . ,ZM ) , . . . , ϑP ◦ ηP (Z1, . . . ,ZM )) .

Note that U3 is an open subset of C3. Furthermore, the mapping ψ3 is smooth on U3. This
follows from the fact that both ηp (because it only involves elementary operations) and ϑp
(by virtue of lemma 3.6) are smooth on their respective domains. Thus, in particular,
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ψ3 is continuous and, therefore, ψ−1
3 (U4) is an open subset of U3. We now redefine the

domain of ψ3 as the open set U3 ← U3 ∩ ψ−1
3 (U4). This ensures that ψ3 (U3) ⊂ U4, that

is, we may compose ψ4 ◦ ψ3. The derivative of ψ3 at an arbitrary point (Z0,Z1, . . . ,ZM )
of its domain U3, written Dψ3 (Z0,Z1, . . . ,ZM ), is computed in appendix C, section C.2.

Mapping ψ2: definition. This mapping executes step 2) of the CFIA in table 3.1, see
also figure 3.8, and must verify(

λ̂, Û , R̂
N

y [1], . . . , R̂
N

y [M ]
) ψ2�−→

(
Ĝ0, Υ̂[1], . . . , Υ̂[M ]

)
.

We introduce the auxiliary mappings

τ : V ⊂ CD × CQ×D → CQ×D, υ : V ⊂ CD × CQ×D → CD×Q,

where V =
{
(z,Z) : Re z $ σ21D

}
, defined by

τ(z,Z) = Z Diag
(
Re z − σ21D

)1/2 (3.78)

υ(z,Z) = Diag
(
Re z − σ21D

)−1/2
ZH . (3.79)

In terms of the inner variables of the CFIA, Ĝ0 = τ
(
λ̂, Û

)
and Ĝ+

0 = υ
(
λ̂, Û

)
. We

define
ψ2 : U2 ⊂ CD × CQ×D × CQ×Q × · · · × CQ×Q︸ ︷︷ ︸

M︸ ︷︷ ︸
C2

→ C3,

where
U2 = { (z,Z0,Z1, . . . ,ZM ) ∈ C2 : (z,Z0) ∈ V } ,

to be given by

ψ2 (z,Z0,Z1, . . . ,ZM ) =(
τ (z,Z0) , υ (z,Z0)Z1υ (z,Z0)

H , . . . , υ (z,Z0)ZMυ (z,Z0)
H
)
. (3.80)

Note that U2 is an open subset of C2. Furthermore, because both τ and υ are smooth on
their domain V the mapping ψ2 is smooth on U2. We now redefine the domain of ψ2 as
the open set U2 ← U2 ∩ ψ−1

2 (U3), in order to satisfy ψ2 (U2) ⊂ U3. Thus, the composition
ψ4 ◦ψ3 ◦ψ2 is well-defined. The derivative of ψ2 at an arbitrary point (z,Z0,Z1, . . . ,ZM )
of its domain U2 is computed in appendix C, section C.3.

Mapping ψ1: definition. This is the mapping performing step 1) of the CFIA in
table 3.1. According to figure 3.8 it must operate as to satisfy(

R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
) ψ1�−→

(
λ̂, Û , R̂

N

y [1], . . . , R̂
N

y [M ]
)
.

In order to describe it succinctly we introduce some notation. We denote by SD the subset
of Q×Q Hermitean matrices whose largest D eigenvalues are simple. For Z ∈ SD, we let
λ1(Z) > · · · > λD(Z) denote its largestD eigenvalues arranged in strictly decreasing order.
We also define the vector λ (Z) = (λ1(Z), . . . , λD(Z))T . Let cd denote a vector oblique to
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the one-dimensional eigenspace Vλd(Z) (Z). Recall that q (Z;λd (Z) ; cd) designates the
unique unit-norm eigenvector q ∈ Vλd(Z) (Z) which satisfies Re cHd q > 0 and Im cHd q = 0.
These eigenvectors can be arranged in the matrix

Q (Z; c1, . . . , cD) =
[
q (Z;λ1 (Z) ; c1) q (Z;λ2 (Z) ; c2) · · · q (Z;λD (Z) ; cD)

]
.

(3.81)
Note that each Q × Q complex matrix can be uniquely decomposed as Z = Zh + Zs,
where Zh = (Z + ZH)/2 is Hermitean and Zs = (Z − ZH)/2 is skew-Hermitean. We
denote by ρ : CQ×Q → CQ×Q the projector

ρ (Z) =
Z +ZH

2
, (3.82)

retrieving the Hermitean part of its matrix argument.
We define the mapping

ψ1 : U1 ⊂ CQ×Q × · · · × CQ×Q︸ ︷︷ ︸
M + 1︸ ︷︷ ︸
C1

→ C2,

where

U1 =
{
(Z0,Z1, . . . ,ZM ) ∈ C1 : ρ (Z0) ∈ SD, rd �∈ V⊥

d (ρ (Z0)) , d = 1, . . . , D
}
,

to be given by

ψ1 (Z0,Z1, . . . ,ZM ) = (λ (ρ (Z0)) ,Q (ρ (Z0) ; r1, . . . , rD) ,Z1, . . . ,ZM ) . (3.83)

Note that U1 is an open subset of C1 and ψ1 is smooth on it, because simple eigenvalues
and associated eigenvectors of Hermitean matrices are smooth functions of its entries, as
established in lemma 3.6. As expected, we now redefine the domain of ψ1 to be U1 ←
U1 ∩ ψ−1

1 (U2). This makes the composition ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1 well-defined. The derivative
of ψ1 at an arbitrary point (Z0,Z1, . . . ,ZM ) of its domain U1, denote by the symbol
Dψ1 (Z0,Z1, . . . ,ZM ), is computed in appendix C, section C.4.

Derivative of ψ. The mapping ψ : U ⊂ CQ×Q × · · · × CQ×Q → Cd0 = CQ×D is defined
by putting U = U1 and letting ψ = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1. By the above considerations, U is
open, ψ is smooth on it, imageψ ⊂ C∗

d0
= H[z], and we have

Ĥ
N
= ψ

(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)
.

That is, ψ is a smooth mapping performing steps 1) to 4) of the CFIA in table 3.1. The
derivative of ψ at the point (Ry[0],Ry[1], . . . ,Ry[M ]) is given by the chain rule. That is,

Dψ (Ry[0],Ry[1], . . . ,Ry[M ]) = Dψ4 ◦Dψ3 ◦Dψ2 ◦Dψ1 (Ry[0],Ry[1], . . . ,Ry[M ]) .
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3.4.3 Asymptotic normality of
(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)

Before proving the asymptotic normality of the ordered (M + 1)-tuple of random ma-

trices
(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)
, we establish some lemmas regarding the asymptotic

normality of certain random processes. This will shorten the proof substantially. Let x,y
denote random vectors, not necessarily of the same size. The notation x⊥y means that
x and y are statistically independent. Let κ = (κ1, κ2, . . . , κP )

T denote a P -dimensional
vector with non-negative entries. We say that the real P -dimensional random vector
x = (x1, x2, . . . , xP )

T belongs to the class R(κ), written x ∈ R(κ), if its entries are mu-
tually independent (xp⊥xq for p �= q) and their first four moments satisfy E {xp} = 0,
E
{
x2p

}
= 1, E

{
x3p

}
= 0, and E

{
x4p

}
= κp, for p = 1, 2, . . . , P . Lemma 3.7 provides a

formula for the fourth order moments of random vectors x in R (κ), or equivalently, for
the correlation matrix of the random vector x⊗ x.

Lemma 3.7. Suppose that the P -dimensional random vector x belongs to the class R (κ).
Then,

corr {x⊗ x} = IP 2 +KP + iP i
T
P + diag

(
(κ1 − 3)e1eT1 , . . . , (κP − 3)ePeTP

)
, (3.84)

where κ = (κ1, κ2, . . . , κP )T and ep denotes the pth column of the identity matrix IP .

Proof: See appendix B.

In lemma 3.7, and for further reference, we define in = vec (In), the n2-dimensional col-
umn vector obtained by vectorizing the n×n identity matrix In. For κ = (κ1, κ2, . . . , κP )

T ,
we define Σ (κ) as the matrix in (3.84).

Let xp[n], p = 1, 2, . . . , P , denote independent random signals with each xp[n] being
a sequence of independent realizations of R(κp). That is, each pth signal is statistically
white (xp[n]⊥xp[m] for n �= m) and xp[n] ∈ R(κp) for all n ∈ Z. Moreover, xp[n]⊥xq[m]
for all n,m and p �= q. In that case, we say that the discrete-time random signal
x[n] = (x1[n], x2[n], . . . , xP [n])

T belongs to the class RZ (κ), where κ = (κ1, κ2, . . . , κP )
T .

Lemma 3.8 establishes the asymptotic normality of the finite-sample estimate of the cor-
relation matrix of the random signal x[n; l], for any given choice of stacking parameters
in l = (L1, L2, . . . , LP )

T .

Lemma 3.8. Let x[n] = (x1[n], x2[n], . . . , xP [n])
T belong to RZ (κ). Then, for given

l = (L1, L2, . . . , LP )
T , the sequence of random matrices (indexed by N)

RN =
1
N

N∑
n=1

x[n; l]x[n; l]T

is asymptotically normal. More precisely, we have

RN ∼
√
N −AN (IL,R(κ; l)) ,

where L = L1 + · · ·+ LP + P and

R(κ; l) = D(l)[2]
(
R0 + 2

L0∑
l=1

Rl − (2L0 + 1)iP (L0+1)i
T
P (L0+1)

)
D(l)[2]

T
,
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with L0 = max {L1, . . . , LP }, D(l) = diag (D1, . . . ,DP ), Dp =
[
ILp+1 0(Lp+1)×(L0−Lp)

]
,

and Rl = S
[2]
P,L0,l

Σ(κ⊗ 1L0+l+1)T
[2]
P,l,L0

T
.

Proof: See appendix B.

In lemma 3.8, and in the sequel, A[n] = A⊗· · ·⊗A denotes the n-fold Kronecker product
of A. Also,

Sp,n,i = Ip ⊗
[
In+1 0(n+1)×i

]
T p,i,n = Ip ⊗

[
0(n+1)×i In+1

]
,

for p ≥ 1 and n, i ≥ 0. The matrix Sp,n,i consists of p copies, concatenated along the
diagonal, of a (n+ 1)× (n+ i+ 1) block. The same applies to T p,i,n. The generalization
of lemma 3.8 to complex random signals is more useful to our purposes. We say that
the discrete-time complex random signal x[n] = (x1[n], x2[n], . . . , xP [n])

T belongs to the
class CZ (κ), where κ = (κ1, κ2, . . . , κP )

T , if the discrete-time real random signal ı (x[n])
belongs to RZ

(
κ(2)

)
. Here, and for further reference, we use the notation a(n) = 1n ⊗ a

to designate the vector consisting of n concatenated copies of the vector a.

Lemma 3.9. Let x[n] = (x1[n], x2[n], . . . , xP [n])
T belong to CZ (κ). Then, for given

l = (L1, L2, . . . , LP )
T , the sequence of random matrices (indexed by N)

RN =
1
N

N∑
n=1

x[n; l]x[n; l]H

is asymptotically normal. More precisely, we have

RN ∼
√
N −AN (2IL,C(κ; l)) ,

where L = L1 + · · ·+ LP + P and C(κ; l) = E[L]R(κ(2); l(2))E[L]T .

Proof: See appendix B.

In lemma 3.9, we use the notation

E[m] =
[
ER[m]⊗ER[m] +EI [m]⊗EI [m]
ER[m]⊗EI [m]−EI [m]⊗ER[m]

]
,

where ER[m] = [ Im 0m×m ] and EI [m] = [0m×m Im ], for any non-negative integer m.
In this section, we establish the asymptotic normality of the ordered (M + 1)-tuple of

random matrices
(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)
, where

R̂
N

y [m] =
1
N

N∑
n=1

y[n]y[n−m]H . (3.85)

More precisely, we show that(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)
∼
√
N −AN ((Ry[0],Ry[1], . . . ,Ry[M ]) ,Σ) , (3.86)
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for a certain covariance matrix Σ, to be explicited in the sequel. We start by performing
a conceptual twist on the MIMO channel model, which, roughly, consists in interpreting
the Q random noise processes wq[n] as extra (virtual) sources. That is, we rewrite the
observations in the condensed (noiseless) form

y[n] = Gγ[n] (3.87)

as follows. Plug the pre-filtering identities

sp[n] = cp(z) � ap[n]

into the convolution-and-add equation

y[n] =
P∑
p=1

hp(z) � sp[n] +w[n].

We have

y[n] =
P∑
p=1

(hp(z)cp(z)) � ap[n] +w[n]

=
P∑
p=1

(
1√
2
hp(z)cp(z)

)
�

(√
2ap[n]

)
︸ ︷︷ ︸

αp[n]

+
σ√
2

(√
2
σ

w[n]

)
︸ ︷︷ ︸

β[n]

=
P∑
p=1

Gp αp[n;E0] +
σ√
2
β[n]

= [ G1 G2 · · · GP σ√
2
IQ︸ ︷︷ ︸

G

]


α1[n;E0]

...
αP [n;E0]

β[n]


︸ ︷︷ ︸

γ[n]

,

where we defined E0 = C0 +D0, and Gp = T 0

(
hp(z)cp(z)/

√
2
)
. Notice the appearance

of αp[n] =
√
2ap[n] and βq[n] = σ/

√
2wq[n] which denote power-scaled versions of the

information ap[n] and noise wq[n] random sequences, respectively. Due to assumption B3
in page 52, we have

Reαp[n]
d= Imαp[n]

d= U (ABSK) , Reβq[n]
d= Imβq[n]

d= N (0, 1) , (3.88)

where d= means equality in distribution and U (ABSK) denotes the uniform distribution
over the binary alphabet ABSK = {±1}. In fact, letting α[n] = (α1[n], α2[n], . . . , αP [n])

T

and recalling that β[n] = (β1[n], β2[n], . . . , βQ[n])
T , define

x[n] =
[
α[n]
β[n]

]
.
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It is easily seen that x[n] is a random process belonging to the class CZ(κ), where

κ = ( 1, . . . , 1︸ ︷︷ ︸
P

, 3, . . . , 3︸ ︷︷ ︸
Q

)T .

From (3.87), it follows that

R̂
N

y [m] = GR̂
N

γ [m]GH , (3.89)

where

R̂
N

γ [m] =
1
N

N∑
n=1

γ[n]γ[n−m]H . (3.90)

Now, each vector in the set {γ[n],γ[n− 1], . . . ,γ[n−M ]} is a sub-vector of x[n; l], where

l = ( E0 +M, . . . , E0 +M︸ ︷︷ ︸
P

,M, . . . ,M︸ ︷︷ ︸
Q

)T .

More precisely, we have the relationship

γ[n−m] = I[m]x[n; l], (3.91)

where I[m] is a selection matrix given by

I[m] =
[
Iα[m]

Iβ [m]

]
,

with

Iα[m] = IP ⊗
[
0(E0+1)×m IE0+1 0(E0+1)×(M−m)

]
Iβ [m] = IQ ⊗

[
01×m 1 01×(M−m)

]
,

for m = 0, 1, . . . ,M . Thus, using (3.91) in (3.90), and the result in (3.89) yields

R̂
N

y [m] = (GI[0])RN (GI[m])H , (3.92)

where

RN =
1
N

N∑
n=1

x[n; l]x[n; l]H . (3.93)

This means that (
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)
= F

(
RN

)
, (3.94)

where F : C[PE0+(P+Q)(M+1)]×[PE0+(P+Q)(M+1)] → CQ×Q×· · ·×CQ×Q denotes the linear
mapping given by

F (Z) = (A0ZB0,A1ZB1, . . . ,AMZBM ) ,

where Am = GI[0] and Bm = (GI[m])H for m = 0, 1, . . . ,M . Applying lemma 3.9 to the
sequence (indexed by N) of random matrices in (3.93) yields

RN ∼
√
N −AN

(
2IPE0+(P+Q)(M+1),C(κ; l)

)
.
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Finally, due to (3.94), we may invoke the delta-method (see page 61) and conclude that(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)
∼
√
N −AN ((Ry[0],Ry[1], . . . ,Ry[M ]) ,Σ) , (3.95)

where
Σ = DC(κ; l)DT

with

D =



(
BT0 ⊗A0

)

(
BT1 ⊗A1

)
...


(
BTM ⊗AM

)
 .

The fact that the asymptotic mean is (Ry[0],Ry[1], . . . ,Ry[M ]) may be established
by computing F

(
2IPE0+(P+Q)(M+1)

)
or, more easily, by noting that

E
{(

R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)}

= (Ry[0],Ry[1], . . . ,Ry[M ]) ,

irrespective of N , as it is clear from (3.85).

3.4.4 Asymptotic normality of [ĤN(z)]

By using the results of subsection 3.4.3, we have(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)
∼
√
N −AN ((Ry[0],Ry[1], . . . ,Ry[M ]) ,Σ) ,

see (3.95). The M + 1-tuple
(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)
is the input of the smooth map

CFIA : U → H[z]/ ∼, where
CFIA = π ◦ ψ,

recall figure 3.2. Thus, by invoking lemma 3.4, we conclude that the random sequence
(indexed by N)

̂[
HN (z)

]
= CFIA

(
R̂
N

y [0], R̂
N

y [1], . . . , R̂
N

y [M ]
)

is asymptoticaly normal in the quotient space H[z]/ ∼. That is,

̂[
HN (z)

]
∼
√
N −AN ([H(z)] ,Υ) ,

where Υ = π∗ (Λ) and

Λ = Dψ ((Ry[0],Ry[1], . . . ,Ry[M ]))ΣDψ ((Ry[0],Ry[1], . . . ,Ry[M ]))T .

Thus, we have the approximation

E

{
d

(
[H(z)] , ̂[

HN (z)
])2

}
� trΥ

N
, (3.96)

recall lemma 3.3 and (3.31). It remains to determine trΥ. For this, we exploit lemma 3.10.
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Lemma 3.10. Let � : M → N denote a Riemannian submersion. Let Σ ∈ T2 (TpM) for
some p ∈M , and define Υ = �∗ (Σ) ∈ T2

(
T,(p)N

)
. Then,

tr (Υ) =
n∑
i=1

Σ (ωip, ωip) ,

where ωip = E%ip ∈ T ∗
pM and E1p, . . . , Enp denotes any orthonormal basis for the horizontal

subspace HpM ⊂ TpM with n = dimN .

Proof: See appendix B.

To apply lemma 3.10, we proceed as follows. Let H0 = ψ ((Ry[0],Ry[1], . . . ,Ry[M ])).
Note that H0 depends on the choice of reference vectors ri, sj in the implementation of
the CFIA, see table 3.1. Let{(

∆(q)
1 ,∆(q)

2 , . . . ,∆(q)
P

)
: q = 1, 2, . . . , 2PQ(D0 + 1)− P

}
designate an orthonormal basis for the horizontal subspace HH0H[z], see (3.48). Let

∆(q) =
[
∆(q)

1 ∆(q)
2 · · · ∆(q)

P

]
and define the matrix

∆ =
[
ı
(
∆(1)

)
ı
(
∆(2)

)
· · · ı

(
∆(2PQ(D0+1)−P )

) ]
.

Then, using the definition for the inner product in TH0H[z], see (3.35), it is easily seen
that

trΥ = trπ∗ (Λ) = tr
(
∆TΛ∆

)
.

3.5 Computer simulations

We conducted some numerical experiments to validate the theoretical analysis developed
throughout this chapter. We considered a scenario with P = 2 users. Each user em-
ploys the QPSK digital modulation format, that is, ap[n] ∈ AQPSK =

{
± 1√

2
± i 1√

2

}
. The

pth symbol information sequence is pre-filtered as sp[n] = cp(z) � ap[n], where the pre-
filters cp(z) satisfy C0 = deg cp(z) = 1. That is, cp(z) = κp

(
1− zpz

−1
)
where κp is an

unit-power normalizing constant and zp denotes the zero of the pth filter. For this set
of simulations, the correlative filters have the same zeros as in the two-users scenario of
section 2.8 (page 39), that is, z1 = 1

4e
−iπ/2 and z2 = 1

2e
iπ/4. For simplicity, we consid-

ered a memoryless mixing MIMO channel (D0 = 0), with Q = 3 outputs. The channel
was randomly generated and kept fixed throughout the simulations. The MIMO channel
obtained was

H =

 −1.1972 + 0.4322i −1.0286− 0.4584i
0.4435− 0.7287i −0.5949 + 0.5841i
−0.5140 + 0.2351i −0.4865− 0.3461i

 .

The reference vectors ri, sj appearing in table 3.1 were also randomly generated (inde-
pendently from the channel). The observation noise w[n] is taken to be zero-mean spatio-
temporal white Gaussian noise with power σ2. The signal-to-noise ratio (SNR) is defined
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as

SNR =
E
{
‖Hs[n]‖2

}
E
{
‖w[n]‖2

} =
‖H‖2

Qσ2
,

and was kept fixed at SNR = 15 dB. The goal of our simulations is to compare both sides
of the approximation in (3.96), for several values of N , the number of available MIMO
output observations. To accomplish this, the number of samples N was varied between
Nmin = 100 and Nmax = 500 in steps of Nstep = 50 samples. For each N , K = 1000
independent Monte-Carlo runs were simulated. For the kth run, the CFIA produced the

estimate ̂[
HN (z)

]
in the quotient space H[z]/ ∼, and the intrinsic (Riemannian) squared

distance

d

(
[H(z)] , ̂[

HN (z)
])2

was recorded. We recall that the distance between two points in the quotient space was
obtained in (3.50). The average of these squared-distances, over the K Monte-Carlos,
constitute the estimate for the left-hand side of (3.96), for a given N . The right-hand side
of (3.96) was computed using the theoretical expressions obtained throught the asymptotic
analysis. Figure 3.10 shows the results thus obtained. The dashed and solid lines refer to
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Figure 3.10: Mean squared (Riemannian) distance of the channel class estimate: theoret-
ical (solid) and observed (dashed) (SNR = 15 dB)

the left and right hand sides of (3.96), respectively. As can be observed, the two curves
show a good agreement even for modest values of the data packet length N , say N � 200.

We performed a similar set of simulations, but now we decreased the signal-to-noise
ratio to SNR = 5 dB. The results relative to this new scenario are presented in figure 3.11.
We see that the quality of the channel class estimate degrades relative to the previous
situation. This is expected and it is due to the loss of SNR. However, more importantly,
the theoretically predicted and experimentally observed averaged squared distance of the
channel class estimated continue to match each other.
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Figure 3.11: Mean squared (Riemannian) distance of the channel class estimate: theoret-
ical (solid) and observed (dashed) (SNR = 5 dB)

3.6 Conclusions

In this chapter, we developed a performance analysis study of the closed-form identifica-
tion algorithm (CFIA) proposed in chapter 2. More precisely, we obtained a closed-form
expression which approximates

J [N ; c(z), [H(z)]] = E

{
d

(
[H(z)] , ̂[

HN (z)
])2

}
, (3.97)

the mean-square distance between the true and the CFIA’s channel estimate equivalence
classes, given N channel observations and that c(z) = (c1(z), c2(z), . . . , cP (z))

T is the P -
tuple of pre-filters placed at the transmitters. This study can be exploited to attain an
optimal design for the pre-filter bank c(z), given a statistical model for the space-time
channel H(z).

The theoretical study developed in this chapter was carried out in the setting of Rie-
mannian manifolds. Indeed, we started by inducing a Riemannian geometry on the quo-
tient space H[z]/ ∼. We made our choices for the geometry of the quotient in order to
have it interfacing nicely with the geometry of H[z] (we required the canonical projec-
tion π : H[z] → H[z]/ ∼ to be a Riemannian submersion). Note that, previously, the
quotient space was only an algebraic object. By endowing it with a geometric structure,
we made available, in particular, the concept of distance. This is the distance function d

appearing in (3.97) and measuring the quality of the channel estimate. We proceeded
by re-interpreting the CFIA as a smooth map which sends a M + 1-tuple of matrices
(the estimated channel output correlation matrices) to a point in the smooth manifold
H[z]/ ∼ (the estimated MIMO channel equivalence class). We proved that such estimate
was asymptotically normal in the quotient manifold as N → ∞, in a sense that general-
izes the usual definition of asymptotic normality in Euclidean spaces. To prove this, we
relied on a generalization of the well-known delta-method to this manifold setting. Fi-
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nally, from the characterization of the asymptotic distribution of the CFIA’s estimate, the
mean-square distance in (3.97) is obtained in a straightforward manner. At this point, we
would like to mention that, of course, a Riemannian structure is not strictly needed for
introducing a distance function in the set H[z]/ ∼. However, by proceeding was we pro-
posed, the map π : H[z] → H[z]/ ∼ is both smooth and a Riemannian submersion. It is
this happy intersection of events which enables all the subsequent theoretical analysis. By
imposing another, say ad-hoc, distance function on the quotient space, it would be more
difficult to theoretically characterize and predict the asymptotic mean-square distance of
the CFIA’s estimate. The performance study was validated against computer simulations.
The numerical experiments have shown a good agreement between the theoretical and the
observed asymptotic behavior of the CFIA’s estimate in the quotient space.



Chapter 4

Performance Bounds

4.1 Chapter summary

In chapter 2, we proposed a closed-form solution to the blind multiple-input multiple-
output (MIMO) channel identification problem. Our analytical solution processes the
observations at the channel’s output through their 2nd order statistics (SOS) and not the
observed data directly. That is, a kind of data-reduction occurs before the actual channel
identification starts. Our channel estimator was structured like this because, as it was
proved in chapter 2, the correlation matrices of the channel outputs contain sufficient
information to reveal the underlying MIMO channel equivalence class (under a certain
spectral diversity at the channel inputs). Furthermore, the identification method can
be put in a non-iterative form, thus avoiding time-consuming re-initializations of typical
iterative approaches. This proposed identification scheme is practical when enough ob-
servations are available to reliably estimate the output correlation matrices. However, for
the purpose of identifying the MIMO channel equivalence class, there is no reason at all
to restrict ourselves to the SOS of the channel output. For example, when only a scarce
number of observations are available, all channel identification strategies based only on
2nd order statistics (or beyond, that is, higher-order statistics) are expected to experience
a significant drop in performance, since the output correlation matrices’ estimates will
exhibit high variance about their nominal value (the true output correlation matrices).
This leads us to the following question. What is the fundamental limit in estimating the
channel equivalence class given a number N of observations ? By fundamental, we mean
“estimator-independent” (based on SOS or not, etc). Note that our estimation problem
is not standard in the sense that the parameter space is now H[z]/ ∼, that is, a connected
Riemannian manifold. Usually, the parameter space is an open subset of a Euclidean space
and, for these cases, we can resort to well-known results such as the Cramér-Rao lower
bound (CRLB) to place a limit on the accuracy of any estimator for a given parametric
statistical model. In this chapter, motivated by our inference problem on H[z]/ ∼, we
develop a lower-bound on the intrinsic variance of estimators (with arbitrary bias) which
take values in connected Riemannian manifolds. Thus, our results are presented in all
generality. The solution to the inference problem concerning the quotient space H[z]/ ∼
will be obtained as a special case. This chapter is organized as follows. In section 4.2, we
start by reviewing extensions of the CRLB inequality to the context of parametric statis-
tical models indexed over smooth manifolds. We then define, in a differential-geometric

95
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language, familiar statistical concepts such as bias, variance, etc. This sets the stage for
stating precisely the bounding problem addressed in this chapter. In section 4.3, we give
a solution to the stated problem. We present the intrinsic-variance lower bound (IVLB).
The IVLB places a limit on the intrinsic accuracy of estimators taking values in Rieman-
nian manifolds, in the context of parametric statistical models also indexed by Riemannian
manifolds. The accuracy is measured with respect to the intrinsic Riemannian distance
carried by the Riemannian manifolds. The derived bound depends on the curvature of the
Riemannian manifold where the estimators take values and on a coordinate-free extension
of the familiar Fisher information matrix. In section 4.4, we assess the tightness of the
IVLB in some inference problems involving curved manifolds. We discuss inference prob-
lems on the unit-sphere Sn−1, on the complex projective space CPn and on the quotient
space H[z]/ ∼, in subsections 4.4.1, 4.4.2 and 4.4.3, respectively. Note that in the last two
problems we are dealing with coset spaces, that is, manifolds not immersed in Euclidean
spaces (at least, not directly). Section 4.5 concludes this chapter and provides directions
for future research.

4.2 Problem formulation

CRLB inequality. Consider a parametric family F of positive probability density func-
tions over Ω = Rn with parameter p taking values on an open subset P of some Euclidean
space. That is, F = {fp : p ∈ P}, where fp : Ω → R, fp(ω) > 0 for all ω ∈ Ω, and∫
Ω fp(ω) dν = 1, for all p ∈ P . The symbol ν denotes the Lebesgue measure on Rn.
We are interested in getting a lower-bound for the variance of a given unbiased estimator
ϑ : Ω → M of some map b : P → M . In equivalent terms, the estimator ϑ satisfies
Ep {ϑ} = b(p), for all p ∈ P , that is, the map b denotes the bias of ϑ, and we want a

lower bound for varp(ϑ) = Ep

{
d (ϑ, b(p))2

}
. Here, M ⊂ Rm denotes an open subset and,

for x,y ∈M ,
d(x,y) = ‖x− y‖ (4.1)

denotes the usual Euclidean distance. Several statistical signal processing problems can
be cast in this canonical format, see [63, 51, 34]. Under suitable regularity conditions on
F , the Cramér-Rao lower bound (CRLB) [63, 51, 34, 48] provides the inequality

Covp (ϑ) # Db(p) I−1
p Db(p)T , (4.2)

where
Covp (ϑ) = Ep

{
(ϑ− b(p)) (ϑ− b(p))T

}
denotes the covariance matrix of ϑ with respect to fp, and the symbol

Ip = Ep

{
(∇ log fp (ω)) (∇ log fp (ω))

T
}

stands for the Fisher information matrix. For a differentiable function f : Rn → R, the
notation

∇ f (x) =
(

∂

∂x1
f (x) ,

∂

∂x2
f (x) , . . . ,

∂

∂x1
f (x)

)T



4.2 Problem formulation 97

denotes the gradient of f at x. Furthermore, in (4.2), Db(p) denotes the derivative of the
map b at the point p, and, for symmetric matrices A and B, the notation A # B means
that A−B is positive semidefinite. Note that

Covp (ϑ) =
∫
Ω
(ϑ(ω)− b(p)) (ϑ(ω)− b(p))T fp (ω) dν.

Also,

Ip =
∫
Ω
(∇ log fp (ω)) (∇ log fp (ω))

T fp(ω) dν.

From (4.2), we can readily deduce the bound

varp (ϑ) = Ep

{
d (ϑ, b(p))2

}
= tr (Covp (ϑ))

≥ tr
(
Db(p) I−1

p Db(p)T
)
. (4.3)

Figure 4.1 illustrates the main points discussed so far.

M=open set in Rm

ϑ

b(p)d(ϑ, b(p))

Figure 4.1: The CRLB places a limit to varp(ϑ) = Ep

{
d (ϑ, b(p))2

}

CRLB Extensions. In the past few years, the classical CRLB inequalities (4.2) and (4.3)
have been extended in several directions. The studies in [22, 41, 55] address unbiased
estimation in scenarios where M = P . Thus, b : P → P is given by b(p) = p. The main
novelty common to these works is that M = P is no longer full-dimensional, that is, an
open subset in Rm, but instead contracts to a lower-dimensional immersed submanifold
of Rm, see figure 4.2 and compare with figure 4.1. This situation arises naturally in
estimation problems where the parameter p to be estimated looses degrees of freedom
due to a priori smooth deterministic constraints. For example, for physical reasons, the
parameter pmay be restricted to the surface of a unit-sphere (power constraint). Referring,
for example, to the work in [55] the CRLB inequality (4.2) is now extended to

Covp (ϑ) # Up

(
UTp IpUp

)−1
UTp , (4.4)

where the columns of Up denote an orthonormal basis for TpM , the tangent space to
M at the point p, see figure 4.2. Thus, the full-rank Fisher information matrix Ip is
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M=submanifold of Rmp

TpM

Figure 4.2: M contracts to a lower-dimensional submanifold of Rm

now “compressed” (or projected) to the tangent plane of the constraint surface at p.
From (4.4), we have the bound

varp (ϑ) = Ep

{
d (ϑ, b(p))2

}
= tr (Covp (ϑ))

≥ tr
(
Up

(
UTp IpUp

)−1
UTp

)
. (4.5)

The bound in (4.5) is still expressed in terms of the extrinsic Euclidean distance (4.1),
not the intrinsic Riemannian distance, which measures the distance between points in M

by taking only into account curve segments entirely contained in M (recall the definition
of Riemannian distance in page 64). In figure 4.3, we sketch this discrepancy. Of course,

M=submanifold of Rm

ϑ

pd(ϑ,p)

Figure 4.3: d (ϑ,p) denotes the Euclidean distance not the Riemannian distance

since the Riemannian distance between two points in M (assumed to inherit its metric
structure from the ambient space Rm) is greater than or equal to the Euclidean distance,
the lower bound in (4.5) still applies if d denotes the Riemannian distance. However,
this bound clearly ignores the curvature of M and, as a consequence, might result too
optimistic.
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The studies in [27, 44, 54] avoid this discrepancy right from the start. They handle
parametric statistical models, in the context of Riemannian manifolds, with intrinsic-only
tools. That is, the ambient Euclidean spaces are simply ignored or even non-existent, and
each manifold is treated as a geometrical object in its own right. Figure 4.4 illustrates the
conceptual shift involved (the ambient space “disappears” from the analysis). The analysis

MM

open set in Rm

Figure 4.4: The Euclidean ambient space is discarded

in [27, 44, 54] is developed in the setting of Riemannian differential geometry. This level
of abstraction automatically encompasses more general and interesting statistical families,
like ones indexed over quotient spaces such as, for example, Grassmann manifolds [7, 32,
16]). Recall also that this is the context in blind MIMO channel identification, where we
aim at estimating a point in the quotient space H[z]/ ∼. In [27], an intrinsic extension
of the information inequality (4.2) is achieved in terms of tensor-like objects, but a lower
bound on the variance of estimators is not readily available. The study in [44] provides
such a bound. However, in [44], the Riemannian structure carried by M is not arbitrary,
but the one induced by its Fisher information metric. The distance between points in
M is thus the familiar information or Rao distance [33]. The work in [54] circumvents
this difficulty: it is applicable to unbiased estimators and allows for arbitrary Riemannian
metrics.

Problem Formulation. In this chapter, we adopt the differential-geometric viewpoint of
the works in [27, 44, 54]. More specifically, we assume fixed a probability space (Ω,A, µ)
and we are given a parametric statistical model F = {fp : Ω→ R} with parameter p lying
in a Riemannian manifold P . Our goal is to derive a lower bound for

varp (ϑ) = Ep

{
d (b(p), ϑ)2

}
, (4.6)

where ϑ : Ω → M denotes an estimator with mean value Ep {ϑ} = b(p), where b :
P → M is a smooth mapping, and M denotes a connected Riemannian manifold. The
definition of mean-value of an estimator taking values in a Riemannian manifold is given
in the next section, thus explaining in a precise manner what Ep {ϑ} = b(p) means.
In (4.6), d : M ×M → R stands for the Riemannian distance function on M . Figure 4.5
illustrates the problem addressed in this chapter. Thus, the novel point here is: i) relative
to [27], we derive a bound for the intrinsic variance varp(ϑ). This is not readily available
from [27] which works in terms of tensor objects; ii) relative to [44], we allow M �= P and,



100 Performance Bounds

M

ϑ
b(p)

d (ϑ, b(p))

Figure 4.5: We aim at finding a tight lower bound for varp (ϑ) = Ep
{
d (ϑ, b(p))2

}
furthermore, even if M = P we allow M to be equipped with an arbitrary Riemannian
structure. This is important for situations in which the Riemannian distance on M has a
clear physical meaning whereas a real-world interpretation of the information metric is not
so apparent (think of estimation problems whereM stands for the Earth’s surface equipped
with our familiar concept of geodesic distance). In these cases, the intrinsic distance on M

is usually the preferred figure of merit to evaluate the accuracy of estimators; iii) relative
to [54], we allow for biased estimators.

4.3 Intrinsic variance lower bound (IVLB)

The reader is urged to recall the definitions and the differential-geometric concepts dis-
cussed in section 3.3. Here, we extend that framework in order to handle parametric statis-
tical families in the setting of Riemannian manifolds. Let M denote a connected Rieman-
nian manifold. For m ∈M , we define the dispersion function about m as km : M → R,

km(n) =
1
2
d (m,n)2 ,

where d stands for the Riemannian distance on M . We say that an open set U ⊂ M

is ε-uniformly normal if U ⊂ B (m; ε), for all m ∈ U . Recall that B (m; ε) denotes the
geodesic ball centered at m with radius ε. See [7, theorem 6.9, page 340] for the existence
of uniformly normal sets. Riemannian tools are used to formalize objects in statistical
models indexed over Riemannian manifolds. Mostly, we keep the framework in [27, 44].
As mentioned before, a probability space (Ω,A, µ) is assumed fixed, where Ω stands for
the sample space, A is a σ-algebra of subsets of Ω, and µ denotes the probability measure
on A. We are given a parametric family of positive densities F = {f(ω; p) : ω ∈ Ω} with
the parameter p taking values in a Riemannian manifold P . We define the log-likelihood
function l : Ω× P → R as l(ω, p) = log f(ω; p). We also write f(ω; p) = fω(p), for ω ∈ Ω
and p ∈ P . Similarly, l(ω, p) = lω(p). We assume fω ∈ C∞(P ) for all ω ∈ Ω. The Fisher
information form, denoted I, is a section of T 2

0 (P ). It is defined as

I(Xp, Yp) = Ep {XplωYplω} , (4.7)

where Xp, Yp ∈ TpP , see [27]. That is,

I(Xp, Yp) =
∫
Ω
(Xplω) (Yplω) f(ω; p) dµ. (4.8)

We define
λp = max

|Xp|=1
I (Xp, Xp) . (4.9)
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In this context, an estimator ϑ is a random point in M , that is, a measurable mapping
ϑ : Ω → M . The estimator ϑ is said to have bias b : P → M , if, for each p ∈ P , the
function ρp : M → R, ρp(n) = Ep {kϑ(n)}, is globally minimized by b(p). Notice that

ρp(n) =
∫
Ω
kϑ(ω)(n) f (ω; p) dµ.

This notion of mean-value is also called the Riemannian center of mass [44]. The variance
of an estimator ϑ : Ω→M with bias b is defined as

varp(ϑ) = Ep
{
d (ϑ, b(p))2

}
, (4.10)

where d denotes the Riemannian distance on M .

The IVLB.We have now all the ingredients to state the main result of this chapter, which
we call the intrinsic variance lower bound (IVLB). This is established in theorem 4.1.

Theorem 4.1. Let the sectional curvature of M be bounded above by the constant C ≥ 0.
Let ϑ : Ω→M denote an estimator with bias b : P →M . Assume that, for each p ∈ P ,
there exists ε > 0, such that

√
Cε < T =

√
3/2 and Probp

{
ϑ ∈ Ub(p)

}
= 1, where Ub(p) is

a ε−uniformly normal neighborhood of b(p) ∈M . Define

σp = max
|Xp|=1

(b∗(Xp), b∗(Xp)) . (4.11)

Then, varp(ϑ) ≥ 1/ηp, if C = 0, and

varp (ϑ) ≥
4C + 3ηp −

√
ηp (9ηp + 24C)

8
3C

2
, (4.12)

if C > 0, where ηp = λp/σp and λp is given by (4.9).

Proof: See appendix D.

The IVLB takes into account the geometry of M through the upper-bound C on its
sectional curvatures. More precisely, it is required that K(Π) ≤ C for all two-dimensional
planes Π ⊂ TpP and p ∈ P , where K(Π) denotes the sectional curvature at p, recall (3.30).
The Fisher information form and the estimator bias enter into the bound through

ηp =
λp
σp

=
max|Xp|=1 (b∗(Xp), b∗(Xp))

max|Xp|=1 I (Xp, Xp)
.

Finally, note that the theorem places an accuracy condition on the estimators ϑ, by requir-
ing d(ϑ, b(p)) < T/

√
C, where T =

√
3/2 is an universal (problem-independent) constant.

Thus, the more curved is the manifold M , the more restricted is the class of estimators ϑ
to which the IVLB applies.

Link with CRLB. It is possible to recover the IVLB as a weaker version of the classical
Cramér-Rao inequality (4.3), by specializing P and M to open subsets of Euclidean spaces
equipped with the usual metric. First notice that the inequality (4.3) imply

varp (ϑ) ≥ λmin(I−1
p ) tr

(
Db(p)Db(p)T

)
=

1
λmax(Ip)

tr
(
Db(p)Db(p)T

)
≥

λmax

(
Db(p)Db(p)T

)
λmax(Ip)

. (4.13)



102 Performance Bounds

Here, for a symmetric matrix A, we used the notation λmin(A) (respectively, λmax(A))
to denote the minimum (respectively, maximum) eigenvalue of A. Inequality (4.13) is
precisely the IVLB inequality varp(ϑ) ≥ 1/ηp for the case C = 0. Thus, for flat (Euclidean)
spaces, the CRLB inequality (4.3) provides, in general, a better bound. The interest of
the IVLB lies thus in the curved cases.

4.4 Examples

We examine three examples to assess the tightness of the IVLB. We study inference prob-
lems on the unit-sphere Sn−1, on the complex projective space CPn and on the space of
identifiable MIMO channel equivalence classes H[z]/ ∼. Note that the last two examples
require the formalism of Riemannian manifolds. The first example is dissected in all rigor
in order to illustrate the main computations involved in applying the IVLB. The level of
exposition for the remaining examples is not as stringent.

4.4.1 Inference on the unit-sphere Sn−1

For illustrative purposes only, we consider a simple estimation problem over the unit-sphere
in Rn, denoted by

Sn−1 = {x ∈ Rn : ‖x‖ = 1} .

The observation model is
Y = Q+W , (4.14)

where Y ∈ Rn×n denotes the observation, Q ∈ O(n) denotes an (unknown) orthogonal
matrix, and W stands for a random matrix whose entries are independent and identically
distributed as zero-mean Gaussian random variables with variance σ2. Thus, in this case,
the sample space is Ω = Rn×n, A denotes the σ-algebra of Lebesgue measurable sets and µ

stands for Lebesgue measure. Furthermore, our statistical family is indexed, through the
parameter Q, over the Riemannian manifold P = O(n) of n× n real orthogonal matrices.
In the sequel, we assume that n ≥ 3. Consider the estimator ϑ : Rn×n →M = Sn−1,

ϑ(Y ) =
y

‖y‖ ,

where y denotes the first column of Y . The map ϑ : Rn×n → Sn−1 can be interpreted as
an estimator for the first column of the (unknown) orthogonal matrix Q.

Bias. We start by establishing the bias of ϑ. We will show that the estimator ϑ has bias
given by the map b : O(n)→ Sn−1, b(Q) = q, where q denotes the first column of Q. To
establish this, we must (by definition) prove that q is a global minimum of the function
ρQ : Sn−1 → R,

ρQ(u) = EQ

{
d (ϑ(Y ),u)2

}
,

where d(v,u) denote the Riemannian distance between the points v,u ∈ Sn−1. By letting
Sn−1 inherit the ambient Euclidean metric, we have d(v,u) = arccos(vTu) because the
geodesics of Sn−1 are great circles [16, example 2.80.c, page 81]. See figure 4.6 for an
illustration. In equivalent terms, we are letting the canonical embedding ι : Sn−1 → Rn,
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ϑ (Y )

q

d (ϑ (Y ) , q)

M = Sn−1

Figure 4.6: A great circle on the unit-sphere

ι(x) = x, induce the Riemannian structure on Sn−1. By analysing the proof of theorem 4.1
(see also [27]), it suffices, in fact, to prove that q is a stationary point of ρQ. That is,
we have to show that Xq ρQ = 0, for every tangent vector Xq ∈ TqSn−1. By using the
embedding ι to identify

TqSn−1 ≡ ι∗
(
TqSn−1

)
=

{
d ∈ Rn : dTq = 0

}
, (4.15)

this is equivalent to prove that dT ∇ρQ(q) = 0, for every d ∈ TqSn−1 and where ∇ρQ(q)
stands for the gradient of ρQ (viewed as a function on Rn) evaluated at the point q.

Since

ρQ(u) ∝
∫

Rn

arccos
(
xTu

‖x‖

)2

e
− 1

2σ2
‖x− q‖2

dx,

where ∝ means equality up to a constant, we have

∇ρQ(q) ∝
∫

Rn

h

(
xTq

‖x‖

)
x

‖x‖ e
− 1

2σ2
‖x− q‖2

dx, (4.16)

with
h(t) =

arccos(t)√
1− t2

.

Let d ∈ TqSn−1. Using (4.16) and the change of variables x �→ (R,u) ≡ (‖x‖ ,x/ ‖x‖), it
follows that

dT∇ρQ(q) ∝
∫ +∞

0
Rn−1 e−

R2+1
2σ2 g(R) dR, (4.17)

where
g(R) =

∫
Sn−1

uTdh(uTq) e
R
σ2u

Tq du. (4.18)

Here, we used the “change-of-variables” formula which asserts that, for a smooth function
f : Rn → R, we have∫

Rn

f (x) dx =
∫ +∞

0

∫
Sn−1

f (Ru) Rn−1 dRdu.
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This is a trivial application of the theory of integration based on differential forms [7,
16]. Moreover, basic properties of this theory are implicitly used in the forthcoming
manipulations. Let W = [ qw2 · · · wn ] denote a special orthogonal matrix, that is, W is
orthogonal and det(W ) = 1. Making the change of variables u �→ v = (v1, v2, . . . , vn)

T =
W Tu in (4.18), and recalling that dTq = 0, leads to

g(R) =
∫

Sn−1

h(v1) e
R
σ2 v1

n∑
i=2

ai vi dv,

where ai = dTwi. Thus,

g(R) =
n∑
i=2

ai gi(R)

where
gi(R) =

∫
Sn−1

h(v1) e
R
σ2 v1 vi dv. (4.19)

Let i ∈ {2, . . . , n}. LetD denote a diagonal matrix with diagonal entries equal to 1, except
the (i, i)th and the (j, j)th entries which are −1. Here, j ∈ {2, . . . , i− 1, i+ 1, . . . , n} is
arbitrarily chosen (note that this can always be done, because it was previously assumed
that n ≥ 3). This guarantees that det(D) = 1. Using the change of variables w �→ Dw

in (4.19), leads to gi(R) = −gi(R), that is, gi(R) = 0. Thus, g(R) = 0, and from (4.17)
we have dT∇ρQ(q) = 0. We conclude that the estimator ϑ has bias b(Q) = q.

Bias derivative. The embedding ι : O(n) → Rn×n, ι(X) = X, provides the identifica-
tion

TQO(n) ≡ ι∗ (TQO(n)) =
{
QK : K = −KT

}
. (4.20)

With the identifications (4.20) and (4.15) for the tangent spaces of O(n) and Sn−1, respec-
tively, the push-forward map b∗ : TQO(n) → TqSn−1 is given by b∗(QK) = Qk, where
k denotes the first column of the n× n skew-symmetric matrix K. We assume that O(n)
inherits its metric structure from the ambient Euclidean space Rn×n. Let 〈, 〉 denote the
induced inner-product on the tangent space TQO(n) and |·| stand for the respective norm.
Notice that, with these choices, this norm coincides with the usual Frobenius norm on
Rn×n under the identification (4.20). We have

σQ = max
‖QK‖ = 1
K = −KT

〈b∗(QK), b∗(QK)〉

= max
‖k‖ = 1

K = −KT

‖k‖2

= 1.

Fisher-information form. To obtain the Fisher-information form associated with our
parametric family, we start by noticing that

f(Y ;Q) ∝ e−
1

2σ2 ‖Y −Q‖2 .
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Thus,

l(Y ,Q) = log f(Y ,Q) ∝ − 1
2σ2

‖Y −Q‖2 .

The directional derivative of lY (·) = l(Y , ·) at Q in the tangent direction QK (K =
−KT ), written ∇Ql(Y ,Q;QK), is given by

∇Ql(Y ,Q;QK) =
1
σ2

tr
(
Y TQK

)
.

It follows that the Fisher-information form acts on tangent vectors QK ∈ TQO(n) at Q
as

IQ(QK,QK) =
1
σ4

E
{(

tr
(
Y TQK

))2}
=

1
σ4

E
{(

tr
(
W TQK

))2}
(4.21)

=
1
σ4

E
{(

tr
(
ZTK

))2}
. (4.22)

In (4.21), we used the identities Y = Q +W , QTQ = In and tr (K) = 0. In (4.22), Z
denotes a n× n random matrix whose entries are independent and identically distributed
as zero-mean Gaussian random variables with variance σ2. Note that (4.22) holds because
Z and W TQ are equal in distribution. Now, noting that tr

(
ATB

)
= vec(A)Tvec(B),

equation (4.22) reads as

IQ(QK,QK) =
1
σ4

E
{
vec(K)T vec(Z)vec(Z)T vec(K)

}
=

1
σ4

E
{
vec(K)T

(
σ2In2

)
vec(K)

}
=

1
σ2
‖K‖2 .

Thus, we have

λQ = max
‖QK‖ = 1
K = −KT

IQ(QK,QK)

= max
‖K‖ = 1
K = −KT

1
σ2
‖K‖2

=
1
σ2

.

Computer simulations. It is well known that the sectional curvature of Sn−1 is constant
and equal to 1, see [36, page 148]. Thus, we can take the upper bound C = 1 in theorem 4.1.
Inserting C = 1, σQ = 1 and λQ = 1/σ2 in (4.12) yields

varQ (ϑ) ≥
4 + 3/σ2 −

√
1
σ2 (9/σ2 + 24)
8
3

. (4.23)
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We performed computer simulations to compare both sides of the inequality (4.23). We
considered the case n = 3. We randomly generated an orthogonal matrix Q ∈ O(n).
This matrix was kept fixed during all Monte-Carlo experiments. We ran experiments from
SNRmin = −5 dB to SNRmax = 30dB, in steps of ∆ = 5dB. Here, SNR stands for the
signal-to-noise ratio in the data model (4.14), that is,

SNR =
‖Q‖2

E
{
‖W ‖2

} =
1

nσ2
.

For each SNR, we considered L = 1000 statistically independent experiments. For each
SNR, the variance of ϑ was taken as the mean value of d(q, ϑ(Y l))2, l = 1, 2, . . . , L, where
q denotes the first column of Q and Y l stands for the lth realization of the observation Y

in (4.14). Figure 4.7 plots the result of the experiments. The dashed and solid line refer
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Figure 4.7: Estimated varQ(ϑ) (dashed) and IVLB (solid)

to the estimated varQ(ϑ) and the intrinsic variance lower bound in (4.23), respectively.
We see that, at least for the example considered herein, the IVLB is reasonably tight on
the whole range of simulated SNRs.

4.4.2 Inference on the complex projective space CPn

We consider a statistical model indexed over P = CPn, the complex projective space of
dimension n [32, 16]. This is the set of 1-dimensional complex subspaces (lines) of Cn+1.
It is a real connected manifold with dimension 2n. Hereafter, identify Cn with R2n using
the embedding ı : Cn → R2n,

ı (z) =
[
Re z
Im z

]
, (4.24)

recall (3.16). Also, recall that, for complex matrices, we have the identification ı : Cn×m →
R2nm,

ı (Z) =
[
Revec (Z)
Imvec (Z)

]
,
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see (3.17). Using the identification (4.24), we can view the unit-sphere in Cn,

{u ∈ Cn : ‖u‖ = 1} ,

as the unit-sphere in R2n,

S2n−1 =
{
x ∈ R2n : ‖x‖ = 1

}
,

for all n.
The space CPn can be realized as the orbit space of a Lie group action on the unit-

sphere of Cn+1. More precisely, we have CPn = S2n+1/S1 by considering the action
ϕ : S2n+1 × S1 → S2n+1, ϕ(u, c) = uc. Here, S1 =

{
eit : t ∈ R

}
⊂ C is seen as a

real 1−dimensional Lie group, with complex multiplication as group operation. We let
π : S2n+1 → CPn denote the canonical submersion. See figure 4.8 for a sketch. Then,

Cn+1

P = CPn

d([u], [v])

[v]

{λu : λ �= 0}

{λv : λ �= 0}

[u]
v

u

Figure 4.8: Complex projective space as a quotient space

CPn has a natural Riemannian metric, that is, the only one making the projection π a
Riemannian submersion [16]. With this induced metric, the intrinsic distance between
two points π(u) = [u] and π(v) = [v] in CPn, with u,v ∈ S2n+1 ⊂ Cn+1, is given by
d ([u], [v]) = arccos

(∣∣uHv∣∣), also called the Fubini-Study metric [36, 13], and the sectional
curvature of CPn obeys 1 ≤ K ≤ 4 for n ≥ 2, see [36, page 153]. Thus, we have the upper
bound C = 4. We consider the parametric family

F =
{
f (X; p) : X ∈ C(n+1)×(n+1)

}
corresponding to the observation data model

X = uuH +W , (4.25)

where W denotes a (n+ 1)× (n+ 1) random matrix where each entry is identically and
independently distributed as a zero-mean complex circular Gaussian random variable with
variance σ2 > 0. Moreover, u ∈ π−1(p) ⊂ Cn+1 denotes a representative (chosen in the
unit-sphere) of the subspace p ∈ CPn, that is, p = [u]. Notice that the particular choice of
u in the fiber π−1(p) is irrelevant (as it should be). In words, given the data model (4.25),
we are trying to estimate p, the complex line in Cn+1 spanned by u. Note that u itself is



108 Performance Bounds

not identifiable from X as ueiφ induces the same data matrix X. Thus, in loose terms,
the line spanned by u is the “true” parameter.

We now evaluate the Fisher information form associated with our parametric statistical
family. Given the data model in (4.25), we have

log p (X; [u]) ∝ − 1
σ2

∥∥X − uuH
∥∥2

∝ − 2
σ2

Re
(
uHXu

)
, (4.26)

where ∝ stands for equality up to an additive constant. Thus, for any given tangent vector
X[u] ∈ T[u]CPn, we have

I[u]
(
X[u], X[u]

)
= E

{
X[u] log p (X; ·) X[u] log p (X; ·)

}
=

4
σ4

E
{(

X[u]fX

)2}
, (4.27)

where fX : CPn → R is defined as fX ([u]) = Re
(
uHXu

)
. Note that we have gX =

fX ◦π, where gX : S2n+1 → R is given by gX(v) = Re
(
vHXv

)
. Since π is a Riemannian

submersion we have the equalityX[u] = π∗ (Xu) for some horizontal vectorXu ∈ HuS2n+1.
For further reference, we notice that, within the identification TuS2n+1 ≡ Cn+1, we have

TuS2n+1 =
{
δ ∈ Cn+1 : ReuHδ = 0

}
,

and
HuS2n+1 =

{
δ ∈ Cn+1 : uHδ = 0

}
.

Now,

X[u]fX = π∗ (Xu) fX

= Xu (π∗fX)

= Xu (fX ◦ π)
= Xu gX.

Writing Xu = δ ∈ C2n+1 and noting that

gX (v) = ı (v ⊗ v)T ı (X) ,

we have (after some trivial computations)

XugX = ı
(
δ ⊗ u+ u⊗ δ

)T
ı (X) . (4.28)

Plugging (4.28) in (4.27) yields

I[u]
(
X[u], X[u]

)
=

4
σ4

ı
(
δ ⊗ u+ u⊗ δ

)T E{
ı (X) ı (X)T

}
ı
(
δ ⊗ u+ u⊗ δ

)
. (4.29)

Using the facts: i) the random vector ı (X) is distributed as

ı (X) ∼ N
(
ı (u⊗ u) ,

σ2

2
I(n+1)2

)
,
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ii) for complex vectors z1 and z2 of the same size, the equality ı (z1)
T ı (z2) = Re

(
zH1 z2

)
holds, and iii) the horizontality of δ and the unit-norm of u imply

ı
(
δ ⊗ u+ u⊗ δ

)T
ı (u⊗ u) = 0,

and ∥∥ı (δ ⊗ u+ u⊗ δ
)∥∥2 = 2 ‖δ‖2 ,

the equality in (4.29) becomes

I[u]
(
X[u], X[u]

)
=

4
σ2
‖δ‖2 .

Thus,

λ[u] = max
|X[u]| = 1

I[u]
(
X[u], X[u]

)
= max

‖δ‖ = 1

4
σ2
‖δ‖2 (4.30)

= 4/σ2.

In (4.30), we used the fact that π is a Riemannian submersion. Thus, |X[u]| = |Xu| = ‖δ‖.
As an estimator for [u], we take the maximum likelihood (ML) estimator. Based on the
log-likelihood function in (4.26), this is given by ϑ(X) = [v], where v denotes the unit-
norm eigenvector corresponding to the maximum eigenvalue of X +XH . It is difficult to
establish analytically the bias of this proposed estimator. However, since it is consistent
in SNR (that is, it converges to [u] as the noise power vanishes) we will assume that it is
unbiased. That is, we consider that σ[u] = 1. Inserting C = 4, λ[u] = 4/σ2 and σ[u] = 1
in (4.12) yields the bound

var[u] (ϑ) ≥
4 + 3/σ2 −

√
1
σ2 (9/σ2 + 24)
32
3

. (4.31)

We conducted a set of computer simulations (similar to the one described in subsec-
tion 4.4.1) to evaluate the gap between both sides of (4.31). We considered n = 2 and let
p = [u] denote the line spanned by u = (1, 0, 0)T . The SNR for the data model (4.25) is
defined as

SNR =

∥∥uuH∥∥2
E
{
‖W ‖2

} =
1

σ2(n+ 1)2
.

Figure 4.9 plots the result obtained. As seen, the IVLB underestimates the variance of ϑ,
within a reasonable margin of error.

4.4.3 Inference on the quotient space H[z]/ ∼

As our last example, we consider an inference problem involving the quotient space of
identifiable MIMO channel equivalence classes H[z]/ ∼. Consider the data model in (2.3)
reproduced here for convenience,

y[n] =
P∑
p=1

hp(z) � sp[n] +w[n] = H(z) � s[n] +w[n]. (4.32)
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Figure 4.9: Estimated varp(ϑ) (dashed) and IVLB (solid)

For simplicity, we consider that degH(z) = 0 (memoryless channel). That is, hp(z) =
hp[0] = hp, for all p. Thus, in the identification H(z) � (d;H), we have d = (0, 0, . . . , 0)T

and H = [h1 h2 · · ·hP ]. Equation (4.32) becomes

y[n] = Hs[n] +w[n], (4.33)

where s[n] = (s1[n], s2[n], . . . , sP [n])
T . Arranging the N available channel observations in

the data matrix Y = [y[1]y[2] · · · y[N ] ] leads to

Y = HS +W , (4.34)

where S = [ s[1] s[2] · · · s[N ] ] and W = [w[1]w[2] · · · w[N ] ]. Equivalently,

y = (H ⊗ IN ) s+w, (4.35)

where y = vec
(
Y T

)
, s = vec

(
ST

)
and w = vec

(
W T

)
. Note that s =

(
sT1 , s

T
2 , . . . , s

T
P

)T ,
where sp = (sp[1], sp[2], . . . , sp[N ])T . In (4.32), we assume that the sources sp[n] denote
mutually independent zero-mean WSS Gaussian processes with known autocorrelation
function rsp [m] = E

{
sp[n]sp[n−m]

}
. The observation noise w[n] is taken to be spatio-

temporal white Gaussian noise with variance σ2 and statistically independent from the
sources. This means that the random vector y in (4.35) is normally distributed as

y ∼ N (0,C (H)) , (4.36)

where the correlation matrix C(H) = E
{
yyH

}
can be written as

C (H) =
P∑
p=1

(
hph

H
p

)
⊗Rsp + σ2IQN , (4.37)
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with

Rsp = E
{
sps

H
p

}
=



rsp [0] rsp [1] · · · · · · rsp [N − 1]

rsp [1] rsp [0] rsp [1]
. . .

...
...

. . . . . . . . .
...

...
. . . rsp [1] rsp [0] rsp [1]

rsp [N − 1] · · · · · · rsp [1] rsp [0]


.

Given the observation y, we aim at estimating the MIMO channel H. From (4.36) we
see that all information about the channel is contained in the covariance matrix of y.
But, more importantly, we see that H is not identifiable: it is clear from (4.37) that
the distribution of y is invariant to phase offsets in the columns of H. That is, C (H) =
C (HΘ) for any Θ = diag

(
eiθ1 , eiθ2 , . . . , eiθP

)
. Thus, only the MIMO channel equivalence

classes are identifiable (we are assuming that the correlation matrices Rsp are sufficiently
diverse to ensure uniqueness, see the discussion in section 2.5). Thus, our parametric
statistical family is given by F = {p (y; [H(z)]) : [H(z)] ∈ H[z]/ ∼}, where

p (y; [H(z)]) =
1

πQN det (C(H))
exp

(
−yHC (H)−1 y

)
. (4.38)

We recall that the main geometrical features of the Riemannian manifold H[z]/ ∼ were
studied in subsection 3.4.1. In particular, the intrinsic distance between the points [H(z)]
and [G(z)] is given by

d ([H(z)] , [G(z)]) =

√√√√ P∑
p=1

∥∥gp∥∥2 + ‖hp‖2 − 2|gHp hp|,

where H = [h1 h2 · · · hP ] and G = [ g1 g2 · · · gP ], recall (3.50). Furthermore, is was
seen that the sectional curvature at each point [H(z)] can be upper-bounded as

C[H(z)] ≤ 3max

{
1

‖hp‖2
: p = 1, 2, . . . , P

}
, (4.39)

recall (3.70).
We now derive the Fisher information form associated with our parametric statistical

family. Given the distribution in (4.38), we have

log p (y; [H(z)]) ∝ − log det (C (H))− yHC (H)−1 y.

Letting X[H(z)] denote a tangent vector in T[H(z)]H[z]/ ∼, we have

I[H(z)]

(
X[H(z)], X[H(z)]

)
= E

{
X[H(z)] log p (y; ·) X[H(z)] log p (y; ·)

}
= E

{(
X[H(z)]fy

)2}
, (4.40)

where fy : H[z]/ ∼→ R is given by

fy ([H(z)]) = log det (C(H)) + yHC (H)−1 y.

We have the composition gy = fy ◦ π, where gy : H[z]→ R is defined as

gy (H(z)) = log det (C(H)) + yHC (H)−1 y.
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Since the projection onto the quotient π : H[z] → H[z]/ ∼ is a Riemannian submer-
sion, there exists a horizontal tangent vector XH(z) ∈ HH(z)H[z] such that X[H(z)] =
π∗

(
XH(z)

)
. Thus,

X[H(z)]fy = π∗
(
XH(z)

)
fy

= XH(z) (π
∗fy)

= XH(z) (fy ◦ π)
= XH(z) gy.

Recall that the horizontal space at H(z) is given by

HH(z)H[z] =
{
(δ1, δ2, . . . , δP ) ∈ CQ × CQ × · · · × CQ : Im

(
δHp hp

)
= 0

}
,

see (3.48). Using this identification, let XH(z) = (δ1, δ2, . . . , δP ). It can be seen (after
some straightforward computations) that we have

XH(z)gy = tr
(
C (H)−1∆

)
− yHC (H)∆C (H)−1 y, (4.41)

where

∆ =
P∑
p=1

(
δph

H
p + hpδ

H
p

)
⊗Rsp .

Plugging (4.41) in (4.40) and simplifying yields

I[H(z)]

(
X[H(z)], X[H(z)]

)
= tr

(
C (H)−1∆C (H)−1∆

)
.

Thus,

λ[H(z)] = max∣∣X[H(z)]

∣∣ = 1
I[H(z)]

(
X[H(z)], X[H(z)]

)
= max

‖(δ1, δ2, . . . , δP )‖ = 1
Im

(
δHp hp

)
= 0

tr
(
C (H)−1∆C (H)−1∆

)
. (4.42)

The optimization problem expressed in (4.42) requires the maximization of a quadratic
function subject to linear and quadratic constraints. Upon a choice of basis for the hor-
izontal space HH(z)H[z] the linear constraints can be dropped and (4.42) boils down to
the computation of the maximum eigenvalue of an Hermitean matrix. We do not find
an explicit formula for this Hermitean matrix, because this leads to a rather complicated
formula and it is not strictly needed for our purposes. In the computer simulations to be
presented, we evaluated λ[H(z)] by solving the optimization problem in (4.42) through a
general-purpose optimization software package.

We carried out some simulations to compare the IVLB with the (intrinsic) variance
of the ML estimator of the channel class [H(z)] in the data model (4.34). Given the
distribution in (4.38) the ML estimator is given by ϑ (y) = [Ĥ(z)] where

Ĥ = argmin
G =

[
g1 g2 · · · gp

]
∈ H[z]

log det (C (G)) + yHC (G)−1 y.
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In the simulations, the ML estimate was found through an optimization software pack-
age. We considered a MIMO channel (randomly generated and kept fixed throughout the
simulations) given by

H =

 0.0860− 0.6313i 0.4620 + 1.0556i
−2.0046− 2.3252i −0.3210− 0.1132i
−0.4931− 1.2316i 1.2366 + 0.3792i

 .

The pth source signal sp[n] is a WSS Gaussian process obtained by passing an unit-power
white Gaussian process ap[n] through a correlative filter cp(z), that is, sp[n] = cp(z)�ap[n].
The pre-filters are given by cp(z) = κp

(
1− zpz

−1
)
where κp is an unit-power normalizing

constant and zp denotes the zero of the pth filter. We used the same zeros as in the
two-users scenario of section 2.8 (page 39), that is, z1 = 1

4e
−iπ/2 and z2 = 1

2e
iπ/4. The ML

estimator is assumed to be unbiased that is, σ[H(z)] = 1. Furthermore, we suppose that
the receiver knows the power of each user’s channel vector, within a 50% relative error.
That is, we take as an upper-bound for the sectional curvature, the value

C = 3max

{
1

(0.5 ‖hp‖)2
: p = 1, 2

}
= 3.8503.

The signal-to-noise ratio for the data model (4.33) is defined by

SNR =
E
{
‖Hs[n]‖2

}
E
{
‖w[n]‖2

} =
‖H‖2

Qσ2
,

and is varied between SNRmin = −5 dB and SNRmax = 10 dB, in steps of SNRstep =
5 dB. Figure 4.10 shows the results obtained through computer simulations. We see that,
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Figure 4.10: Estimated var[H(z)](ϑ) (dashed) and IVLB (solid)

although the IVLB lower bounds the observed intrinsic variance of the ML estimator, a
more significative gap is noticeable. This might be due to the fact that, for this inference
problem, the IVLB is not attainable (by any estimator), in the same sense that the CRLB
is not attainable in certain estimation scenarios.
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4.5 Conclusions

In this chapter, we considered parametric statistical families F = {fp : Ω→ R} (Ω=sample
space) where the parameter p (indexing the family) lies in a Riemannian manifold P . This
is the setup emerging spontaneously from several applications, either due to parameter
restrictions (P is a submanifold of some Euclidean space) or to intrinsic ambiguities in
the observation model (P is a coset space, that is, the set of identifiable parameter equiv-
alence classes). The latter situation arises, for example, in the problem of identifying a
MIMO channel excited by complex circular Gaussian inputs and given a finite number
of observations (see subsection 4.4.3 for a more detailed discussion). In either case, the
language of differential-geometry permits to unify their treatment. Let M denote a con-
nected Riemannian manifold, possibly distinct from P , and let b : P → M denote a
smooth mapping. We proposed the intrinsic variance lower bound (IVLB) which, in loose
terms (see theorem 4.1 for the precise statement), places a lower limit on the intrinsic
variance varp (ϑ) = Ep

{
d (ϑ, b(p))2

}
of any estimator ϑ with bias b. Here, d denotes the

intrinsic (Riemannian) distance on M . The IVLB takes into account: i) the geometry of
the manifold M through its sectional curvatures, ii) the given statistical model F through
its associated Fisher information form and iii) the bias b through its “derivative”, that is,
the push-forward map b∗. Some inference problems were analyzed to examine the utility
(tightness) of the bound. Although the preliminary results obtained were satisfactory, a
more in-depth study is needed to fully characterize the capabilities of the proposed bound.



Chapter 5

Conclusions

5.1 Open issues and future work

The main problem addressed in this thesis was blind identification of multiple-input
multiple-output (MIMO) channels based only on the 2nd order statistics of the channel
observations. Since a phase ambiguity per column of the MIMO transfer matrix cannot be
avoided, this consists in an inference problem on the quotient space of channel equivalence
classes (where two channels are identified if they are equal modulo a phase offset per col-
umn). As we have seen, an in-depth treatment of this problem under this viewpoint has
launched some new interesting challenges such as asymptotic analysis and performance
bounds within the setting of Riemannian manifolds. These latter problems have found
elegant solutions in the language of Riemannian differential geometry. Furthermore, the
theory was developed in all generality and can thus be applied to other parametric estima-
tion problems. In this last chapter, we complement the discussions provided at the end of
chapters 2–4. However, the goal here is to identify some open issues and point directions
for future work and research.

5.1.1 Chapter 2

Our analytical solution for the blind channel identification problem (BCIP) exploits the
fact that the inputs of the MIMO channel have distinct 2nd order spectra and that their
2nd order statistical characterization is known by the receiver. This can be assumed since
the information symbols are colored prior to transmission by correlative filters which are
known at the receiver. The proposed closed-form identification algorithm (CFIA) finds the
MIMO channel coefficients by matching the theoretical and observed correlation matrices
of the channel observations. The main weakness of this algorithm is its vulnerability
with respect to estimation errors in the channel orders. This is a common drawback
of several blind channel identification approaches [61, 43, 24]. Therefore, an interesting
possibility to explore in the future consists in circumventing this weakness by estimating
directly the linear space-time equalizer, instead of first identifying the MIMO channel
and then design the corresponding equalizer (as we do here). Remark that the former
approach does not need, in principle, the knowledge of the exact channel orders. To
achieve this extension, the identifiability theorem 2.1 should be rephrased in terms of the
equalizer coefficients. That is, it should be re-formulated in order to guarantee channel
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inversion, for example, as soon as the equalizer is able to reproduce signals with the same
2nd order statistics of the inputs. At this moment, it is not clear that this alternative
approach would be also implementable in closed-form but this topic certainly deserves
further attention. Another line for future research consists in investigating the possibility
of dropping certain channel assumptions, like the technique of blind identification by
decorrelating subchannels (BIDS), see [30, 31], which does not require the channel to be
simultaneously irreducible and column-reduced as we do (and also most other multiple-user
approaches do, see [1, 2, 24, 68, 38]). Furthermore, even if the identifiability theorem 2.1
can be extended to such relaxed channel assumptions, it seems that the CFIA must also
suffer major modifications in order to cope with that new scenario.

5.1.2 Chapter 3

We recall that the asymptotic performance analysis presented in chapter 3 was carried out
under a major assumption: the channel orders are known and the CFIA only estimates
the MIMO channel coefficients. We made such a simplifying assumption in order to keep
the theoretical study tractable. We also recall that the main utility of the performance
analysis consists in providing guidelines for the (off-line) optimum design of the correlative
filters (in terms of the mean-square distance of the channel class estimate) when one is
given a stochastic model for the MIMO channel. For future work, we should develop a
broader theoretical study which would also permit to design the correlative filters in order
to minimize the probability of detection errors in the MIMO channel orders (as mentioned
above, this is the main drawback of the proposed CFIA). As we pointed out earlier in
page 34, correct detection of the channel orders boils down to the correct detection of
the (unique) zero of the function φ in (2.42) over the discrete set E, using only finite-
length data packets. This is in turn linked with the matching cost functional proposed
in (2.41) which should perhaps be computed with respect to a weighting matrix (to be
determined) rather than simply the identity matrix. Since the new performance study
should be conducted without the assumption of known channel orders, this means that
the “full” geometrical model of H[z] as a finite set of leaves, recall figure 3.1 in page 52,
should now be taken into account. That is, the simplification taken in chapter 3 which
consists in redefining the set of MIMO channels H[z] as a single leaf (corresponding to
the known channel orders) is no longer valid. This complicates matters greatly since a
Riemannian model for this set is not clearly available (distinct leaves can have distinct
dimensionality). Nevertheless, it seems an interesting problem, both from the theoretical
and practical viewpoints, to work on.

5.1.3 Chapter 4

In this chapter, we introduced the intrinsic variance lower bound (IVLB). The IVLB es-
sentially extends the Cramér-Rao lower bound (CRLB) to inference problems involving
statistical families indexed over Riemannian manifolds and where the intrinsic mean-square
(Riemannian) distance is the figure of merit used to evaluate the accuracy of estimators.
This chapter is perhaps the most fertile in open issues and contains several exciting di-
rections to explore in the future. A basic question to be answered is, for example, what
are the sufficient and necessary conditions on the statistical family and on the geometries
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of the involved Riemannian manifolds for the IVLB to be achievable ? Another theoret-
ical point to be further investigated consists in the improvement of the proposed IVLB
for certain Riemannian structures, for example spaces of constant sectional curvature,
for which detailed characterizations and specific results are available in the mathematical
literature. Also, parametric inference problems over quotient spaces usually arise from
parametric estimation problems formulated over Euclidean spaces but with ambiguities
in the parameters. A nice result to be obtained here would consist in showing that the
IVLB can be obtained from the (necessarily singular) Fisher-information matrix (FIM)
of the parameter plus some modifications arising from the problem-dependent geometry.
In that line, the link between the IVLB and the works in [22, 41, 55] which address the
special case of submanifolds embedded in Euclidean spaces deserves also more investiga-
tion. Finally, another direction for future research is the extension of the IVLB to the
context of Bayesian estimation problems, where one disposes of a probabilistic prior for
the parameter of interest (which lives in a Riemannian manifold now).
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Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 2.1

First, we need some technical lemmas.

Lemma A.1. Let x,y ∈ Cn, and y �= 0. If xHKn[m]y = 0, for all m ∈ Z, then x = 0.

Proof. Write y = (0, . . . , 0, yl, . . . , yn)T , where yl �= 0. Define the n× n matrix

Y =
[
Kn[−l + 1]y Kn[−l + 2]y · · · Kn[n− l]y

]
.

Note that Y is a Toeplitz lower triangular matrix of the form

Y =


yl 0 · · · 0

∗ yl
. . .

...
...

. . . . . . 0
∗ · · · ∗ yl

 .

Since yl �= 0, the matrix Y is non-singular. By hypothesis, xHY = 0. Thus, x = 0�

Lemma A.2. Let A = diag (A1,A2, . . . ,An), where Ai ∈ Cni×ni. Assume that σ (Ai) ∩
σ (Aj) = ∅, for i �= j. If B commutes with A, that is, AB = BA, then B =
diag (B1,B2, . . . ,Bn), for some Bi ∈ Cni×ni.

Proof. We use the fact that, if XY − Y Z = 0 and σ (X) ∩ σ (Z) = ∅, then Y = 0 [23,
lemma 7.1.5, page 336]. Write

B =


B11 B12 · · · B1n

B21 B22 · · · B2n
...

...
...

Bn1 Bn2 · · · Bnn

 ,

where Bij ∈ Cni×nj . From AB = BA, it follows that AiBij = BijAj . Since σ (Ai) ∩
σ (Aj) = ∅ whenever i �= j, we conclude that Bij = 0 whenever i �= j �

Lemma A.3. Let V ∈ Cm×n(m ≥ n) denote an isometry, that is, V HV = In, and let
F [m] = V HKn[m]V , for m ∈ Z. If X ∈ Cn×n commutes with F [m], for all m ∈ Z, then
X = λIn, for some λ ∈ C.
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Proof. First, consider that X is a normal matrix, that is,

X = QΛQH , (A.1)

where Λ = diag (λ1In1 , λ2In2 , . . . , λlInl
), with λi �= λj , for i �= j, andQ is unitary, see [23,

corollary 7.1.4, page 336]. Consider the hypothesis that l ≥ 2. Using (A.1) in

F [m]X = XF [m], (A.2)

yieldsG[m]Λ = ΛG[m], whereG[m] = WHKn[m]W andW = V Q is an isometry. Since
G[m] commutes with Λ, lemma A.2 asserts that G[m] = diag (G1[m],G2[m], . . . ,Gl[m]),
where Gi[m] ∈ Cni×ni . Thus, all matrices G[m] share at least one common zero entry.
For example, any entry off the block diagonal. That is, there exists a pair of indices (i, j)
such that Gij [m] = wHi Kn[m]wj = 0, for all m ∈ Z, where wi denotes the ith column
of W . From lemma A.1, we conclude that wi = 0 (contradiction). Thus, we must have
l = 1 and X = λIn. We now turn to the general case. Given that Kn[m] = Kn[−m]H ,
we have

F [m]XH = XHF [m] (A.3)

Combining (A.2) and (A.3) gives F [m]A = AF [m] and F [m]B = BF [m], for all m ∈ Z,
where A and B came from the Cartesian decomposition of X. That is X = A+ iB and

A =
X +XH

2
, B =

X −XH

2i
.

Since bothA and B are normal matrices (in fact, Hermitean), it follows from the first part
of the proof that A = λrIn and B = λiIn, for some λr, λi ∈ R. Thus, X = (λr+ iλi)In�

Proof of Theorem 2.1. To settle notation H(z) = [h1(z)h2(z) · · · hP (z) ], Dp =
deghp(z) and Hp = T 0 (hp(z)) = [hp[0]hp[1] · · · hp[Dp] ]. Similarly, we let G(z) =
[ g1(z) g2(z) · · · gP (z) ], Ep = deg gp(z) and Gp = T 0

(
gp(z)

)
=

[
gp[0] gp[1] · · · gp[Ep]

]
.

The proof that ϕ ([G(z)]) = ϕ ([H(z)]) implies [G(z)] = [H(z)] is carried out incremen-
tally in 3 steps, in which we establish: (1) ordG(z) = ordH(z), that is,

∑P
p=1Ep =∑P

p=1Dp, (2) Ep = Dp, for all p, and, finally, (3) Gp = Hpe
iθp for some θp ∈ R. Keep

in mind that both H(z) and G(z) are taken from the “admissible” set H[z] (assumption
A1 in page 20). For simplicity, throughout the proof, we consider noiseless samples y[n],
that is, w[n] = 0 in (2.3). This entails no loss of generality, because our proof only relies
on the 2nd order statistics of y[n].

Step 1: ordG(z) = ordH(z). Let C(z) denote the vector space of Q-tuples of rational
functions, in the indeterminate z−1, over the field of rational functions [14, 1]. Let SH(z) ⊂
C(z) denote the P -dimensional subspace spanned by H(z), and S⊥

H(z) ⊂ C(z) its (Q−P )-
dimensional dual subspace [14, 1]. Similar definitions hold for SG(z) and S⊥

G(z). As shown
in [1], if L (a stacking parameter) is high enough, then S⊥

H(z) is uniquely determined
from the correlation matrix Ry[0;L]. Thus, S⊥

H(z) = S⊥
G(z) and, as a consequence,

SH(z) = SG(z). Because both H(z) and G(z) are irreducible and column-reduced, they
are minimal polynomial basis for SH(z) = SG(z), see [14]. Thus, they have the same
order [14]. That is,

∑P
p=1Ep =

∑P
p=1Dp.

Step 2: Ep = Dp. Recall the notation for the stacked data model of order L given in
table 2.2, page 19. Furthermore, recall assumptions A1 and A3 in pages 20 and 27 for the
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definitions of the constants Dmax and E, respectively. Choose a stacking parameter

L ≤ E −Dmax, (A.4)

such that the stacked channel matrix

H =
[

H1 H2 · · · HP

]
,

Hp = T L(hp(z)), is full column-rank. Such a L exists because the channel matrix H(z)
was assumed to be tall, irreducible and column-reduced (see assumption A1 in page 20).
As a consequence of this assumption, the channel matrices H corresponding to stacked
data models of order L are full column-rank for all L sufficiently large, say L ≥ L0. The
value L0 = ordH(z) works, see [24]. Thus, a valid lower bound covering all possible
H(z) ∈ H[z] is L0 = PDmax. Note that L0 ≤ E −Dmax.

Let

R = rank (H) = P (L+ 1) +
P∑
p=1

Dp

and let Ry[m;L] = E
{
y[n;L]y[n−m;L]H

}
, m ∈ Z, denote the correlation matrices

of y[n;L]. Notice that, from y[n;L] = H s[n;d], where d = (D1,D2, . . . ,DP )T , Dp =
Dp + L, we have

Ry[0;L] = HRs[0;d]HH (A.5)

= H0 HH
0 , (A.6)

where H0 = HRs[0;d]1/2. Furthermore, note that Rs[0;d] is a R × R positive definite
(in particular, nonsingular) matrix. This results from the fact that, as seen in (2.8), the
matrix Rs[0;d] is a block diagonal concatenation of matrices of the form Rsp [0;Dp], which
in turn, from (2.21), are Gramian matrices given by

Rsp [0;Dp] = T Dp (cp(z)) T Dp (cp(z))
H .

Since T Dp (cp(z)) is full row rank (see (2.20) and use the fact that cp[0] �= 0 by definition),
we conclude that each Rsp [0;Dp] is positive-definite. Finally, Rs[0;d], being the diagonal
concatenation of positive-definite matrices, is itself positive-definite.

From (A.5) and the above considerations, we have rank (Ry[0;L]) = R. Let

Ry[0;L] = V Σ2 V H (A.7)

denote a R-truncated EVD of the matrix Ry[0;L]. That is, V HV = IR and Σ =
diag(σ1, . . . , σR) with σi > 0. Define P = V Σ. Thus,

Ry[0;L] = PPH . (A.8)

From (A.6) and (A.8), we conclude that

P = H0Q
H (A.9)

for some R×R unitary matrix Q. Thus, defining Υ[m] = P+Ry[m;L]P+H yields

Υ[m] = QΓs[m;d]QH , (A.10)
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where
Γs[m;d] = Rs[0;d]−1/2Rs[m;d]Rs[0;d]−1/2,

recall (2.23).
But, the same reasoning in terms of the polynomial matrix G(z), leads to Ry[0;L] =

G0 GH0 , where G0 = G Rs[0; e]1/2,

G =
[

G1 G2 · · · GP
]
,

with Gp = T L

(
gp(z)

)
, e = (E1, E2, . . . , EP )T and Ep = Ep + L. Thus, we also have

P = G0W
H , (A.11)

for some R×R unitary matrix W , and, consequently,

Υ[m] = W Γs[m; e]WH . (A.12)

We want to prove that Ep = Dp, or, equivalently, Ep = Dp, for all p. Assume the
opposite. Since, from step 1, we have

P∑
p=1

Dp =
P∑
p=1

Ep,

then we must have Dp > Ep for some p. In the sequel, whenever X denotes a n × n

matrix, the notation p(t) ∼ X means that p(t) is the characteristic polynomial of X.
That is, p(t) is the polynomial in the indeterminate t and complex coefficients given by
p(t) = det (tIn −X). Note that such a polynomial p(t) has always degree n. Furthermore,
for a given polynomial p(t) of degree n and indeterminate t, we let σ(p(t)) denote its set
of n roots in C, including multiplicities. Thus, trivially, p(t) ∼X implies σ(X) = σ(p(t)).

Notice that

Dp = Dp + L

≤ Dmax + L

≤ E,

where the last inequality follows from (A.4). The same reasoning yields Ep ≤ E. Thus,
by assumption A3 in page 27, there exists a correlation lag m(p) satisfying (2.25). Let
p(t) ∼ Υ[m(p)]. From (A.10), we have

p(t) = hp(t)
∏
q �=p

hq(t),

where hi(t) ∼ Γsi [m(p);Di]. But, from (A.12), we must also have

p(t) = gp(t)
∏
q �=p

gq(t),

where gi(t) ∼ Γsi [m(p); Ei]. The property of the lag m(p) expressed in (2.25) implies that

σ (hp(t)) ∩ σ (gq(t)) = ∅,
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for q �= p. Thus, necessarily, σ (hp(t)) ⊂ σ (gp(t)). But, this is a contradiction, since the
cardinality of σ (hp(t)} (that is, Dp + 1) is greater than the cardinality of σ (gp(t)) (that
is, Ep + 1). Thus, Dp = Ep, for p = 1, . . . , P .

Step 3: Gp = Hp e
iθp. From step 2, we know that Dp = Ep, that is, d = e. Note that

Γs[m;d] =


Γs1 [m;D1]

Γs2 [m;D2]
. . .

ΓsP [m;DP ]

 . (A.13)

Let Θ denote the unitary matrix Θ = QHW , where Q and W are defined in (A.9)
and (A.11), respectively. From (A.10) and (A.12), we have

Γs[m;d]Θ = ΘΓs[m;d], (A.14)

for all m ∈ Z. Partition the matrix Θ in P 2 submatrices as in

Θ =


Θ11 Θ12 · · · Θ1P

Θ21 Θ22 · · · Θ2P
...

...
. . .

...
ΘP1 ΘP2 · · · ΘPP

 ,

where Θpq : (Dp + 1)× (Dq + 1). From (A.13) and (A.14), we have

Γsp [m;Dp]Θpq = ΘpqΓsq [m;Dq], (A.15)

for allm ∈ Z and p, q = 1, 2, . . . , P . Consider p �= q. By assumption A3 in page 27, there is
a correlation lagm(p) which, in particular, satisfies σ

(
Γsp [m(p);Dp]

)
∩σ

(
Γsq [m(p);Dq]

)
=

∅. Thus, the identity Γsp [m(p);Dp]Θpq = ΘpqΓsq [m(p);Dq] implyΘpq = 0, see [23, lemma
7.1.5, page 336]. In sum,

Θ =


Θ11

Θ22

. . .
ΘPP

 ,

with
Γsp [m;Dp]Θpp = ΘppΓsp [m;Dp], for all m ∈ Z. (A.16)

Notice that each Θpp is an unitary matrix.
As mentioned above (see page 121) the matrix T Dp (cp(z)) is full row rank. Let

T Dp (cp(z)) = UpΣpV Hp (A.17)

denote a SVD, where Up is unitary, Σp is non-singular (because T Mp (cp) has full row
rank), and V p is an isometry, that is, V Hp V p is the identity matrix. Using (A.17) in (2.21)
yields

Rsp [0;Dp] = UpΣ2
pU

H
p ,
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and, consequently
Rsp [0;Dp]−1/2 = UpΣ−1

p UHp . (A.18)

Using both (A.17) and (A.18) in (2.22) gives

Γsp [m;Dp] =
(
V pU

H
p

)H
KDp+Cp+1[m]

(
V pU

H
p

)
. (A.19)

Since V pU
H
p is an isometry, equations (A.16) and (A.19) and lemma A.3 imply that

Θpp = λpIDp+1, (A.20)

for some λp ∈ C. But, because each Θpp is an unitary matrix, we have λp = eiθp , for some
θp ∈ R.

From (A.9) and (A.11), we have

G0 = PW

= H0Q
HW

= H0Θ.

Thus,

G = HRs [0;d]
1/2ΘRs [0; e]

−1/2

= HΘ.

We conclude that Gp = Hpe
iθp , that is, Gp = Hpe

iθp �

A.2 Proof of Theorem 2.2

Throughout this proof we let c = (C1, C2, . . . , CP )
T . Recall that 1 ≤ Cp ≤ Cmax for all p.

Let c(z) = (c1(z), c2(z), . . . , cP (z))
T denote a point in the set Mc[z] and let ε > 0 be

given. We must produce a point d(z) = (d1(z), d2(z), . . . , dP (z))
T in the set Fc [z] such

that d (c(z),d(z)) < ε. Before proceeding, we need some definitions. For θ ∈ R and a
polynomial p(z) =

∑d
k=0 p[k]z

−k, we let p(z; θ) denote the “rotated” polynomial

p(z; θ) =
d∑
k=0

(
p[k]eikθ

)
z−k. (A.21)

For θ = (θ1, . . . , θn)
T ∈ Rn and a polynomial vector p(z) = (p1(z), p2(z), . . . , pn(z))

T , we
let

p(z;θ) = (p1(z; θ1), p2(z; θ2), . . . , pn(z; θn))
T .

Note that if p(z) denotes a polynomial in MC [z] then p(z; θ) is also a polynomial in MC [z]
for any θ. Indeed, fix a θ and recall the definition of MC [z] in (2.17). It is clear that the
polynomial p(z; θ) is unit-power and has nonzero precursor. To check that it is minimum
phase, notice that, from (A.21), we have p(z; θ) = p(e−iθz). Thus, the roots of p(z; θ) are
rotated versions in the complex plane of those of p(z). Since the latter are strictly included
in the open disk with radius one and centered at the origin, so are the former. It is clear
that this closure property generalizes to polynomial vectors, that is, if p(z) ∈ Mc[z] then
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p(z;θ) ∈ Mc[z] for any θ. Finally, for Ep ∈ N and cp(z) ∈ MCp [z], we let Rsp [m;Ep, cp(z)]
denote the correlation matrix of sp[n;Ep] at lag m, induced by the correlative filter cp(z).
That is,

Rsp [m;Ep, cp(z)] = T Ep (cp(z)) KEp+Cp+1[m]T Ep (cp(z))
H , (A.22)

see also (2.21). Similarly, we let Γsp [m;Ep, cp(z)] denote the corresponding normalized
correlation matrix, that is,

Γsp [m;Ep, cp(z)] = Rsp [0;Ep, cp(z)]
−1/2Rsp [m;Ep, cp(z)]Rsp [0;Ep, cp(z)]

−1/2, (A.23)

see (2.22).
Recall that c(z) = (c1(z), c2(z), . . . , cP (z))

T ∈ Mc[z]. Let θp ∈ R and Ep ∈ N. We will
need two fundamental properties in the sequel. The first one is given by

Γsp [m;Ep, cp(z; θp)] ∼ eimθp Γsp [m;Ep, cp(z)] . (A.24)

For two square matrices A and B of the same size, the notation A ∼ B means that
they are similar, that is, there exists a nonsingular matrix S such that A = SBS−1.
Recall that two similar matrices have the same eigenvalues including multiplicities, that
is, the same spectrum σ(A) = σ(B). Thus, equation (A.24) asserts that “rotating” the
correlative filter cp(z) by θp, makes the spectrum of corresponding normalized correlation
matrix of sp[n;Ep] at lag m rotate by mθp. To establish (A.24), we start by noticing that,
from (2.20), we have

T Ep (cp(z; θp)) = ΘEp+1(θp)HT Ep (cp(z))ΘEp+Cp+1(θp), (A.25)

where Θk(θ) = diag
(
1, eiθ, ei2θ, . . . , ei(k−1)θ

)
. Also, is is easily seen that

ΘEp+Cp+1(θp)KEp+Cp+1[m]ΘEp+Cp+1(θ)H = eimθKEp+Cp+1[m]. (A.26)

Plugging (A.25) and (A.26) in (A.22) yields

Rsp [m;Ep, cp(z; θ)] = eimθpΘEp+1(θ)HRsp [m;Ep, cp(z)]ΘEp+1(θ). (A.27)

From (A.27) it follows that

Γsp [m;Ep, cp(z; θp)] = ΘEp+1(θ)H
(
eimθp Γsp [m;Ep, cp(z)]

)
ΘEp+1(θ),

and since ΘEp+1(θ) is the inverse of ΘEp+1(θ)H we see that (A.24) holds. The other
property that we will need is

det
(
Γsp [Cp;Ep, cp(z)]

)
�= 0, (A.28)

that is, all eigenvalues of Γsp [m;Ep, cp(z)] are nonzero at the special correlation lag m =
m(p) = Cp. To establish this, it suffices to prove that Rsp [Cp;Ep, cp(z)] is nonsingular,
see (A.23). Now, we have

KEp+Cp+1[Cp] =
[

0 0
IEp+1 0

]
. (A.29)
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Using (A.29) in (A.22) yields

Rsp [Cp;Ep, cp(z)] =


cp[Cp] 0 · · · 0

∗ cp[Cp]
. . .

...
...

. . . . . . 0
∗ · · · ∗ cp[Cp]




cp[0] 0 · · · 0

∗ cp[0]
. . .

...
...

. . . . . . 0
∗ · · · ∗ cp[0]

 .

(A.30)
Both square lower-triangular matrices in the right-hand side of (A.30) are nonsingular due
to the fact that cp[Cp] �= 0 (because cp(z) ∈ MCp(z) implies that deg cp(z) = Cp) and
cp[0] �= 0 (because cp(z) ∈ MCp(z) implies that cp(z) has nonzero precursor). Thus, we
conclude that (A.28) holds.

We conclude our proof as follows. Notice that the point c (z;θ) varies continuously
with θ, that is, “small” changes in θ induce “small” distances d (c(z), c (z;θ)). Now,
as θp starts to depart from 0 and does not leave the interval (−π, π), the spectrum
of Γsp [Cp;Ep, cp(z; θp)] is rotated in the complex plane due to (A.24). Note that no
eigenvalue is kept fixed because all of them are nonzero due to (A.28). Thus, clearly,
we can choose θp ∈ (−π, π), with |θp| as small as we want, such that the spectrum of
Γsp [Cp;Ep, cp(z; θp)] does not intersect a given finite set of points in C. Apply this prop-
erty for all possible Ep in order to satisfy (2.25) and set d(z) = c(z;θ), where it assumed
that θ has been chosen so small that d (c(z),d(z)) < ε holds�

A.3 Proof of Theorem 2.3

Inserting (2.38) in (2.39) yields

Γs[m;d]QHX = QHX Γs[m;d], (A.31)

where we also used the fact that Q is unitary. Define

Θ = QHX, (A.32)

and partition the matrix Θ in P 2 submatrices as in

Θ =


Θ11 Θ12 · · · Θ1P

Θ21 Θ22 · · · Θ2P
...

...
. . .

...
ΘP1 ΘP2 · · · ΘPP

 ,

where Θpq : (Dp + 1)× (Dq + 1). Using the fact that

Γs[m;d] =


Γs1 [m;D1]

Γs2 [m;D2]
. . .

ΓsP [m;DP ]


and (A.32), we see that (A.31) is equivalent to

Γsp [m;Dp]Θpq = ΘpqΓsq [m;Dq] (A.33)
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for all p, q and m ∈ Z. The identity in (A.33) is precisely the identity in (A.15). Thus,
recalling the arguments in step 3 of the proof of theorem 2.1 between (A.15) and (A.20),
we have Θpq = 0 whenever p �= q and Θpp = λpIDp+1. Thus, from (A.32), we conclude

that X d∼ Q.
To establish the second part of theorem 2.3, we start by noticing that (2.40) imply

that e = d. To see this, just examine step 2 of the proof of theorem 2.1. Now, using the
fact that W is unitary, we have

Υ[m]W −W Γs[m;d] = 0

for all m ∈ Z. But, as shown above, this implies that W d∼ Q. Since both Q and W are

unitary, we necessarily have W
d≈ Q�
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Appendix B

Proofs for Chapter 3

B.1 Proof of Lemma 3.1

First, some definitions and two auxiliary lemmas. For r ∈ C and a = (a0, a1, . . . , an)
T ∈

Cn+1, we let pa(r) = a0 + a1r + a2r
2 + · · ·+ anr

n. For A ∈ Cm×(n+1), we let

pA(r) =


pa1(r)
pa2(r)

...
pam(r)

 ,

where aTi designates the ith row of A. Finally, for r = (r1, r2, . . . , rd)
T and A ∈ Cm×(n+1),

we write
pA(r) = (pA(r1), pA(r2), . . . , pA(rd)) ∈ Cm × Cm × · · · × Cm.

Let n ≥ 2 and d ≥ 0 denote integers. Recall that Cnd [z] = {f(z) ∈ Cn[z] : deg f(z) = d}.
We identify Cnd [z] with a subset of Cn×(d+1) through the map ι : Cnd [z]→ Cn×(d+1),

f(z) = f [0] + f [1]z−1 + · · ·+ f [d]z−d ι→
[
f [0] f [1] · · · f [d]

]
. (B.1)

Within this identification, Cnd [z] ≡ ι (Cnd [z]) consists of those n× (d+1) complex matrices
whose last column is nonzero. Therefore, it is an open subset of Cn×(d+1). In the sequel,
we consider Cnd [z] a topological space by equipping it with the subspace topology. Consider
the subset

Ind [z] = {f(z) ∈ Cnd [z] : f(z) is irreducible } .

Thus, f(z) ∈ Idn[z] if and only if f(z) �= 0 for all z ∈ (C \ {0}) ∪∞. We have lemma B.1.

Lemma B.1. The subset Ind [z] is an open subset of Cnd [z].

Proof. Let

f0(z) = (f1(z), f2(z), . . . , fn(z))
T =

d∑
i=0

f [i]z−i

be a point in Ind [z]. We must produce an open subset O[z] ⊂ Ind [z] containing f0(z).
Without loss of generality, we assume that deg f1(z) = d (some polynomial fj(z), 1 ≤ j ≤
d, must have degree d). Let r0 = (r1, r2, . . . , rd)

T ∈ Cd denote the d roots of f1(z), viewed
as a polynomial in the indeterminate z−1 (that is, f1(z) = 0 if and only if z−1 = rj for

129
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some j) including multiplicities and arranged in some order, and let A0 ∈ C(n−1)×(d+1)

contain the last n− 1 rows of

F 0 = ι (f0(z)) =
[
f [0] f [1] · · · f [d]

]
∈ Cn×(d+1).

Let F = Cn−1 × Cn−1 × · · · × Cn−1 (d times). Because f0(z) ∈ Ind [z], we have

pA0 (r0) ∈ S = {(z1, z2, . . . ,zd) ∈ F : z1 �= 0, z2 �= 0, . . . ,zd �= 0} .

Since S is an open subset of F , and the map f : Cd×C(n−1)×(d+1) → F , f (r,A) = pA(r)
is continuous, there exist open subsets W ⊂ Cd and V ⊂ C(n−1)×(d+1) containing r0 and
A0, respectively, such that f (W × V ) ⊂ S. Furthermore, let a0 = (a0, a1, . . . , ad)

T ∈ Cd

denote the coefficients of the polynomial f1(z), that is, f1(z) = a0 + a1z
−1 + · · ·+ adz

−d.
Note that the roots of f1(z) (the vector r0) are included in W . Since ad �= 0, by the
proposition in [40, page 429] there exists an open subset U ⊂ Cd containing a0 such that
for all a ∈ U , the polynomial pa(z) has degree d and all roots contained in W (within a
suitable arrangement of the roots). Define the open set

O = { F ∈ Cn×(d+1) : F =
[
aT

A

]
, a ∈ U, A ∈ V } ,

and let O[z] = ι−1 (O), where the injective map ι is defined in (B.1). Then, f0(z) ∈ O[z],
O[z] is open and O[z] ⊂ Ind [z]�

Lemma B.2. Let 1 ≤ m ≤ n denote integers. Consider the linear map Φ : Cn → C

given by

Φ (c) = det
[

E
cTF

]
,

where E : (m− 1)×m has full row rank and F : n×m has full column rank. Then, the
map Φ is not trivial, that is, the dimension of the linear subspace kerΦ = {c : Φ(c) = 0}
is strictly less than n.

Proof. Let ET = QR denote a truncated QR-decomposition. That is, Q : m× (m− 1)
satisfies QHQ = Im−1 and R : (m − 1) × (m − 1) is an upper-triangular matrix with
nonzero diagonal entries. Let U = [Qu ] denote an unitary matrix. Then,

Φ(c) = 0 ⇔ det
[

E
cTF

]
= 0

⇔ det
[

E
cTF

]
U = 0

⇔ det
[
RT 0
∗ cTFu

]
= 0

⇔ cTFu = 0.

Since u �= 0 the vector v = Fu is nonzero. Thus, kerΦ =
{
c : cTv = 0

}
is a proper

subspace of Cn�

Proof of Lemma 3.1. Throughout the proof, we let C∗
d = C∗Q×(D1+1)×C∗Q×(D2+1)×· · ·×

C∗Q×(DP+1), where d = (D1, D2, . . . , DP )T . We start by proving that ι (Hd[z]) is an open
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subset of C∗
d. Consider the map  : C∗

d → CQ×P [z] which sends (H1,H2, . . . ,HP ) ∈ C∗
d to

the polynomial matrix H(z) = [h1(z)h2(z) · · · hP (z) ] satisfying Hp = T 0 (hp(z)). Let
H(z) = [h1(z)h2(z) · · · hP (z) ] denote a point in Hd[z] and let H = ι (H(z)). We must
show that there exists an open subset U ⊂ C∗

d containing H such that, for all G ∈ U , the
polynomial matrix (G) is column-reduced and irreducible. Since (H) is column-reduced,
we have rank ([h1[D1]h2[D2] · · · hP [DP ] ]) = P . Because det(A) is a continuous function
of A and, for B : Q×P , we have rank(B) = P if and only if det

(
BHB

)
> 0, we conclude

that there exists an open subset V ⊂ C∗
d containing H such that, for all G ∈ V , (G)

is a column-reduced polynomial matrix. Now, consider the map f : V → Cnd [z], where
d = ordH(z) = D1 + · · ·+DP and

n =
(

Q
P

)
=

Q!
P !(Q− P )!

,

given by

f(G) =


det ([(G)] (1, 2, . . . , P ))
det ([(G)] (1, 2, . . . , P + 1))

...
det ([(G)] (Q− P + 1, . . . , Q))

 .

Here, for a P -tuple of indexes 1 ≤ i1 < i2 < · · · < iP ≤ Q, the symbol [(G)](i1, i2, . . . , iP )
denotes the P × P polynomial submatrix of (G) lying in the rows i1, i2, . . . , iP . In
words, f(G) consists of all P × P minors of the polynomial matrix (G). Notice that,
indeed, f(V ) ⊂ Cnd [z], that is, deg (G) = d for all G ∈ V , because for each G ∈ V the
polynomial matrix (G) is column-reduced. Furthermore, (G) is irreducible if and only if
f(G) ∈ Ind [z]. Since f is clearly continuous, f(H) ∈ Ind [z], and by lemma B.1 the set Ind [z]
is open in Cnd [z], we conclude that there exists an open subset U ⊂ V containing H such
that f(U) ⊂ Ind [z]. That is, for all G ∈ U , the polynomial matrix (G) is column-reduced
and irreducible. This shows that ι (Hd[z]) is an open subset of C∗

d.
We now prove that ι (Hd[z]) is a dense subset of C∗

d. We start by claiming that for
given H ∈ C∗

d and ε > 0 there exists a G ∈ C∗
d such that ‖H −G‖ < ε, G(z) =  (G) is

irreducible, and deg gqp(z) = deg hqp(z) if hqp(z) �= 0 and deg gqp(z) ≤ 0 otherwise. Here,
hqp(z) and gqp(z) denote the (q, p)th polynomial entry of H(z) and G(z), respectively.
We prove this by induction on P . We start with P = 1. Let h(z) =  (H) and write
h(z) = (h1(z), h2(z), . . . , hQ(z))

T . Recall that Q > P = 1. We assume that none of the
entries of h(z) are zero (otherwise, add a positive constant less than ε to a zero entry
and we are done because this change makes the perturbed polynomial vector irreducible).
Furthermore, we can assume that all polynomial entries of h(z) have degree greater than or
equal to 1 (otherwise, h(z) is already irreducible). Now, it is clear that by perturbing the
roots of the polynomial h2(z) (thereby its coefficients) the polynomials h1(z) and h2(z) can
be made coprime, that is, without any common root. Furthermore, this coprimeness can
be achieved with perturbations (of the roots of h2(z)) as small as wanted. Also, changing
the roots of deg h2(z) does not change its degree. Let h′2(z) denote such a perturbation
of h2(z) making g(z) = (h1(z), h′2(z), h3(z), . . . , hQ(z))

T satisfy ‖H −G‖ < ε, where
G = T 0 (g(z)). Since h1(z) and h′2(z) are coprime, g(z) �= 0 for all z ∈ (C \ {0}) ∪ ∞,
because h1(z) and h′2(z) cannot vanish simultaneously. Thus g(z) is irreducible. Assume
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now the hypothesis holds for P = P ′ and consider the case P = P ′ + 1. Let H =
(H1,H2, . . . ,HP ) ∈ C∗

d and ε > 0 be given. Let H(z) =  (H) and write

H(z) =


A(z)
b(z)T

c(z)T

D(z)

 ,

where A(z) has dimensions (P − 1)× P , b(z)T and c(z)T denote row polynomial vectors
and D(z) is a polynomial matrix which is empty if Q = P +1. By adding a small positive
constant in every zero entry of A(z), if any, we may assume that each entry in A(z) is
nonzero. Thus, none of the rows of A(z) is zero and we may apply the hypothesis to the
transpose of A(z), that is, A(z)T (because A(z)T is a tall matrix with nonzero columns).
Thus, by hypothesis, there exists a perturbation A′(z)T of A(z)T such that A′(z)T is
irreducible and

H ′(z) =


A′(z)
bT (z)
cT (z)
D(z)

 =
[
h′
1(z) h′

2(z) · · · h′
P (z)

]

satisfies ‖H −H ′‖ < ε/2, where H ′ = (H ′
1,H

′
2, . . . ,H

′
P ) with H ′

p = T 0

(
h′
p(z)

)
. Also,

deg h′qp(z) = deg hqp(z) if hqp(z) �= 0 and deg h′qp(z) ≤ 0 otherwise. Define two P × P

polynomial submatrices of H ′(z) as

∆1(z) =
[
A′(z)
b(z)T

]
∆2(z) =

[
A′(z)
c(z)T

]
.

If the polynomial ∆1(z) = det (∆1(z)) does not have roots, then ∆1(z) (hence, H ′(z)) is
irreducible and we can take G = H ′. Otherwise, let {z1, z2, . . . , zr} denote the distinct
roots of the polynomial ∆1(z), that is, ∆1(z) = 0 if and only if z = zj for some j. Without
loss of generality, we assume that all entries of c(z) = (c1(z), c2(z), . . . , cP )

T are nonzero
(otherwise, add a small positive constant to each zero entry). Thus, 0 ≤ dp = deg cp(z) ≤
Dp. Consider the map Φ : Cd → Cr, d = (d1 + 1) + · · ·+ (dP + 1), given by

c = (c1[0], . . . , c1[d1]; . . . ; cP [0], . . . , cP [dP ])
T �→ Φ (c) =


Φ1(c)
Φ2(c)

...
Φd(c)

 ,

where

Φi(c) = det
[

A′ (zi)
c1[0] + · · ·+ c1[d1]z−d1i · · · cP [0] + · · ·+ cP [dP ]z

−dP
i

]
.

Rewrite the linear map Φi as

Φi(c) = det
[
A′(zi)
cTF i

]
,
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where

F i =

 1 z−1
i · · · z−d1i

. . .
1 z−1

i · · · z−dP
i


T

.

Notice that A′(zi) has full row rank (because A′(z)T is irreducible) and F i has full column
rank (by simple inspection). Thus, we find ourselves in the conditions of lemma B.2.
We conclude that kerΦi is a linear subspace of dimension strictly less than d. Thus,
K = ∪ri=1kerΦi is a nowhere dense subset of Cd. This means that given any c ∈ Cd

there is another point c′ arbitrarily close to c such that c′ �∈ K. Recall that c(z) =
(c1(z), c2(z), . . . , cP (z))

T and write cp(z) = cp[0] + cp[1]z−1 + · · ·+ cp[dp]z−dp . Define the
vector c = (c1[0], . . . , c1[d1]; . . . ; cP [0], . . . , cP [dP ])

T . Choose

c′ =
(
c′1[0], . . . , c

′
1[d1]; . . . ; c

′
P [0], . . . , c

′
P [dP ]

)T
such that ‖c− c′‖ < ε/2, c′p[dp] �= 0 and c′ �∈ K. Let c′p(z) = c′p[0] + c′p[1]z−1 +
· · · + c′p[dp]z−dp and c′(z) = (c′1(z), c′2(z), . . . , c′P (z))

T . Notice that we have deg c′p(z) =
deg cp(z). Let

G(z) =


A′(z)
b(z)T

c′(z)T

D(z)

 =
[
g1(z) g2(z) · · · gP (z)

]
.

Then, G(z) is irreducible because the minors ∆′
1(z) = det ∆′

1(z) and ∆′
2(z) = det ∆′

2(z),
where

∆′
1(z) =

[
A′(z)
b(z)T

]
∆′

2(z) =
[

A′(z)
c′(z)T

]
,

do not vanish simultaneously (we made our choices in order to guarantee that when-
ever ∆′

1(z) vanishes, ∆
′
2(z) does not). Moreover, let G = (G1,G2, . . . ,GP ) with Gp =

T 0

(
gp(z)

)
. Then,

‖H −G‖ ≤
∥∥H −H ′∥∥+ ∥∥H ′ −G

∥∥ < ε/2 + ε/2 = ε.

This proves the claim. We resume the proof that ι (Hd[z]) is a dense subset of C∗
d. Let

H = (H1,H2, . . . ,HP ) ∈ C∗
d and ε > 0 be given. We must show that there exists

G(z) ∈ Hd[z] such that ‖H − ι (G(z))‖ < ε. The polynomial matrix H(z) is column-
reduced if

rank [h1[D1]h2[D2] · · · hP [DP ] ] = P, (B.2)

where hp[Dp] stands for the last column of the matrix Hp. Thus, if H(z) is not already
column-reduced we can perturb the last columns of Hp in order to make (B.2) hold.
Furthermore, this perturbation can be made as small as wanted. All said, we can find H ′ ∈
C∗

d such that ‖H −H ′‖ < ε/2 and  (H ′) is column-reduced. In the first part of this proof,
it was shown that the subset of those matrices G ∈ C∗

d such that (G) is column-reduced,
is an open subset of ∈ C∗

d. Thus, there exists an open subset V ⊂ C∗
d containing H ′ such

that (G) is column-reduced for all G ∈ V . Shrinking V (if necessary) we can further
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assume that ‖H ′ −G‖ < ε/2 for all G ∈ V . By our claim, we can find G ∈ V such that
(G) is irreducible. Since

‖H −G‖ ≤
∥∥H −H ′∥∥+ ∥∥H ′ −G

∥∥ < ε/2 + ε/2 = ε,

the proof is finished�

B.2 Proof of Lemma 3.2

We will need the auxiliary lemmas B.3 and B.4. They are easy coordinate-free extensions
of known results in Euclidean spaces to the context of linear spaces.

Lemma B.3. Let V be a finite-dimensional vector space equipped with an inner-product
denoted 〈, 〉. For X ∈ V , we let |X| =

√
〈X,X〉 denote its norm. Let Xn denote a

sequence of random vectors in V . Then Xn
P→ 0 if and only if |Xn| P→ 0.

Proof. Assume Xn
P→ 0. Let F1, . . . , Fm denote an orthonormal basis for V . Let

ω1, . . . , ωm denote the corresponding dual basis in V ∗, that is, ωi(Fj) = δ[i − j]. Thus,
ωi = F %i , or, equivalently, ωi(X) = 〈X,Fi〉 for any X ∈ V . Notice that

|X| =

√√√√ m∑
i=1

ωi(X)2, (B.3)

for all X ∈ V . Now, Xn
P→ 0 implies, by definition, that ωi(Xn)

P→ 0 for each i = 1, . . . , n.
Since f(x) = x2 is continuous, theorem 2.1.4 in [37, page 51] asserts that ωi(Xn)2 =
f (ωi(Xn))

P→ f(0) = 0 for each i. By repeated use of theorem 2.1.3 [37, page 50], we have
an =

∑m
i=1 ωi(Xn)

2 P→ 0. Finally, because g(x) =
√
x is continuous, theorem 2.1.4 in [37,

page 51] shows that |Xn| = g(an)
P→ g(0) = 0.

Now, for the reverse part, assume that |Xn| P→ 0. Let σ ∈ V ∗. By definition, we must
show that σ(Xn)

P→ 0. Let ω1, . . . , ωm be as above and write σ = c1ω1 + · · · + cmωm
for some constants ci ∈ R. From theorem 2.1.3 [37, page 50], it suffices to show that
ωi(Xn)

P→ 0, for each i, that is, for every ε > 0, we have Prob{|ωi(Xn)| > ε} → 0, as
n→∞. But, from (B.3), we have |ωi(Xn)| ≤ |Xn|. Thus,

Prob{|ωi(Xn)| > ε} ≤ Prob{|Xn| > ε} → 0�

Lemma B.4. Let Xn and Yn denote sequences of random vectors in the finite-dimensional
vector space V . Let X denote a random vector in V . If Xn

d→ X and Yn −Xn
P→ 0, then

Yn
d→ X.

Proof. Let σ ∈ V ∗. By definition, we must show that σ(Yn)
d→ σ(X). By hypothesis, we

have σ(Xn)
d→ σ(X) and σ(Yn)− σ(Xn)

P→ 0. Notice that σ(Xn), σ(Yn) and σ(X) denote
real random variables. Apply [37, corollary 2.3.1, page 70]�

Proof of Lemma 3.2. By symmetry, it suffices to prove either the sufficiency of the
necessity part of the lemma. Assume that F (xn) ∼ an − AN (0,Σ). We show that
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G(xn) ∼ an − AN (0,Σ), that is, anG(xn)
d→ N (0,Σ). In view of lemma B.4, it suffices

to prove that anG(xn) − an F (xn)
P→ 0. From lemma B.3, this is equivalent to showing

that, for given ε > 0, we have Prob{|anG(xn) − anF (xn)| > ε} → 0, as n → ∞. Let
ε > 0 be given. Let U = Bλ(p), where 0 < λ < ε, denote a geodesic ball such that
F |U = G|U = Exp−1

p |U . We recall that we have d(p, x) = |Exp−1
p (x)| for all x ∈ U , see [16,

theorem 2.92, page 89]. Since xn
P→ p, we have Prob{xn �∈ U} = Prob{d(xn, p) ≥ λ} → 0,

as n→∞. Thus, we have Prob{|anG(xn)− anF (xn)| > ε} ≤ Prob{xn �∈ U} → 0�

B.3 Proof of Lemma 3.3

We start by establishing the auxiliary lemma B.5.

Lemma B.5. Let xn ∼ an −AN (p,Σ) and let F : M → TpM denote a linearization of

M at p. Then, a2n d(xn, p)
2 − a2n |F (xn)|2

P→ 0.

Proof. Let ε > 0 be given. We must show that Prob
{
|a2n|F (xn)|2 − a2nd(xn, p)

2| > ε
}
→

0, as n → ∞. Let U = Bλ(p), where 0 < λ < ε, denote a geodesic ball such that
F |U = Exp−1

p |U . For x ∈ U , we have the equality d(x, p) = |Exp−1
p (x)|, see [16, theorem

2.92, page 89]. Thus,

Prob
{
|a2n|F (xn)|2 − a2nd(xn, p)

2| > ε
}
≤ Prob {d(xn, p) ≥ λ} → 0�

Proof of Lemma 3.3. Let the inner-product gp : TpM × TpM → R induce the inner-
product g%p : T ∗

pM × T ∗
pM → R, by letting g%p(ω, σ) = gp(ω&, σ&), recall the discussion

in page 62. In the remaning of this proof, we denote g%p by 〈, 〉. Since Σ is a symmetric
bilinear form on the finite-dimensional vector space T ∗

pM , there exists an orthonormal basis
ω1, . . . , ωm of T ∗

pM that diagonalizes it, that is, Σ(ωi, ωj) = λ2i δ[i−j] and 〈ωi, ωj〉 = δ[i−j].
Notice that for any X ∈ TpM , we have

|X|2 =
m∑
i=1

ωi(X)2. (B.4)

Moreover,

tr Σ =
m∑
i=1

Σ(ωi, ωi) =
m∑
i=1

λ2i . (B.5)

Define the random vector xn ∈ Rm by xn = an (ω1 (F (xn)) , ω2 (F (Xn)) , . . . , ωm (F (xn)))
T .

We claim that xn
d→ N (0,Λ), whereΛ = diag

(
λ21, λ

2
2, . . . , λ

2
m

)
, that is, tTx d→ N (0, tTΛt),

for all t ∈ Rm, see [37, theorem 5.1.8, page 284]. Let t = (t1, t2, . . . , tm)
T ∈ Rm be given

and define the covector ω = t1ω1 + t2ω2 + · · ·+ tmωm. Then,

tTxn = ω (anF (xn))
d→ N (0,Σ(ω, ω)) = N

(
0, tTΛt

)
.

In the sequel, we let z d= N (0,Λ). Note that, from (B.4),

‖xn‖2 = a2n

m∑
i=1

ωi (F (xn))
2 = a2n|F (xn)|2.
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Since the function f : Rm → R, f(x) = ‖x‖2, is continuous, and xn
d→ z, we have

a2n |F (xn)|2 = ‖xn‖2 = f (xn)
d→ f (z) = ‖z‖2 , (B.6)

by [37, theorem 5.1.5, page 281]. Letting z
d= ‖z‖2, we see, from (B.5), that E {z} =

tr(Λ) = trΣ. Now, from lemma B.5, we have a2n d(xn, p)
2 − a2n |F (xn)|2

P→ 0. Thus,
from (B.6) and [37, corollary 2.3.1, page 70], we conclude that a2n d(xn, p)

2 d→ z�

B.4 Proof of Lemma 3.4

Lemma B.6. Let V denote a finite-dimensional vector space equipped with an inner-
product 〈, 〉. As usual, we let |Y | =

√
〈Y, Y 〉. If Xn

d→ X, where X denotes some random
vector, then the sequence Xn is bounded in probability. That is, for every ε > 0, there exists
a constant C > 0 and an integer N such that n ≥ N implies Prob{|Xn| < C} > 1− ε.

Proof. Let F1, . . . , Fm denote an orthonormal basis for V . Let ω1, . . . , ωm denote the
corresponding dual basis in V ∗. Thus, for any Y ∈ V , we have 〈Y, Fi〉 = ωi(Y ), and, as a
consequence,

|Y |2 =
m∑
i=1

ωi(Y )2.

Let ε > 0 be given. By hypothesis, ωi(Xn)
d→ ωi(X), for each i. By invoking [37, theorem

2.3.2, page 67] on the sequence of real random variables ωi(Xn), we see that there exists an
integerNi and a constant Ci > 0 such that n ≥ Ni implies Prob {|ωi(Xn)| < Ci} > 1−ε/m.
Let N = max {N1, . . . , Nm} and C =

√
C2
1 + · · ·+ C2

m. Thus, n ≥ N implies

Prob {|Xn| < C} = Prob
{
|Xn|2 < C2

}
≥ Prob

{
|ω1(Xn)|2 < C2

1 , . . . , |ωm(Xn)|2 < C2
m

}
≥ 1− ε�

Lemma B.7. Let V denote a finite-dimensional vector space. Let Xn denote a sequence of
random vectors in V . Assume that Xn ∼ an−AN (0,Σ), where an → +∞ and Σ ∈ T2(V ).
Then, Xn

P→ 0.

Proof. Let σ ∈ V ∗. By definition, we must show that σ(Xn)
P→ 0. Notice that σ(Xn)

denotes a sequence of real random variables. By hypothesis, anXn
d→ N (0,Σ). Thus,

anσ(Xn)
d→ N (0,Σ(σ, σ)). Now, apply [37, theorem 2.3.4, page 70]�

Proof of Lemma 3.4. By definition, we must show that i) the sequence F (xn) converges
in probability to F (p), and ii) for any linearization H : N → TF (p)N we have H(F (xn)) ∼
an −AN (0, F∗Σ).
i) To prove that F (xn)

P→ F (p) we must show that, for any given λ > 0, we have
Prob {d(F (xn), F (p)) > λ} → 0 as n→∞. Let λ > 0 be given and choose geodesic balls
U = Bδ(p) ⊂ M and V = Bε(F (p)) ⊂ N centered at p and F (p), respectively, such that



B.4 Proof of Lemma 3.4 137

0 < ε < λ and F (U) ⊂ V . Since, by hypothesis, xn
P→ 0, we have Prob {d(xn, p) ≥ δ} → 0.

Thus,

Prob {d(F (xn), F (p)) > λ} ≤ Prob {xn �∈ U} = Prob {d(xn, p) ≥ δ} → 0.

ii) Let G : M → TpM and H : N → TF (p)N denote linearizations of M (at p) and
N (at F (p)), respectively. We start by showing that

anF∗ (G(xn))
d→ N (0, F∗Σ) , (B.7)

where F∗ : TpM → TF (p)N denote the push forward linear (derivative) mapping induced

by the smooth map F : M → N . To prove this, we must show that anω (F∗ (G(xn)))
d→

N (0, (F∗Σ) (ω, ω)), for any given covector ω in the dual space T ∗
F (p)N . By hypothesis, for

any σ ∈ T ∗
pM , we have

anσ (G(xn))
d→ N (0,Σ(σ, σ)) . (B.8)

Recall that F ∗ : T ∗
F (p)N → T ∗

pM denotes the pull back map induced by the linear map
F∗ : TpM → TF (p)N , see (3.25) in page 62. Taking σ = F ∗ω in (B.8) we conclude that

anω (F∗(G(xn))) = an (F ∗ω) (G(xn))
d→ N (0,Σ (F ∗ω, F ∗ω)) = N (0, (F∗Σ) (ω, ω)) ,

where the equality Σ (F ∗ω, F ∗ω) = (F∗Σ) (ω, ω) follows from the definition of the push
forward map F∗ : T2 (TpM)→ T2

(
TF (p)N

)
, see (3.26) in page 62. Thus, (B.7) holds.

Our next step consists in proving that

anH(F (xn))− anF∗ (G(xn))
P→ 0. (B.9)

According to lemma B.3, we must show that, for any given α, β > 0, there exists an
integer N such that

n ≥ N ⇒ Prob {|anH(F (xn))− anF∗(G(xn))| < α} > 1− β. (B.10)

Let α, β > 0 be given. Since anG(xn)
d→ N (0,Σ), lemma B.6 asserts the existence of an

integer N1 and a constant C > 0 such that

n ≥ N1 ⇒ Prob {|anG(xn)| < C} > 1− β

2
. (B.11)

Choose geodesic balls U = Bδ(p) ⊂M and V = Bε(F (p)) ⊂ N such that

F (U) ⊂ V, Exp−1
p |U = G|U , Exp−1

F (p)|V = H|V . (B.12)

Expressing the smooth map F : M → N with respect to normal coordinates [7, theorem
6.6, page 339] centered at p and F (p) and supported on U and V , respectively, it is easily
seen that

Exp−1
F (p)

(
F

(
Expp (Xp)

))
− F∗ (Xp) = o (|Xp|) , (B.13)

for Xp ∈ TBδ (F (p)) = {Xp ∈ TpM : |Xp| < δ}. Thus, there exists 0 < λ < δ such that

|Xp| < λ ⇒ |Exp−1
F (p)

(
F

(
Expp(Xp)

))
− F∗ (Xp) | <

α

C
|Xp|. (B.14)
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By hypothesis, G(xn) ∼ an − AN (0,Σ). Thus, from lemmas B.7 and B.3, we see that
|G(xn)| P→ 0. Choose N2 such that

n ≥ N2 ⇒ Prob {|G(xn)| < λ} > 1− β

2
. (B.15)

From (B.11) and (B.15) we conclude that

n ≥ N = max {N1, N2} ⇒ Prob {|anG(xn)| < C, |G(xn)| < λ} > 1− β.

Moreover, if |anG(xn)| < C and |G(xn)| < λ we have

|anH(F (xn))− anF∗(G(xn))| = an|H(F (xn))− F∗(G(xn))|
< an

α

C
|G(xn)| (B.16)

< α.

In (B.16), we used the properties in (B.14) and (B.12). Thus, (B.10) holds.
From (B.7), (B.9), and lemma B.4, we conclude that H(F (xn)) ∼ an−AN (0, F∗Σ) �

B.5 Proof of Lemma 3.5

Since a piecewise regular curve is a finite concatenation of smooth segments, we may
assume without loss of generality that the curve q : I →M/G, where I = [a, b] is smooth.

We start by establishing the uniqueness of the curve p(t). That is, assume the existence
of two smooth curves p1 : I → M and p2 : I → M such that pi(a) = x, ṗi(t) ∈ Hpi(t)M

and ρ(pi(t)) = q(t) for all t ∈ I, and i = 1, 2. Let A = {t ∈ I : p1(t) = p2(t)}. Our
goal is to prove that A = I. We show this by proving that A is open and closed in I.
This imply that A is a connected component of I (note that A is non-empty because
a ∈ A). Thus, A = I. We start by showing that A is open. Let m = dimM and
n = dimN . Let t0 ∈ A. Choose (cubical) coordinates U,ϕ of p1(t0) = p2(t0) and V, ψ

of q(t0) = ρ(p1(t0)) = ρ(p2(t0)) such that ϕ(U) = Cmε (0) = {(x1, . . . , xm) : |xi| < ε},
V = Cnε (0), ϕ(pi(t0)) = (0, 0, . . . , 0), ψ (q(t0)) = (0, 0, . . . , 0), and the map ρ|U is given in
these local coordinates by ρ̂ (x1, x2, . . . , xm) = (x1, x2, . . . , xn).

Let q̂(t) = ψ (q(t)) = (q̂1(t), . . . , q̂n(t)) denote the curve q(t) with respect to the
coordinates V, ψ. Similarly, let p̂i(t) = ϕ (pi(t)) and write p̂i(t) = (ai(t), bi(t)), where
ai(t) = (ai1(t), . . . , ain(t)) and bi(t) =

(
bi1(t), . . . , bi(m−n)(t)

)
. Note that p̂i(t) and q̂(t) are

defined on an open subset of I containing t0. Let

g(y) = g (y1, . . . , yn) =
[
g11(y) g12(y)
g21(y) g22(y)

]
,

where y ∈ ϕ(U), denote the Riemannian tensor in the coordinates U,ϕ. Here, g11 : n× n

and g22 : (m − n) × (m − n). Thus, we are abandoning temporarily (within this proof)
our notation style. We do not write matrices or vectors in boldface type and adhere to
the notation in [7]. By hypothesis, we have ρ(pi(t)) = q(t). Thus, aij(t) = q̂j(t), for j =
1, . . . , n. Also, by hypothesis, ṗi(t) ∈ Hpi(t)M . Thus, g21(p̂(t))ȧi(t) + g22(p̂i(t))ḃi(t) = 0,
that is, ḃi(t) = −g22 (ai(t), bi(t))−1 g21 (ai(t), bi(t)) ȧi(t). Using ai(t) = q̂(t), leads to

ḃi(t) = −g22 (q̂(t), bi(t))−1 g21 (q̂(t), bi(t)) ˙̂q(t). (B.17)
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Thus, b1(t) and b2(t) must agree within an subset of I containing t0, because they are both
determined by the solution of the same system of ordinary differential equations (B.17) and
b1(t0) = b2(t0) by hypothesis (see the invoked uniqueness result for ordinary differential
equations in [7, theorem 4.1, page 131], for exampe). Thus, A is open. Since the defining
conditions of A are continuous, A is also closed.

We now establish the existence of p(t). First, we see that two horizontal curves in M

which overlap in M/G can be “glued” together to produce an extended horizontal curve.
More precisely, let p1 : [a1, b1] → M and p2 : [a2, b2] → M denote two smooth curves
such that a1 < a2 < b1 < b2 and ρ(p1(a2)) = ρ(p2(a2)), that is, p1(a2) and p2(a2) are in
the same orbit. Let g be the unique element in the group G satisfying p2(a2) · g = p1(a2).
Since the map θg : M → M , x �→ x · g, is an isometry, the curve p′2 : [a2, b2] → M

given by p′2(t) = θg(p2(t)) is also horizontal. By the uniquess result above, we see that
p′2(t) = p1(t) for all t ∈ [a2, b1]. All said, the curves p1(t) and p2(t) can be glued to
obtain the “bigger” horizontal curve p : [a1, b2]→M where p(t) = p1(t) if t ∈ [a1, b1] and
p(t) = p′2(t) if t ∈ [a2, b2]. Now, for each s ∈ I, let ps : Is = (as, bs) → M denote any
horizontal curve satisfying ρ(ps(t)) = q(t) for t ∈ Is. Notice that, for each s, the curve ps
exists thanks to the the existence of local solutions to the system of ordinary differential
equations in (B.17). The collection of open intervals {Is : s ∈ I} cover the compact set
I. Thus, there exists a finite subcover, say, {Is1 , . . . , Isk}. Now, glue the corresponding
curves ps1 , . . . , psk �

B.6 Proof of Lemma 3.6

We prove the existence of U , V , the implicit mapping Z ∈ U �→ (λ(Z), q(Z)) ∈ V and its
differentiability, by using a re-statement of the well-known Implicit Function Theorem in
the context of differentiable manifolds.

Fact. Let A,B and C denote smooth manifolds, such that dimB = dimC. Let F :
A × B → C denote a smooth mapping. For a ∈ A, we define Fa : B → C as Fa(b) =
F (a, b). Let (a0, b0) ∈ A × B and define c0 = F (a0, b0). If Fa0∗ : Tb0 (B) → Tc0 (C) is a
linear isomorphism then there exist open sets A0 ⊂ A and B0 ⊂ B containing a0 and b0,
respectively, such that, for each a ∈ A0 there exists one and only one b ∈ B0 satisfying
F (a, b) = c0. Moreover, the mapping a ∈ A0 �→ b(a) ∈ B0 is smooth.

The proof of this fact is omitted since it is trivial (invoke local coordinates and use the
classical version of the Implicit Function Theorem). In our case, we let A = Cn×n,
B = C×Sn−1

C
, C = Cn×R, and define the smooth mapping F : A×B → C, F (Z;λ, q) =(

Zq − λq, Im cH0 q
)
. Note that dimB = dimC+ dimSn−1

C
= 2+ (2n− 1) = 2n+ 1 equals

dimC = dimCn + dimR = 2n + 1, as required. Moreover, a0 = Z0, b0 = (λ0, q0), and
c0 = F (a0, b0) = 0. For the tangent space to B at b0, we have the identification

T(λ0,q0)

(
C× Sn−1

C

)
�

{
(∆, δ) ∈ C× Cn : Re qH0 δ = 0

}
. (B.18)

With this identification, the linear mapping Fa0∗ : Tb0(B)→ Tc0(C) is given by

FZ0∗ (∆, δ) =
(
Z0δ − λ0δ −∆q0, Im cH0 δ

)
.
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We must establish the injectivity of FZ0∗. Suppose FZ0∗ (∆, δ) = (0, 0), that is,

(Z0 − λ0In) δ = ∆q0 (B.19)

Im cH0 δ = 0. (B.20)

Multiplying both sides of (B.19) by qH0 (on the left), and using the facts qH0 Z0 = λ0q
H
0

and qH0 q0 = 1, yields ∆ = 0. Thus,

(Z0 − λ0In) δ = 0. (B.21)

Now, the rows of the Hermitean matrix Z0−λ0In span the orthogonal complement of q0
in Cn. To see this, let Z0 = QΛQH denote an EVD of Z0, where Q =

[
q0 q1 · · · qn−1

]
is unitary, and Λ = diag (λ0, λ1, . . . , λn−1) contains the eigenvalues. Then,

Z0 − λ0In = Q1 (Λ1 − λ0In−1) QH1 , (B.22)

where
Q1 =

[
q1 · · · qn−1

]
(B.23)

spans the orthogonal complement of q0 and Λ1 = diag (λ1, . . . , λn−1). Since λ0 is a simple
eigenvalue, Λ1 − λ0In−1 is non-singular, and the row space of Z0 − λ0In is identical to
the column space of Q1. With this fact in mind, (B.21) implies that δ is colinear with q0,
that is, there exists α ∈ C such that

δ = q0α. (B.24)

Multiplying both sides of (B.24) by cH0 (on the left) and recalling that cH0 q0 ∈ R − {0}
(by hypothesis) and cH0 δ ∈ R (by (B.20)), we have α = cH0 δ/cH0 q0 ∈ R. Multiplying both
sides of (B.24) by qH0 (on the left) yields

α = Reα = Re qH0 δ = 0,

where the last equality follows from (B.18). Thus, δ = 0, and the mapping FZ0∗ is
injective. This establishes the existence and differentiability of the mapping Z ∈ U �→
(λ(Z), q(Z)) ∈ V . Notice that since, in particular, q(Z) is continuous and q(Z0) = q0, we
may now restrict U (if necessary) in order to satisfy Re cH0 q(Z) > 0, for all Z ∈ U . Also,
since the eigenvalues of a matrix are continuous functions of its entries, we may restrict U
further (if necessary) to guarantee that λ(Z) is a simple eigenvalue of Z, for all Z ∈ U .

The differentiabiliy of the mappings being proved, we now compute the differentials
dλ and dq at Z0. From Zq = λq, we have (evaluating at Z0)

dZq0 +Z0dq = dλq0 + λ0dq. (B.25)

Multiplying both sides of (B.25) by qH0 (on the left), and using the facts qH0 Z0 = λ0q
H
0

and qH0 q0 = 1, yields
dλ = qH0 dZq0. (B.26)

Since dq ∈ Cn, we can write (uniquely)

dq = q0α+ v, (B.27)
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for some α ∈ C and vector v ∈ Cn orthogonal to q0 (qH0 v = 0). Note that Re qH0 dq = 0,
because

dq ∈ Tq0

(
Sn−1

C

)
�

{
δ ∈ Cn : Re qH0 δ = 0

}
.

Since, from (B.27), we have α = qH0 dq, it follows that α is a pure imaginary number.
From Im cH0 q = 0, we have

Im cH0 dq = 0, (B.28)

and using (B.27) in (B.28) yields

Im cH0 dq = Im
{
cH0 q0 α+ cH0 v

}
= −i (cH0 q0)α+ Im cH0 v = 0,

where we used the fact that cH0 q0 denotes a (nonzero) real number. Thus,

α = −i Im cH0 v

cH0 q0
. (B.29)

We now find a suitable expression for v. Plugging (B.26) in (B.25) and rearranging yields

(λ0In −Z0) dq +
(
qH0 dZq0

)
q0 = dZq0. (B.30)

Using (B.27) in (B.30) provides

(λ0In −Z0)v +
(
qH0 dZq0

)
q0 = dZq0. (B.31)

Now, since vHq0 = 0, the vector v must lie in the subspace spanned by the columns of Q1

in (B.23), that is, v = Q1Q
H
1 v. On the other hand, we have

(λ0In −Z0)
+ (λ0In −Z0) = Q1Q

H
1 ,

due to (B.22). Thus, multiplying both sides of (B.31) by (λ0In −Z0)
+ (on the left) and

recalling that QH1 q0 = 0 yields

v = (λ0In −Z0)
+ dZq0. (B.32)

Finally, using (B.29) and (B.32) in (B.27) gives

dq = (λ0In −Z0)
+ dZq0 − i

Im
{
cH0 (λ0In −Z0)

+ dZq0
}

cH0 q0
q0 �

B.7 Proof of Lemma 3.7

Note that two P 2-dimensional column vectors a and b are identical if and only if (eTp ⊗
eTq )a = (eTp ⊗ eTq )b for all 1 ≤ p, q ≤ P (recall that ep denotes the pth column of the
identiy matrix IP ). We use this to show E {x⊗ x} = iP . On one hand,

(eTp ⊗ eTq )E {x⊗ x} = E
{
eTp x · eTq x

}
= E {xp xq} = δ[p− q].

On the other hand,

(eTp ⊗ eTq )iP = (eTp ⊗ eTq )vec (IP ) = vec
(
eTp IP eq

)
= eTp eq = δ[p− q].
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We now turn our attention to corr {x⊗ x}. We have

corr {x⊗ x} = E
{
(x⊗ x) (x⊗ x)T

}
= E

{
xxT ⊗ xxT

}
=


E
{
x1x1xx

T
}

E
{
x1x2xx

T
}

· · · E
{
x1xPxx

T
}

E
{
x2x1xx

T
}

E
{
x2x2xx

T
}

· · · E
{
x2xPxx

T
}

...
...

. . .
...

E
{
xPx1xx

T
}

E
{
xPx2xx

T
}
· · · E

{
xPxPxx

T
}

 .

Thus, corr {x⊗ x} has P 2 blocks. Each block is P × P , and the (p, q) block is given by
E
{
xpxqxx

T
}
, for 1 ≤ p, q ≤ P . We now find a formula for each block. We begin with

those lying in the diagonal, that is, we focus on E
{
xpxpxx

T
}
, for given p. This is a P ×P

matrix with (k, l) entry given by E
{
x2pxkxl

}
, where 1 ≤ k, l ≤ P . If k = l and k = p,

then E
{
x2pxkxl

}
= E

{
x4p

}
= κp. If k = l but k �= p, then E

{
x2pxkxl

}
= E

{
x2px

2
k

}
=

E
{
x2p

}
E
{
x2k

}
= 1. The remaning entries (off-diagonal) can be easily seen to be zero, by

similar reasoning. Thus, the (p, p) block of corr {x⊗ x} can be written as

IP + (κp − 1)epeTp . (B.33)

We now focus on a block E
{
xpxqxx

T
}
with p �= q. This is a P×P matrix with (k, l) entry

given by E {xpxqxkxl}. Since p �= q, E {xpxqxkxl} is non-zero if and only if (k, l) = (p, q) or
(k, l) = (q, p). In both cases, the result is 1. Thus, the (p, q) (p �= q) block of corr {x⊗ x}
can be written as

epe
T
q + eqe

T
p . (B.34)

It is now a simple matter to check that the (p, p) and (p, q) (p �= q) blocks of IP 2 +KP +
iP i

T
P + diag

(
(κ1 − 3)e1eT1 , . . . , (κP − 3)ePeTP

)
coincide with those in (B.33) and (B.34),

respectively, once we notice that IP 2 = diag (IP , IP , . . . , IP ) (P copies of IP ),

KP =


e1e

T
1 e2e

T
1 · · · ePe

T
1

e1e
T
2 e2e

T
2 · · · ePe

T
2

...
...

. . .
...

e1e
T
P e2e

T
P · · · ePe

T
P

 ,

and

iP i
T
P =


e1e

T
1 e1e

T
2 · · · e1e

T
P

e2e
T
1 e2e

T
2 · · · e2e

T
P

...
...

. . .
...

ePe
T
1 ePe

T
2 · · · ePe

T
P

 �

B.8 Proof of Lemma 3.8

Within the scope of this proof only, the notation x[n;K] means x[n; (K,K, . . . ,K)T ] (P
copies of K) . Define the scalar random sequence λ[n] = θT (x[n;L] ⊗ x[n;L]), where θ

denotes a previously chosen deterministic vector. It is easily seen that λ[n] is a stationary
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L-dependent sequence. See [37, page 62] for the concept of m-dependent sequences. Thus,

√
N

(
1
N

N∑
n=1

λ[n]− µ

)
d→ N (0, ν2),

as N → ∞, where µ = E{λ[n]}, ν2 = ν0 + 2
∑L
l=1 νl and νl = cov{λ[n], λ[n − l]},

for l = 0, 1, . . . , L, see [37, theorem 2.8.1, page 108]. We now determine the constants
µ, ν0, ν1, . . . , νL. Note that the random vector x[n;K] belongs to the class R(κ⊗ 1K+1),
for all K ≥ 0. Thus, the mean value µ is given by

µ = θT E {x[n;L]⊗ x[n;L]} = θT iP (L+1).

To compute νl we start by noticing the identities x[n] = SP,L,l x[n;L+ l] and x[n− l] =
T P,l,L x[n;L+ l] (the matrices SP,L,l and T P,l,L were defined in page 87). It follows that

E{λ[n]λ[n− l]} = θT E
{
(x[n]⊗ x[n]) (x[n− l]⊗ x[n− l])T

}
θ

= θT S
[2]
P,L,l corr {x[n;L+ l]⊗ x[n;L+ l]} T [2]

P,l,L

T
θ

= θT S
[2]
P,L,lC(κ⊗ 1L+l+1)T

[2]
P,l,L

T
θ

= θT Σl θ,

and νl = E{λ[n]λ[n− l]} − µ2 = θT
(
Σl − µP (L+1)µ

T
P (L+1)

)
θ. Thus,

ν2 = ν0 + 2
L∑
l=1

νl = θT Σθ,

where we defined Σ = Σ0 + 2
∑L
l=1Σl − (2L+ 1)µP (L+1)µ

T
P (L+1). This proves that

θT

{
√
N

(
1
N

N∑
n=1

x[n;L]⊗ x[n;L]− µP (L+1)

)}
d→ θTz

where z
d= N (0,Σ). Because θ was chosen arbitrarily, the Cramér-Wold device permits

to conclude that

√
N

(
1
N

N∑
n=1

x[n;L]⊗ x[n;L]− µP (L+1)

)
d→ N (0,Σ) .

Now, since x[n; l] = D(l)x[n;L], we have

rN = D(l)[2]
(

1
N

N∑
n=1

x[n;L]⊗ x[n;L]

)
.

Consequently,
√
N ( rN −D(l)[2]µP (L+1)︸ ︷︷ ︸

µ(κ; l)

) d→ N ( 0,D(l)[2]ΣD(l)[2]
T︸ ︷︷ ︸

Σ(κ; l)

) ,

as claimed �
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B.9 Proof of Lemma 3.9

For a complex vector z = x+ iy, where x,y ∈ Rm, we have the identities x = ER[m]ı(z)
and y = EI [m]ı(z). Thus,

Re zzH = ER[m]ı(z)ı(z)TER[m]T +EI [m]ı(z)ı(z)TEI [m]T

Im zzH = EI [m]ı(z)ı(z)TER[m]T −ER[m]ı(z)ı(z)TEI [m]T .

This implies

ı
(
zzH

)
=

[
ER[m]⊗ER[m] +EI [m]⊗EI [m]
ER[m]⊗EI [m]−EI [m]⊗ER[m]

]
︸ ︷︷ ︸

E[m]

vec
(
ı(z)ı(z)T

)
.

Now,

ı
(
RN

)
=

1
N

N∑
n=1

ı
(
x[n; l]x[n; l]H

)
=

1
N

N∑
n=1

E[L] vec
(
ı (x[n; l]) ı (x[n; l])T

)
= E[L] vec

(
1
N

N∑
n=1

ı (x[n; l]) ı (x[n; l])T
)

= E[L] vec
(

1
N

N∑
n=1

y[n; l(2)]y[n; l(2)]T︸ ︷︷ ︸
RNy

)
, (B.35)

where we defined y[n] = ı (x[n]). Since y[n] belongs to the class RZ

(
κ(2)

)
, lemma 3.8

asserts that
vec

(
RNy

)
∼
√
N −AN

(
vec (IL) ,R

(
κ(2); l(2)

))
.

Thus, from (B.35), we have

ı
(
RN

)
∼
√
N −AN

(
E[L]vec (IL)︸ ︷︷ ︸

ı (2IL)

,E[L]R
(
κ(2); l(2)

)
E[L]T︸ ︷︷ ︸

C(κ; l)

)
. (B.36)

By definition, equation (B.36) means that RN ∼
√
N −AN (2IL,C(κ; l)) �

B.10 Proof of Lemma 3.10

Let E1p, . . . , Enp denote an orthonormal basis for HpM and let ωi = E%ip. Define Fi,(p) =
�∗(Eip). Note that F1,(p), . . . , Fn,(p) denotes an orthonormal basis for T,(p)N , because �

is a Riemannian submersion. Define σi,(p) = F %i,(p). Thus, σ1,(p), . . . , σn,(p) denotes an
orthonormal basis for T ∗

,(p)N . Thus, using (3.28), we have

trΥ =
n∑
i=1

Υ
(
σi,(p), σi,(p)

)
.
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But, it is easily seen that �∗σi,(p) = ωip. Thus,

trΥ =
m∑
i=1

Υ
(
σi,(p), σi,(p)

)
=

m∑
i=1

(�∗Σ)
(
σi,(p), σi,(p)

)
=

m∑
i=1

Σ
(
�∗σi,(p), �∗σi,(p)

)
=

m∑
i=1

Σ (ωip, ωip) �
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Appendix C

Derivative of ψ4, ψ3, ψ2 and ψ1

C.1 Derivative of ψ4

In this section, we calculate the derivative of ψ4 at an arbitrary point (Z0,Z1, . . . ,ZP ) of
its domain U4, denoted

Dψ4 (Z0,Z1, . . . ,ZP ) . (C.1)

Given our definitions for derivatives of complex mappings in page 60, and the theory of
differentials in [39], it is easily seen that (C.1) is the unique matrix satisfying

ı (dψ4) = Dψ4 (Z0,Z1, . . . ,ZP ) ı (dZ0, dZ1, . . . , dZP ) ,

or, equivalently,

ı (vec(dψ4)) = Dψ4 (Z0,Z1, . . . ,ZP )


ı (vec(dZ0))
ı (vec(dZ1))

...
ı (vec(dZP ))

 ,

where the symbol d stands for the differential. From (3.71), we have

dψ4 = dZ0 [Z1 · · · ZP ] Rs[0;d0]−1/2 +Z0 [ dZ1 · · · dZP ] Rs[0;d0]−1/2. (C.2)

Vectorizing both sides of (C.2) yields

vec (dψ4) =
[
Rs[0;d0]−1/2 [Z1 · · · ZP ]T ⊗ IQ Rs[0;d0]−1/2 ⊗Z0

]
︸ ︷︷ ︸

M (Z0,Z1, . . . ,ZP )


vec (dZ0)
vec (dZ1)

...
vec (dZP )

 .

(C.3)
Embedding both sides of (C.3), and using properties (3.21) and (3.23), gives

ı (dψ4) =  (M (Z0,Z1, . . . ,ZP )) ΠQD,D(D0+1),...,D(D0+1)


ı (vec(dZ0))
ı (vec(dZ1))

...
ı (vec(dZP ))

 . (C.4)

We recall that the permutation matrix Πm1,...,mk
was defined in page 60. Thus, by inspec-

tion of (C.4), the derivative of ψ4 at (Z0,Z1, . . . ,ZP ) is

Dψ4 (Z0,Z1, . . . ,ZP ) =  (M (Z0,Z1, . . . ,ZP )) ΠQD,D(D0+1),...,D(D0+1).

147
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C.2 Derivative of ψ3

In this section, we compute the derivative of ψ3 at an arbitrary point (Z0,Z1, . . . ,ZM )
of its domain U3, denoted Dψ3 (Z0,Z1, . . . ,ZM ). Express ψ3 in component mappings as
ψ3 = (ξ, ν1, . . . , νP ), where

ξ (Z0) = Z0 (C.5)

and
νp (Z1, . . . ,ZM ) = ϑp ◦ ηp (Z1, . . . ,ZM ) , (C.6)

for p = 1, . . . , P . It is clear that the derivative of ψ3 at the point (Z0,Z1, . . . ,ZM ) has
the block structure

Dψ3 (Z0,Z1, . . . ,ZM ) =


Dξ (Z0) 0
0 Dν1 (Z1, . . . ,ZM )
...

...
0 DνP (Z1, . . . ,ZM )

 .

From (C.5), we have trivially Dξ (Z0) = I2QD. From (C.6), it follows that

Dνp (Z1, . . . ,ZM ) = Dϑp (ηp (Z1, . . . ,ZM )) Dηp (Z1, . . . ,ZM ) . (C.7)

To compute Dϑp(Z) we further write ϑp = �p ◦ ζ, where

ζ(Z) = ZHZ (C.8)

and
�p(Z) =

√
D0 + 1vec−1 (q (Z;λmin (Z) ; sp)) . (C.9)

Thus, Dϑp(Z) = D�p (ζ(Z)) Dζ(Z). From (C.8),

dζ = (dZ)H Z +ZHdZ. (C.10)

Embedding both sides of (C.10), and using properties (3.20) and (3.21), yields

ı(dζ) = 
(
ZT ⊗ ID(D0+1)

)
C2MD(D0+1),D(D0+1) + 

(
ID(D0+1) ⊗ZH

)︸ ︷︷ ︸
Dζ(Z)

ı(dZ),

which directly exposes Dζ(Z). From (C.9), we have

vec (�p) (Z) =
√
D0 + 1 q (Z;λmin(Z); sp) .

Thus,
D�p(Z) = Dvec(�p)(Z) =

√
D0 + 1Dq (Z;λmin(Z); sp) .

We now turn to the derivative of ηp at the point (Z0,Z1, . . . ,ZM ), which is needed
in (C.7). Given (3.77), we have

vec
(
(dηp)

H
)
=



vec
(
ID0+1 ⊗ (dZ1)H

)
vec (ID0+1 ⊗ dZ1)

...
vec

(
ID0+1 ⊗ (dZM )H

)
vec (ID0+1 ⊗ dZM )


. (C.11)
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We recall that for A : m × n and B : p × q we have vec (A⊗B) = (G⊗ Ip) vec (B),
where G = (In ⊗Kq,m) (vec (A)⊗ Iq), see [39, page 48]. Using this property in (C.11)
yields

vec
(
(dηp)

H
)
= (I2M ⊗N )


vec

(
(dZ1)H

)
vec (dZ1)

...
vec

(
(dZM )H

)
vec (dZM )

 , (C.12)

where N = G ⊗ ID and G = (ID0+1 ⊗KD,D0+1) (vec (ID0+1)⊗ ID). Using proper-
ties (3.20), (3.21) and (3.23) in (C.12) gives

ı
(
vec

(
(dηp)

H
))

=  (I2M ⊗N )ΠD2,...,D2

(
IM ⊗

[
CD,D
I2D2

]) 
ı (dZ1)
ı (dZ2)

...
ı (dZM )

 .

Finally, using the fact that

ı
(
vec

(
(dηp)

H
))

= ı
(
(dηp)

H
)
= C2MD(D0+1),D(D0+1) ı (dηp) ,

we have

ı (dηp) = CT2MD(D0+1),D(D0+1) (I2M ⊗N )ΠD2,...,D2

(
IM ⊗

[
CD,D
I2D2

])
︸ ︷︷ ︸

Dηp (Z1, . . . ,ZM )


ı (dZ1)
ı (dZ2)

...
ı (dZM )

 .

C.3 Derivative of ψ2

In this section, we compute the derivative of ψ2 at an arbitrary point (z,Z0,Z1, . . . ,ZM )
of its domain U2, denoted Dψ2 (z,Z0,Z1, . . . ,ZM ). Due to (3.80), the derivative of ψ2

has the block structure

Dψ2 (z,Z0,Z1, . . . ,ZM ) =


Dτ (z,Z0) 0 · · · 0
Dυ1 (z,Z0) Dς (Z1) · · · 0

...
...

. . .
...

DυM (z,Z0) 0 · · · Dς (ZM )

 ,

where
υm (z,Z) = υ (z,Z)Zmυ (z,Z)H (C.13)

and
ς (Z) = υ (z,Z0)Zυ (z,Z0)

H . (C.14)

We start with Dτ (z,Z). Let Z be fixed and compute the differential dτ with respect
to z. Given (3.78), it can be shown that

dτ =
1
2
ZDiag

(
Re z − σ21D

)−1/2Diag (Re dz) . (C.15)
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Vectorizing both sides of (C.15) and simplifying leads to

vec (dτ) =
1
2

[
ID � ZDiag

(
Re z − σ21D

)−1/2 0
]

︸ ︷︷ ︸
O (z,Z)

ı (dz) . (C.16)

Here, for matrices A = [a1 a2 · · · an ] and B = [ b1 b2 · · · bn ] with the same number of
columns, the symbol A � B denotes their Khatri-Rao product [47],

A � B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · an ⊗ bn

]
.

From (C.16) we conclude that

ı (dτ) =
[
ReO (z,Z)
ImO (z,Z)

]
︸ ︷︷ ︸

P (z,Z)

ı(dz). (C.17)

Holding now z fixed and calculating the differential dτ with respect to Z in (3.78) yields,
after some computations,

ı (dτ) = 
(
Diag

(
Re z − σ21D

)1/2 ⊗ IQ

)
ı (dZ) . (C.18)

Thus, using (C.17) and (C.18), we have

Dτ (z,Z0) =
[

P (z,Z0) 
(
Diag

(
Re z − σ21D

)1/2 ⊗ IQ

) ]
. (C.19)

We now compute Dυm (z,Z0). Given (C.13), we have

dυm = dυZmυ
H + υZm(dυ)H .

As a consequence,

ı (dυm) = 
(
υ (z,Z)ZTm ⊗ ID

)
ı (dυ) +  (ID ⊗ υ (z,Z)Zm) ı

(
(dυ)H

)
=

[

(
υ (z,Z)ZTm ⊗ ID

)
+  (ID ⊗ υ (z,Z)Zm)CD,Q

]
︸ ︷︷ ︸

Q (z,Z,Zm)

ı (dυ) . (C.20)

From (C.20) we conclude that

Dυm (z,Z0) = Q (z,Z,Zm) Dυ (z,Z0) .

Now, given (3.79), and performing computations similar to those leading to (C.19), it can
be shown that

Dυ (z,Z0) =
[

S (z,Z0) 
(
IQ ⊗Diag

(
Re z − σ21D

)−1/2
)
CQ,D

]
,

where

S (z,Z) =
[
ReR (z,Z)
ImR (z,Z)

]
and

R (z,Z) = −1
2

[
ZDiag

(
Re z − σ21D

)−3/2 � ID 0
]
.

Finally, given (C.14), we have

Dς (Zm) = 
(
υ (z,Z0)⊗ υ (z,Z0)

)
.
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C.4 Derivative of ψ1

In this section, we compute the derivative of ψ1 at an arbitrary point (Z0,Z1, . . . ,ZM )
of its domain U1, denoted Dψ1 (Z0,Z1, . . . ,ZM ). Given (3.83), the derivative of ψ1 has
the block structure

Dψ1 (Z0,Z1, . . . ,ZM ) =


Dν (Z0) 0 · · · 0
Dξ (Z0) 0 · · · 0
0 I2Q2 · · · 0
...

...
. . .

...
0 0 · · · I2Q2


where

ν (Z) = λ (ρ (Z)) (C.21)

and
ξ (Z) = Q (ρ (Z) ; r1, . . . , rD) . (C.22)

We start by noticing that, due to (3.82), we have

Dρ (Z) =
1
2
(
I2Q2 +CQ,Q

)
.

Since

ν (Z) =


λ1 (ρ (Z))
λ2 (ρ (Z))

...
λD (ρ (Z))

 ,

it follows that

Dν (Z) =


Dλ (ρ (Z) ;λ1 (ρ (Z)) ; r1)
Dλ (ρ (Z) ;λ2 (ρ (Z)) ; r2)

...
Dλ (ρ (Z) ;λD (ρ (Z)) ; rD)

 Dρ (Z) .

We recall that the definition of Dλ (Z;λ; c) was introduced in page 82.
Similarly, due to (C.22) and (3.81), we have

vec (ξ(Z)) =


q (ρ (Z) ;λ1 (ρ (Z)) ; r1)
q (ρ (Z) ;λ2 (ρ (Z)) ; r2)

...
q (ρ (Z) ;λD (ρ (Z)) ; rD)

 .

Thus,

Dξ (Z) = ΠD,...,D


Dq (ρ (Z) ;λ1 (ρ (Z)) ; r1)
Dq (ρ (Z) ;λ2 (ρ (Z)) ; r2)

...
Dq (ρ (Z) ;λD (ρ (Z)) ; rD)

 Dρ (Z) ,

where the definition of Dq (Z;λ; c) is given in page 82.
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Appendix D

Proofs for chapter 4

D.1 Proof of Theorem 4.1

Before proving the intrinsic variance lower bound (IVLB), we need a technical lemma.

Lemma D.1. Let the sectional curvature of M be bounded above by C ≥ 0 on the geodesic
ball Bε(m). That is, K(Π) ≤ C, for all planes Π ⊂ TnM , n ∈ Bε(m). Suppose that√
Cε < T ≡

√
3/2 holds. Then, the function km : M → R, km(n) = 1

2d(m,n)2, is smooth
on Bε(m) and we have

|gradkm(n)| = d (m,n) (D.1)

Hess km (Xn, Xn) ≥
(
1− 2

3
Cd (m,n)2

)
|Xn|2, (D.2)

for all Xn ∈ TnM , and n ∈ Bε(m).

Proof. Use [32, theorem 4.6.1, page 193] together with the inequality t ctg(t) ≥ 1− 2
3 t

2,
for 0 ≤ t ≤ T �

Proof of Theorem 4.1We start by restating, in our notation, the line of proof from [27].
This goes, with minor modifications, nearly up to (D.7). We then conclude by manipu-
lating some classical inequalities and exploiting lemma D.1. Since ϑ has bias b, b(p) is a
global minimizer of ρp : M → R,

ρp(n) = Ep {kϑ(n)} =
∫
Ω
kϑ(ω)(n) f (ω; p) dµ,

hence, a stationary point of ρp. Thus,

Xb(p)ρp = 0, (D.3)

for any Xb(p) ∈ Tb(p)M . Let X ∈ T (M) and define φ : P → R, φ(p) = Xb(p)ρp. Thus,
φ ≡ 0. Note that

φ(p) =
∫
Ω
Xb(p)kϑ(ω)f(ω; p) dµ

=
∫
Ω
(ψω ◦ b) (p)f(ω; p) dµ, (D.4)
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where ψω : M → R, ψω(n) = dkϑ(ω)(Xn) and we recall that the symbol d denotes exterior
differentiation. Let Yp ∈ TpP . Given Ypφ = 0 and equation (D.4), we have∫

Ω
Yp (ψω ◦ b) f(ω; p) +Xb(p)kϑ(ω)Ypfω dµ = 0. (D.5)

Note that Yp (ψω ◦ b) = b∗ (Yp)ψω. By the rules of covariant differentiation,

b∗(Yp)ψω = b∗(Yp)
(
dkϑ(ω)(X)

)
=

(
∇b∗(Yp)dkϑ(ω)

)
(Xb(p)) + dkϑ(ω)

(
∇b∗(Yp)X

)
= Hess kϑ(ω)

(
Xb(p), b∗(Yp)

)
+∇b∗(Yp)Xkϑ(ω). (D.6)

Inserting (D.6) in (D.5) gives∫
Ω
Hess kϑ(ω)

(
Xb(p), b∗(Yp)

)
f(ω; p) +Xb(p)kϑ(ω)Yplωf(ω; p) dµ = 0. (D.7)

Here, we exploited the fact that∫
Ω
∇b∗(Yp)Xkϑ(ω)f(ω; p)dµ =

(
∇b∗(Yp)X

)
ρp = 0,

with the last equality following from (D.3). Moreover, in (D.7), we made use of the identity
Ypfω = Yplωf(ω; p).

Putting Xb(p) = b∗(Yp) in (D.7) implies∫
Ω
Hess kϑ(ω) (b∗(Yp), b∗(Yp)) f(ω; p) dµ = −

∫
Ω
b∗(Yp)kϑ(ω)Yplωf(ω; p) dµ. (D.8)

Hereafter, we assume |Yp| = 1 in (D.8). Using inequality (D.2) on the left-hand side
of (D.8) yields

0 ≤
(
1− 2

3
Cvarp(ϑ)

)
|b∗(Yp)|2 ≤

∫
Ω
Hess kϑ(ω) (b∗(Yp), b∗(Yp)) f(ω; p) dµ. (D.9)

On the other hand, the absolute value of the right-hand side of (D.8), can be bounded as∣∣∣∣∫
Ω
b∗(Yp)kϑ(ω)Yplωf(ω; p) dµ

∣∣∣∣ ≤ |b∗(Yp)|√varp(ϑ)
√
λp. (D.10)

To establish (D.10), define

α(ω, p) = b∗(Yp)kϑ(ω) = 〈 b∗(Yp), gradkϑ(ω)(b(p)) 〉

and let β(ω, p) = Yplω. Then, we have∣∣∣∣∫
Ω
α(ω, p)β(ω, p)f(ω; p) dµ

∣∣∣∣ ≤
√∫

Ω
α(ω, p)2f(ω; p) dµ

√∫
Ω
β(ω, p)2f(ω; p) dµ

(D.11)

≤ |b∗(Yp)|
√
varp(ϑ)

√
I (Yp, Yp) (D.12)

≤ |b∗(Yp)|
√
varp(ϑ)

√
λp. (D.13)
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In (D.11), we used the Cauchy-Schwarz inequality. To establish (D.12), we used the
definition of the Fisher information form (4.8) on the 2nd factor. To bound the 1st factor,
notice that

α(ω, p) ≤ |b∗(Yp)|
∣∣gradkϑ(ω)(b(p))∣∣ ,

by the Cauchy-Schwarz inequality. Now, use (D.1) and the definition of variance of ϑ
given in (4.10). Inequality (D.13) follows from (4.9). Inequalities (D.9) and (D.10) imply(

1− 2
3
Cvarp(ϑ)

)
√
σp ≤

√
varp(ϑ)

√
λp, (D.14)

by using the definition of σp in (4.11). If C = 0, then we have varp(ϑ) ≥ 1/ηp, where
ηp = λp/σp. If C > 0, then squaring both sides of (D.14) yields g (varp(ϑ)) ≤ 0, where
g(t) denotes the quadratic polynomial

g(t) =
4
9
C2t2 −

(
4
3
C + ηp

)
t+ 1.

Thus, varp(ϑ) ∈ [t1, t2], where t1 ≤ t2 denote the two real roots of g(t). In particular,

varp(ϑ) ≥ t1 =
4C + 3ηp −

√
ηp (9ηp + 24C)

8
3C

2
�
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