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Unconstrained minimization



Optimization problem:

minimize f(x)

Assumptions:

e f:R" - RU/{+00} is convex

e dom f = {x : f(x) < o0} is open

e f is closed

e f is twice continuously differentiable

e problem is solvable: dz*

f(a*) = p* = inf{f(x)



Example: quadratic (A > 0)
minimize x'Az+b'x+c
e dom f =R"

e closed

e bounded below iff b € span(A)



Example: log-sum-exp

. . L] —|— )
minimize log (Zzl e%i x+bz)

e dom f =R"
e closed

e bounded below iff 0 € co{a;}



Example: log barrier for polyhedron
minimize Y ., —log (b; — a, )
e dom f ={x : Ax < b}
e closed

e bounded below if there exists A > 0, >, Apar =0



Algorithm produces a minimizing sequence: 1, T2, X3, ... such that

f(x) | p*

Basic iteration of line-search algorithms: xp11 = x) + trdi
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e d; is the search direction

e {1 > 0 is the step size



Definition (Descent direction) dj, is a descent direction for f at a
non-stationary point x5 € dom f if

<Vf(33k), dk> <0

Example: d = —V f(x) is a descent direction because

(V (k). di) = — ||V f(zi)||” <0



Infinite number of choices for descent directions dj:

0 V f(zk)
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dp.

VY f () dy,

Important: if dj is a descent direction, then

Fio0 ¢ flag +tdr) < f(xg) for all t €]0, ]



Prototype of a a line-search algorithm:

1. initialization choose xy € dom f and tolerance € > (
set k=0

loop compute gr = Vf(xy)

if ||gk|| < € stop

compute descent direction dj
compute step size {y

update xpi+1 = Tg + trdg

3o s » Db
VY VYV VVVYyYy

k«— k+1 and return to loop
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Line 6 is called the line search subproblem

e exact line search:

by € argmin ¢(t) := f(ay + tdy)

e Armijo’s rule or backtracking line search (0 < a < 0.5,0 < 8 < 1):

t = 1 and while f(x), + tdy) > f(xx) + taV f(zg) ' dy do t := Bt
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Theorem (Convergence of steepest descent method) Let
xo € dom f and suppose there exists m > 0 such that

V2f(z) =mI forall x € St(zo) f-

Then,

T — T,
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Example:

o f: R =R
where
1
C =
1

e z*=(1,1) and k (VZf(2*)) =r > 1
1

o 79 =(4,2), e=10"5, o
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x = 1 (number of iterations: 1)
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k = 50 (number of iterations: 332)
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x = 100 (number of iterations: 637)
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Sequence { f(xk)} k>0

f(x,)

0 100 200 300 400 500 600 700
k (iteration number)
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Definition (rates of convergence) Let x; — z* (2, 2* € R™) with
xr 7 . We say

o i — x* linearly if

N

< r for all k£ sufficiently large

e 1 — x* superlinearly if

. *
|Zkt1 if | 0
|k — 2]
e r; — x* quadratically if
ok
Jr>0 [2k41 — 2 2” < r for all k sufficiently large

|z — ™|
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Examples:

1 .
T = (5) — 0 linearly
B 1
Y = ﬁ — 0 superlinearly
1 ok
2z = 4 (§> — 0 quadratically
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First few terms of the sequences. ..

k T Yk 2k

1 1 1 1

2150-1071 [ 251071 | 2.5-1071
3125-1071 [37-1072 | 1.6-10"2
4113-1001139-1073| 6.1-10"°
516.3-1072]32-107*| 9.3-10°10
6| 31-10721]21-107° ] 22.10°1
7116-10721]112-107% | 1.2.1038
8 | 7.8-1072 | 6.0-1078% | 3.5-10777
9139-10723 ] 26-10"° | 3.0-10"1°%4
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-120 |
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Under mild assumptions, the steepest descent method d = —V f(xx)
yields linear convergence
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Newton algorithm (first motivation):
e 1 Is the current iterate

e the 2nd order model of f centered at zj is

~ 1

fr(@) = flog) + Vf(ze) ' (z — zp) + §(w —ay) V2 f(z)(z — zp)

e minimize 2nd order model to obtain the next iterate xg1:
: n —1
Tra1 = argming fi(x) = xp+dr where dp = — [V2f(:ck)] Vf(xg)

Note: it is assumed that V2 f(z}) is nonsingular
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The algorithm
Tipt1 = Tk +d  with di = — [VQf(ZCk)]_l Vf(a:k)

is called the pure Newton algorithm
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Example: f : R — R, f(z) =e 2% +

1
2
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Newton algorithm (second motivation):
e Newton method for solving a system of nonlinear equations

Fl(xl,..., )

Ty 0
FQ(ZCl,...,Q?n) 0
X _ & Fx)=0

i

X Fn(:vl,...,a;n) =0

Lk4+1 — Tk — DF(:Uk)_lF(SUk)
Note: the inverse DF(x;)~ ! is supposed to exist

e the pure Newton algorithm corresponds to the special case
Vf(z)=0:
—1
Thp1 =z — [V f(zk)] Vi(zk)
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e The pure Newton algorithm x11 = x + dj, Is convergent only near
a solution

e [ he Newton direction

dp = — [V2f(ar)] " V()

is a descent direction for f at zj:
(i, Vf(xn)) = =Vf(an) " [V (@r)] " Vi) <0

e Use a line-search to make it globally convergent: xy11 = xp + txdi
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e The quantity

= V@) [V2f(@)] V(@) = /gl d

Is called the Newton decrement at z

e Property of the Newton decrement:

1

L) = f@)-min {10 + 0T 0+ L) T 0 <o)

e Affine invariant stopping criterion:

M (x) < e

e The Newton algorithm solves a sequence of unconstrained quadratic
problems
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10.
11.

initialization

loop

vV v v V. VvV vV v v Y

choose xg € dom f and tolerance ¢ > ()
choose 0 < a < 0.5 and 0 < <1 (Armijo)
set k=0
compute gr = Vf(xy)
compute Hj = VZf(z})
solve the linear system Hpdy = —gi
if g,;rl-lk_lgk = —g,;rdk < € stop
t=1
while f(xy +tdg) > f(xk) + tag, di
t— Ot
Th4+1 = Tk + tdg
k«— k+1 and return to loop
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Theorem (Convergence of Newton method) Let g € dom f and
suppose there exists m > 0 such that

Vif(z) = mlI forall x € Sy f-
Also assume that V*f(x) is Lipschitz continuous on Sy, f. Then,

rr — x°  quadratically.
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Example:

flz)=c'z— Zlog (b; — az-Tac)
i=1
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10*

f(x)-p’

Newton method

4 5
k (iteration number)

n =38, m=>50, lﬁ)(v2f(33*)) ~ 49
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f(x)-p’

Newton and gradient descent methods

0 50 100
k (iteration number)

n =38, m=>50, lﬁ)(v2f(£€*)) ~ 49
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f(x)-p’

Newton method

|
3 4 5
k (iteration number)

n =50, m = 250, k (V2f(z*)) ~ 253
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f(x)-p’

Newton and gradient descent methods

10

10

10

10 ° H

10" H

10" H

10 H

10

10

10—14

-10 | |

-12 |

100

200

300 400
k (iteration number)

500 600

n =50, m = 250, k (V2f(z*)) ~ 253
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10*

f(x)-p’

Newton method

5 6
k (iteration number)

n = 200, m =800, x (V2 f(z*)) = 777
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f(x)-p’

Newton and gradient descent methods

10° ! ! !
0 500 1000 1500 2000

k (iteration number)

n =200, m =800, x (V2 f(z*)) = 777
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Quasi-Newton BFGS algorithm
e BFGS = Broyden, Fletcher, Goldfarb and Shanno

e Newton method needs Hy, = V2 f(x}) at each iteration

e idea: instead, use an approximation B}
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A

T+l = Tk + trdg
** —1
“"" dk—l—l — —Bk+1gk+1
- _]. ““‘ Taagg
dy = =Dy, .g’f/v Tht2 = Th41 + h+1dk+1
Lk
>

e Initialization: By = I,, or a better guess

e Update: how to update By — Bp.1 ?
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Quadratic model m(x) for f(x) centered at xjy1:

m(z) = f(@x41) 4V (1) (@) + 5 (@ 1) Brga(w—oes)

“Nice” properties that By should possess:

e Vm(xy) = gr which leads to the secant equation

Brt1 (41 — k) = (gr+1 — k)

A\ . 7 \ 7
Ve N/

Sk Yk

e Bi1 > 0to ensure that di11 = —Bk_ilgk Is a descent direction

e Bii1 ~ By (f is C? implies V2 f(x) changes continuously with z)
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First two properties might conflict: for given s,y there exist no

Bk_|_1 > 0 such that Bk_|_18k = Yk
Example: s =1, yp = —1 implies By11 =y /s = —1

Fact. Let s,y € R™ be given with s £ 0. Then,
JB>=0:y=Bs < y's>D0.

T T
Proof (<): B = I, — 35— + 49 works.

s's y's

Note: if V2f(x) = 0 for all = then y,! s >0
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e Translate desired properties into an optimization problem:
minimize  ¢(B) := tr (B, /BB /?) —logdet (B, *BB;?) —n

subject to Bsp = yi
B >0

e ¢(B) is a “distance” measure between B and By:

»(B) > 0 with equality if and only if B = By

e Solution is

BkSkSTBk k !
Byy1 = By — bk TR

s,IBksk y,jsk
This rank-2 update is known as the BFGS update
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We can propagate directly the inverse W1 = Bk_jl:

Wit1 = (I — pesiyn ) Wi (I — pryesy, ) +prsesy
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10.

11.

initialization

loop

vV v v V. V. v VvY

choose xg €edomf, Wy >0 and € >0
choose 0 < @< 0.5 and 0 < <1 (Armijo)
set k=0
compute gr = Vf(xg)
if ||gk|| < € stop
compute search direction dip = —Wpigk
t=1
while f(xp +tdg) > f(xk) + tag, di
t— Ot
Ti4+1 = T + tdy
Wit = (I — prsiyy ) Wi (I — pryrsy, ) +
PrSkS, with pp = 1/y, s

k«— k41 and return to loop
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Theorem (Convergence of Quasi-Newton BFGS method) Let
xo € dom f and suppose there exists m > 0 such that

Vif(z) = mlI forall x € Sy f-
Also assume that V*f(x) is Lipschitz continuous on Sy, f. Then,

xr — x*  superlinearly.
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f(x,)-p’

Newton and Quasi-Newton BFGS methods

10°

10

10

10

10

10

10

-10

-12

10

-14

10

| |
2 4 6 8 10 12 14 16
k (iteration number)

n=38,m=50,r(V2f(z*)) ~ 786
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Newton, Quasi-Newton BFGS and gradient descent methods

f(x)-p’
=
o
T
|

| |
0 20 40 60 80 100 120 140
k (iteration number)

n=38,m=050,r(V2f(z*)) ~ 786
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f(x,)-p’

Newton and Quasi-Newton BFGS methods

|
0 10 20 30 40 50 60
k (iteration number)

n =50, m = 250, k (V2f(z*)) ~ 851
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Newton, Quasi-Newton BFGS and gradient descent methods

|
0 500 1000 1500
k (iteration number)

n =50, m = 250, k (V2f(z*)) ~ 851
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f(x)-p’

Newton and Quasi-Newton BFGS methods

10*

100 | 1

10° N

107 - .

10—10 | |

10‘12 L L L L L L
0 50 100 150 200 250 300 350

k (iteration number)

n = 200, m =800, x (V?f(z*)) ~ 873
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Newton, Quasi-Newton BFGS and gradient descent methods

| |
0 500 1000 1500
k (iteration number)

n = 200, m =800, x (V?f(z*)) ~ 873
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Constrained minimization
(equality constraints)
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Optimization problem:

minimize  f(x)

subjectto Az =0

Assumptions:
e f:R" - RU/{+00} is convex
o dom f={z : f(x) < +oo} is open
e f is closed
e f is twice continuously differentiable
e problem is solvable: Fz* : f(x*) = p* :=inf{f(z) : Az =0b}

e matrix A has full row rank (otherwise, drop redundant eqs)
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Two main approaches:
e climinate equality constraints and switch to unconstrained problem

e maintain equality constraints
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Eliminate equality constraints:

e parameterize constraint set as
{x : Ax =b} ={z9+ By : y}
where Azg = b and B contains a basis for Ker A

e solve equivalent unconstrained optimization problem

*

y* = argmin f(zo + By)

e recover solution
x* = x9 + By~

e sparsity structure in A might be lost
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Maintain equality constraints (first motivation):
e 1 Is the current iterate

e the 2nd order model of f centered at zj is

~ 1

fr(@) = flog) + Vf(ze) ' (z — zp) + §(w —ay) V2 f () (z — zp)

e minimize 2nd order model to obtain the next iterate xg1:

Tppr = argmin  fi(z) =z +dy
subjectto Az =0

where
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Maintain equality constraints (second motivation):

o KKT system is

Vilx)+ A" X=0

< r(x,\) =0
Ar —b =0

e linearize around the current iterate x:
T(:Uk —+ dk, )\kz) ~ (Vf(ﬂ?k) -+ V2f($k)dk; + AT)\k;, A(:Uk + dk;) — b)

e solve for (dg, A\x):

A 0 Ak 0

® Tpy1 = Xp +dg
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1. initialization » choose xg €dom f (Axg=10) and € >0
2. » choose 0<a<0.5 and 0 < B <1 (Armijo)
3. » set k=0
4, loop » compute g = Vf(x)
5. » compute Hj = V2f(z)
6. » solve He AT\ |y = Ik
A 0 y 0

7. » if —gdp <e¢ stop
8. » (=1
9. » vwhile f(wzg +tdy) > f(zk) + tag, dy

t— Ot
10. >  Tpp1 = T+ tdg
11. » k<« k+1 and return to loop
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Constrained minimization
(inequality constraints)
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Optimization problem:

minimize  f(x)
subject to Ax =10
gi(x) <0 i=1,....m

Assumptions:
e f,g; : R" - RU{+00} are convex
e dom f,dom g; are open

e f,g; are closed and twice continuously differentiable

e problem is solvable:
dz* @ f(a¥) =p* :=inf{f(x) : Ax=0b, g(x) = (91(x),...,gm(x)) <0}
e matrix A has full row rank

e there is a Slater point: Jycdoms : Az =10, g(x) <0
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Logarithmic barrier:

Yot R~ RU{+o0} tu(r) = log(~a) domuy =Ry,

25

20

[y
[&;]
T

() = =(1/) log(-x)
5

I I I I I I I I I
-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
X

Plot of ¢; fort =0.5,t=1and t =2
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e Consider the approximation

minimize  f(x)+ >~ —(1/t)log (—g:i(x))
subjectto Az =0

e Example:
minimize —T1 — To

subject to 27 + 23 <1

Solution is (z7,x%) = ( 5 %)

Sl
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Level sets for ¢;(x1,x2) = —x1 — 22 — (1/1) log (1 — x% - f%)

15m
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Level sets for ¢;(x1,x2) = —x1 — 22 — (1/1) log (1 — x% - f%)

15m
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Level sets for ¢;(x1,x2) = —x1 — 22 — (1/1) log (1 — x% - f%)

15m
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Level sets for ¢;(x1,x2) = —x1 — 22 — (1/1) log (1 — x% - f%)

15m
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Assume an unique minimizer x*(t) for

minimize  f(z)+ Y.~ —(1/t)log (—gi(z))
subject to Ax =0

x*(t) is (at most) m/t suboptimal:

f (1) —p* <

Central path = {z*(¢) : t > 0}

Following the central path leads to a solution
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1.

~N O o Wb

initialization

loop

vV v v V

to >0, strictly feasible xg, u>1, €e>0
initialize k=0

solve mingz—p trf(x) + > ., —log(—gi(x))
starting from xy

Tpa1 = x*(tg)

if m/ty < € then stop

tg+1 = plg

k«— k41 and return to loop
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e To construct a strictly feasible point o use a “Phase | problem:

minimize S
subject to Ax =10

gi(x) <s i1=1,...,m

e Can start from z € [;-, dom f; with Az = b and

s > max{g;(x) : i=1,...,m}
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Optimization problem:

minimize  f(x)
subjectto Az =0

gi(x) 2k, 0 i=1,...,m

Assumptions:
e K, are proper cones
e f is convex and g; is K;-convex
e dom f,dom g; are open and f, g; are twice continuously differentiable

e problem is solvable:
dz* @ f(a¥) =p* :=inf{f(x) : Ax =0, gi(x) <k, 0,i=1,...,m}

e matrix A has full row rank

e there is a Slater point:
dredomf : Az =0, gi(z) <Kk, 0,i=1,....,m
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A generalized logarithm for a proper cone K C R" is a function
Y : R" - RU{4+00} domey =intK
such that

e 7 is closed, concave, twice continuously differentiable with

VZp(x) <0 forall z =, 0

e there is § > 0 (degree of ) such that

Y(txr) = (x) + 0log(t) forall x = O and t > 0
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Examples:

e nonnegative orthant: K = R

Y(T1, ..., xy) = Zlog(mi)
i=1
degree 6 = n
e second-order cone: K = {(x,t) e R" xR : ||z| < t}

Y(x,t) = log (¢* — :I:Tx)
degree 6 = 2
e positive semidefinite cone: K = St
Y(X) = logdet(X)

degree 6 = n
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Consider the approximation

minimize  tf(z) + >~ =i (—gi(z))
subject to Ax =0
Assume an unique minimizer z*(t)

x*(t) is (at most) (>2.", 0;)/t suboptimal:

221 0;

t

fa*(t) —p* <

Central path = {z*(¢) : t > 0}

Following the central path leads to a solution
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e Example:
minimize  tr(AX)
subject to diag(X) =1
X =0

e Log barrier subproblem:

minimize  ttr(AX) — logdet(X)
subject to diag(X) =1

with implicit constraint X > 0

79



e KKT conditions for subproblem:

tA— X~ 4 Diag(\) =0
diag(X) =1
with X >0

e Linearizing around a feasible X:

tA— X1+ X" 1TAX~! + Diag(\) =0
diag(A) =0

e Solution:
(XoX) =X —tXAX
A=X—-—tXAX — XDiag(N) X
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Problem size n = 20 (u = 20)

10

10° |

10

10

duality gap

10

-10

10

10

-12

Time ~ 0.06 sec
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Problem size n = 20 (u = 50)

duality gap

[any
o
&

10°

1 0—10

10
1

Time ~ 0.06 sec
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Problem size n = 20 (x = 100)

duality gap

[any
O|

10°

-10

10

10
1 2

Time ~ 0.06 sec
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Problem size n = 100 (u = 20)

duality gap

[any
o
&

10°

1 0—10

10
1 2 3
k

Time ~ 1.2 sec
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Problem size n = 150 (u = 20)

duality gap

[any
o
&

10°

1 0—10

10
1 2 3
k

Time ~ 3.4 sec
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Thank you !

Special thanks to Joao Paulo and Rob
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