Nonlinear Optimization

Part III Numerical algorithms

Instituto Superior Técnico - Carnegie Mellon University jxavier@isr.ist.utl.pt

Unconstrained minimization

Optimization problem:

minimize
$$f(x)$$

Assumptions:

- $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex
- dom $f = \{x : f(x) < +\infty\}$ is open
- f is closed
- ullet f is twice continuously differentiable
- problem is solvable: $\exists x^* : f(x^*) = p^* := \inf\{f(x) : x\}$

Example: quadratic $(A \succeq 0)$

minimize
$$x^{\top}Ax + b^{\top}x + c$$

- $\bullet \ \operatorname{dom} f = \mathbb{R}^n$
- closed
- bounded below iff $b \in \operatorname{span}(A)$

Example: log-sum-exp

minimize
$$\log \left(\sum_{i=1}^{m} e^{a_i^\top x + b_i} \right)$$

- $\bullet \ \operatorname{dom} f = \mathbb{R}^n$
- closed
- bounded below iff $0 \in \operatorname{co} \{a_i\}$

Example: log barrier for polyhedron

minimize
$$\sum_{i=1}^{m} -\log(b_i - a_i^{\top}x)$$

- $\bullet \ \operatorname{dom} f = \{x : Ax < b\}$
- closed
- bounded below if there exists $\lambda > 0$, $\sum_k \lambda_k a_k = 0$

Algorithm produces a minimizing sequence: x_1, x_2, x_3, \ldots such that

$$f(x_k) \downarrow p^*$$

Basic iteration of line-search algorithms: $x_{k+1} = x_k + t_k d_k$

- ullet d_k is the search direction
- $t_k > 0$ is the step size

Definition (Descent direction) d_k is a descent direction for f at a non-stationary point $x_k \in \text{dom } f$ if

$$\langle \nabla f(x_k), d_k \rangle < 0$$

Example: $d_k = -\nabla f(x_k)$ is a descent direction because

$$\langle \nabla f(x_k), d_k \rangle = -\|\nabla f(x_k)\|^2 < 0$$

Infinite number of choices for descent directions d_k :

Important: if d_k is a descent direction, then

$$\exists_{\overline{t}>0} : f(x_k + td_k) < f(x_k) \text{ for all } t \in]0, \overline{t}]$$

Prototype of a a line-search algorithm:

- 1. initialization \blacktriangleright choose $x_0 \in \text{dom } f$ and tolerance $\epsilon > 0$
- 2. \blacktriangleright set k=0
- 3. loop \blacktriangleright compute $g_k = \nabla f(x_k)$
- ▶ if $||g_k|| < ε$ stop
- 5. \blacktriangleright compute descent direction d_k
- 6. \blacktriangleright compute step size t_k
- 7. \blacktriangleright update $x_{k+1} = x_k + t_k d_k$
- 8. $\blacktriangleright k \leftarrow k+1$ and return to loop

Line 6 is called the line search subproblem

• exact line search:

$$t_k \in \arg\min_{t>0} \phi(t) := f(x_k + td_k)$$

• Armijo's rule or backtracking line search ($0 < \alpha < 0.5, 0 < \beta < 1$):

$$t=1$$
 and while $f(x_k+td_k)>f(x_k)+t\alpha\nabla f(x_k)^{\top}d_k$ do $t:=\beta t$

Theorem (Convergence of steepest descent method) Let

 $x_0 \in \operatorname{dom} f$ and suppose there exists m > 0 such that

$$\nabla^2 f(x) \succeq mI$$
 for all $x \in S_{f(x_0)}f$.

Then,

$$x_k \to x^*$$
.

Example:

 $\bullet \ f : \mathbb{R}^2 \to \mathbb{R}$

$$f(x) = \frac{1}{2}(x - c)^{\top} A(x - c)$$

where

$$c = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad A = Q \begin{bmatrix} 1 & 0 \\ 0 & \kappa \end{bmatrix} Q^{\top} \qquad Q = \begin{bmatrix} \cos\left(\frac{\pi}{4}\right) & -\sin\left(\frac{\pi}{4}\right) \\ \sin\left(\frac{\pi}{4}\right) & \cos\left(\frac{\pi}{4}\right) \end{bmatrix}$$

- $x^{\star}=(1,1)$ and $\kappa\left(\nabla^{2}f(x^{\star})\right)=\kappa\geq1$
- $x_0 = (4, 2)$, $\epsilon = 10^{-6}$, $\alpha = 10^{-4}$, $\beta = 0.5$

 $\kappa = 1$ (number of iterations: 1)

 $\kappa = 5$ (number of iterations: 32)

 $\kappa = 50$ (number of iterations: 332)

 $\kappa = 100$ (number of iterations: 637)

Sequence $\{f(x_k)\}_{k\geq 0}$

Definition (rates of convergence) Let $x_k \to x^*$ $(x_k, x^* \in \mathbb{R}^n)$ with $x_k \neq x^*$. We say

• $x_k \to x^*$ linearly if

$$\exists_{0 < r < 1} : \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} \le r \text{ for all } k \text{ sufficiently large}$$

• $x_k \to x^*$ superlinearly if

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} \to 0$$

• $x_k \to x^*$ quadratically if

$$\exists_{r>0}: \frac{\|x_{k+1}-x^{\star}\|}{\|x_k-x^{\star}\|^2} \leq r \text{ for all } k \text{ sufficiently large}$$

Examples:

$$x_k = \left(\frac{1}{2}\right)^{k-1} o 0$$
 linearly $y_k = \frac{1}{k^k} o 0$ superlinearly $z_k = 4\left(\frac{1}{2}\right)^{2^k} o 0$ quadratically

First few terms of the sequences...

k	x_k	y_k	z_k
1	1	1	1
2	$5.0\cdot10^{-1}$	$2.5\cdot 10^{-1}$	$2.5\cdot 10^{-1}$
3	$2.5\cdot 10^{-1}$	$3.7\cdot10^{-2}$	$1.6\cdot 10^{-2}$
4	$1.3\cdot 10^{-1}$	$3.9\cdot10^{-3}$	$6.1\cdot10^{-5}$
5	$6.3 \cdot 10^{-2}$	$3.2\cdot10^{-4}$	$9.3 \cdot 10^{-10}$
6	$3.1\cdot10^{-2}$	$2.1\cdot10^{-5}$	$2.2\cdot 10^{-19}$
7	$1.6\cdot10^{-2}$	$1.2\cdot 10^{-6}$	$1.2\cdot 10^{-38}$
8	$7.8\cdot10^{-3}$	$6.0 \cdot 10^{-8}$	$3.5\cdot 10^{-77}$
9	$3.9\cdot10^{-3}$	$2.6\cdot10^{-9}$	$3.0 \cdot 10^{-154}$

Under mild assumptions, the steepest descent method $d_k = -\nabla f(x_k)$ yields linear convergence

Newton algorithm (first motivation):

- x_k is the current iterate
- ullet the 2nd order model of f centered at x_k is

$$\widehat{f}_k(x) = f(x_k) + \nabla f(x_k)^{\top} (x - x_k) + \frac{1}{2} (x - x_k)^{\top} \nabla^2 f(x_k) (x - x_k)$$

• minimize 2nd order model to obtain the next iterate x_{k+1} :

$$x_{k+1} = \operatorname{arg\,min}_x \quad \widehat{f}_k(x) = x_k + d_k \quad \text{where} \quad d_k = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

Note: it is assumed that $\nabla^2 f(x_k)$ is nonsingular

The algorithm

$$x_{k+1} = x_k + d_k$$
 with $d_k = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$

is called the pure Newton algorithm

Example: $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-\frac{1}{2}x} + \frac{1}{2}x$

Newton algorithm (second motivation):

Newton method for solving a system of nonlinear equations

$$\begin{cases}
F_1(x_1, \dots, x_n) = 0 \\
F_2(x_1, \dots, x_n) = 0 \\
\vdots \\
F_n(x_1, \dots, x_n) = 0
\end{cases} \Leftrightarrow F(x) = 0$$

is

$$x_{k+1} = x_k - DF(x_k)^{-1}F(x_k).$$

Note: the inverse $DF(x_k)^{-1}$ is supposed to exist

• the pure Newton algorithm corresponds to the special case $\nabla f(x) = 0$:

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

Example: $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-\frac{1}{2}x} + \frac{1}{2}x$

- The pure Newton algorithm $x_{k+1} = x_k + d_k$ is convergent only near a solution
- The Newton direction

$$d_k = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

is a descent direction for f at x_k :

$$\langle d_k, \nabla f(x_k) \rangle = -\nabla f(x_k)^{\top} \left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k) < 0$$

• Use a line-search to make it globally convergent: $x_{k+1} = x_k + t_k d_k$

The quantity

$$\lambda(x) := \sqrt{\nabla f(x)^\top \left[\nabla^2 f(x)\right]^{-1} \nabla f(x)} = \sqrt{-g_k^\top d_k}$$

is called the Newton decrement at x

Property of the Newton decrement:

$$\frac{1}{2}\lambda^{2}(x) = f(x) - \min\left\{f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} \nabla^{2} f(x) (y - x) : y\right\}$$

Affine invariant stopping criterion:

$$\lambda^2(x) < \epsilon$$

 The Newton algorithm solves a sequence of unconstrained quadratic problems

- 1. initialization \blacktriangleright choose $x_0 \in \text{dom } f$ and tolerance $\epsilon > 0$
- 3. \blacktriangleright set k=0
- 4. loop \blacktriangleright compute $g_k = \nabla f(x_k)$
- 5. \blacktriangleright compute $H_k = \nabla^2 f(x_k)$
- 6. \blacktriangleright solve the linear system $H_k d_k = -g_k$
- 8. \blacktriangleright t=1

- 11. \blacktriangleright $k \leftarrow k+1$ and return to loop

Theorem (Convergence of Newton method) Let $x_0 \in \text{dom } f$ and suppose there exists m>0 such that

$$\nabla^2 f(x) \succeq mI$$
 for all $x \in S_{f(x_0)} f$.

Also assume that $\nabla^2 f(x)$ is Lipschitz continuous on $S_{f(x_0)} f$. Then,

$$x_k \to x^*$$
 quadratically.

Example:

$$f(x) = c^{\top} x - \sum_{i=1}^{m} \log \left(b_i - a_i^{\top} x \right)$$

Newton method

$$n=8$$
, $m=50$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 42$

Newton and gradient descent methods

$$n=8$$
, $m=50$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 42$

Newton method

$$n=50$$
, $m=250$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 253$

Newton and gradient descent methods

$$n=50$$
, $m=250$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 253$

Newton method

$$n=200$$
 , $m=800$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 777$

Newton and gradient descent methods

$$n=200$$
, $m=800$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 777$

Quasi-Newton BFGS algorithm

- BFGS = Broyden, Fletcher, Goldfarb and Shanno
- ullet Newton method needs $H_k =
 abla^2 f(x_k)$ at each iteration
- ullet idea: instead, use an approximation B_k

- Initialization: $B_0 = I_n$ or a better guess
- **Update:** how to update $B_k \to B_{k+1}$?

Quadratic model m(x) for f(x) centered at x_{k+1} :

$$m(x) = f(x_{k+1}) + \nabla f(x_{k+1})^{\top} (x - x_{k+1}) + \frac{1}{2} (x - x_{k+1})^{\top} B_{k+1} (x - x_{k+1})$$

"Nice" properties that B_{k+1} should possess:

• $\nabla m(x_k) = g_k$ which leads to the secant equation

$$B_{k+1}\underbrace{(x_{k+1} - x_k)}_{s_k} = \underbrace{(g_{k+1} - g_k)}_{y_k}$$

- $B_{k+1} \succ 0$ to ensure that $d_{k+1} = -B_{k+1}^{-1}g_k$ is a descent direction
- $B_{k+1} \simeq B_k$ (f is C^2 implies $\nabla^2 f(x)$ changes continuously with x)

First two properties might conflict: for given s_k, y_k there exist no

$$B_{k+1} \succ 0$$
 such that $B_{k+1}s_k = y_k$

Example: $s_k = 1$, $y_k = -1$ implies $B_{k+1} = y_k/s_k = -1$

Fact. Let $s, y \in \mathbb{R}^n$ be given with $s \neq 0$. Then,

$$\exists B \succ 0 : y = Bs \quad \Leftrightarrow \quad y^{\top}s > 0.$$

Proof (
$$\Leftarrow$$
): $B = I_n - \frac{ss^\top}{s^\top s} + \frac{yy^\top}{y^\top s}$ works.

Note: if $\nabla^2 f(x) \succ 0$ for all x then $y_k^\top s_k > 0$

• Translate desired properties into an optimization problem:

minimize
$$\phi(B):=\operatorname{tr}\left(B_k^{-1/2}BB_k^{-1/2}\right)-\log\det\left(B_k^{-1/2}BB_k^{-1/2}\right)-n$$
 subject to
$$Bs_k=y_k$$

$$B\succ 0$$

• $\phi(B)$ is a "distance" measure between B and B_k :

$$\phi(B) \geq 0$$
 with equality if and only if $B = B_k$

Solution is

$$B_{k+1} = B_k - \frac{B_k s_k s_k^{\top} B_k}{s_k^{\top} B_k s_k} + \frac{y_k y_k^{\top}}{y_k^{\top} s_k}.$$

This rank-2 update is known as the **BFGS update**

We can propagate directly the inverse $W_{k+1} = B_{k+1}^{-1}$:

$$W_{k+1} = \begin{pmatrix} I - \rho_k s_k y_k^\top \end{pmatrix} W_k \begin{pmatrix} I - \rho_k y_k s_k^\top \end{pmatrix} + \rho_k s_k s_k^\top \quad \text{where} \quad \rho_k = \frac{1}{y_k^\top s_k}$$

1. initialization \blacktriangleright choose $x_0 \in \text{dom } f$, $W_0 \succ 0$ and $\epsilon > 0$

3. \blacktriangleright set k=0

4. loop \blacktriangleright compute $g_k = \nabla f(x_k)$

lacktriangleright if $\|g_k\| < \epsilon$ stop

6. \blacktriangleright compute search direction $d_k = -W_k g_k$

7. $\blacktriangleright t = 1$

11. \blacktriangleright $k \leftarrow k+1$ and return to loop

Theorem (Convergence of Quasi-Newton BFGS method) Let

 $x_0 \in \operatorname{dom} f$ and suppose there exists m > 0 such that

$$\nabla^2 f(x) \succeq mI$$
 for all $x \in S_{f(x_0)} f$.

Also assume that $\nabla^2 f(x)$ is Lipschitz continuous on $S_{f(x_0)} f$. Then,

$$x_k \to x^*$$
 superlinearly.

Newton and Quasi-Newton BFGS methods

$$n=8$$
, $m=50$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 786$

Newton, Quasi-Newton BFGS and gradient descent methods

$$n=8$$
, $m=50$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 786$

Newton and Quasi-Newton BFGS methods

$$n=50$$
, $m=250$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 851$

Newton, Quasi-Newton BFGS and gradient descent methods

$$n=50$$
, $m=250$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 851$

Newton and Quasi-Newton BFGS methods

$$n=200$$
, $m=800$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 873$

Newton, Quasi-Newton BFGS and gradient descent methods

$$n=200$$
, $m=800$, $\kappa\left(\nabla^2 f(x^\star)\right)\simeq 873$

Constrained minimization (equality constraints)

Optimization problem:

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$

Assumptions:

- $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex
- dom $f = \{x : f(x) < +\infty\}$ is open
- f is closed
- f is twice continuously differentiable
- problem is solvable: $\exists x^* : f(x^*) = p^* := \inf\{f(x) : Ax = b\}$
- matrix A has full row rank (otherwise, drop redundant eqs)

Two main approaches:

- eliminate equality constraints and switch to unconstrained problem
- maintain equality constraints

Eliminate equality constraints:

• parameterize constraint set as

$${x : Ax = b} = {x_0 + By : y}$$

where $Ax_0 = b$ and B contains a basis for Ker A

• solve equivalent unconstrained optimization problem

$$y^* = \operatorname{arg\,min} f(x_0 + By)$$

recover solution

$$x^* = x_0 + By^*$$

• sparsity structure in A might be lost

Maintain equality constraints (first motivation):

- x_k is the current iterate
- ullet the 2nd order model of f centered at x_k is

$$\widehat{f}_k(x) = f(x_k) + \nabla f(x_k)^{\top} (x - x_k) + \frac{1}{2} (x - x_k)^{\top} \nabla^2 f(x_k) (x - x_k)$$

• minimize 2nd order model to obtain the next iterate x_{k+1} :

$$x_{k+1} = \underset{\text{subject to}}{\operatorname{arg\,min}} \quad \widehat{f}_k(x) = x_k + d_k$$

where

$$\begin{bmatrix} \nabla^2 f(x_k) & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \lambda_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) \\ 0 \end{bmatrix}$$

Maintain equality constraints (second motivation):

KKT system is

$$\begin{cases} \nabla f(x) + A^{\top} \lambda = 0 \\ Ax - b = 0 \end{cases} \Leftrightarrow r(x, \lambda) = 0$$

• linearize around the current iterate x_k :

$$r(x_k + d_k, \lambda_k) \simeq \left(\nabla f(x_k) + \nabla^2 f(x_k) d_k + A^{\top} \lambda_k, A(x_k + d_k) - b\right)$$

• solve for (d_k, λ_k) :

$$\begin{bmatrix} \nabla^2 f(x_k) & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \lambda_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) \\ 0 \end{bmatrix}$$

 $\bullet \ x_{k+1} = x_k + d_k$

1. initialization \blacktriangleright choose $x_0 \in \text{dom } f$ ($Ax_0 = b$) and $\epsilon > 0$

3. \blacktriangleright set k=0

4. loop \blacktriangleright compute $g_k = \nabla f(x_k)$

 \blacktriangleright compute $H_k = \nabla^2 f(x_k)$

6. \blacktriangleright solve $\begin{bmatrix} H_k & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \lambda_k \end{bmatrix} = \begin{bmatrix} -g_k \\ 0 \end{bmatrix}$

7. \blacktriangleright if $-g_k^{\top}d_k < \epsilon$ stop

8. t = 1

11. \blacktriangleright $k \leftarrow k+1$ and return to loop

Constrained minimization (inequality constraints)

Optimization problem:

minimize
$$f(x)$$
 subject to $Ax = b$
$$g_i(x) \leq 0 \quad i = 1, \dots, m$$

Assumptions:

- $f, g_i : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ are convex
- dom f, dom g_i are open
- f, g_i are closed and twice continuously differentiable
- problem is solvable:

$$\exists x^* : f(x^*) = p^* := \inf\{f(x) : Ax = b, g(x) = (g_1(x), \dots, g_m(x)) \le 0\}$$

- matrix A has full row rank
- there is a Slater point: $\exists_{x \in \text{dom } f} : Ax = b, g(x) < 0$

Logarithmic barrier:

$$\psi_t : \mathbb{R} \to \mathbb{R} \cup \{+\infty\} \quad \psi_t(x) = -\frac{1}{t} \log(-x) \quad \operatorname{dom} \psi_t = -\mathbb{R}_{++}$$

Plot of ψ_t for t=0.5, t=1 and t=2

Consider the approximation

minimize
$$f(x) + \sum_{i=1}^m -(1/t)\log\left(-g_i(x)\right)$$
 subject to
$$Ax = b$$

• Example:

minimize
$$-x_1 - x_2$$
 subject to $x_1^2 + x_2^2 \le 1$

Solution is
$$(x_1^\star, x_2^\star) = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$

$$t = 0.1$$

$$t = 0.5$$

$$t = 1$$

$$t = 2$$

$$t = 10$$

$$t = 100$$

• Assume an unique minimizer $x^{\star}(t)$ for

minimize
$$f(x) + \sum_{i=1}^{m} -(1/t) \log (-g_i(x))$$
 subject to
$$Ax = b$$

• $x^*(t)$ is (at most) m/t suboptimal:

$$f\left(x^{\star}(t)\right) - p^{\star} \le \frac{m}{t}$$

- Central path = $\{x^*(t) : t > 0\}$
- Following the central path leads to a solution

1. initialization \blacktriangleright $t_0>0$, strictly feasible x_0 , $\mu>1$, $\epsilon>0$

2. \blacktriangleright initialize k=0

3. loop \blacktriangleright solve $\min_{Ax=b} t_k f(x) + \sum_{i=1}^m -\log \left(-g_i(x)\right)$ starting from x_k

 $\bullet \quad x_{k+1} = x^{\star}(t_k)$

5. \blacktriangleright if $m/t_k < \epsilon$ then stop

6. $t_{k+1} = \mu t_k$

7. $\blacktriangleright k \leftarrow k+1$ and return to loop

• To construct a strictly feasible point x_0 use a "Phase I" problem:

minimize
$$s$$
 subject to $Ax = b$
$$g_i(x) \leq s \quad i = 1, \dots, m$$

• Can start from $x \in \bigcap_{i=1}^m \text{dom } f_i$ with Ax = b and

$$s > \max\{g_i(x) : i = 1, \dots, m\}$$

Optimization problem:

minimize
$$f(x)$$
 subject to $Ax = b$
$$g_i(x) \preceq_{K_i} 0 \quad i = 1, \dots, m$$

Assumptions:

- ullet K_i are proper cones
- f is convex and g_i is K_i -convex
- ullet dom f, dom g_i are open and f,g_i are twice continuously differentiable
- problem is solvable:

$$\exists x^* : f(x^*) = p^* := \inf\{f(x) : Ax = b, g_i(x) \leq K_i 0, i = 1, \dots, m\}$$

- matrix A has full row rank
- there is a Slater point:

$$\exists_{x \in \mathsf{dom}\, f} : Ax = b, \, g_i(x) \prec_{K_i} 0, \, i = 1, \dots, m$$

A generalized logarithm for a proper cone $K \subset \mathbb{R}^n$ is a function

$$\psi\,:\,\mathbb{R}^n\to\mathbb{R}\cup\{+\infty\}\quad\operatorname{dom}\psi=\operatorname{int}K$$

such that

ullet ψ is closed, concave, twice continuously differentiable with

$$\nabla^2 \psi(x) \prec 0$$
 for all $x \succ_K 0$

• there is $\theta > 0$ (degree of ψ) such that

$$\psi(tx) = \psi(x) + \theta \log(t)$$
 for all $x \succ_K 0$ and $t > 0$

Examples:

• nonnegative orthant: $K = \mathbb{R}^n_+$

$$\psi(x_1, \dots, x_n) = \sum_{i=1}^n \log(x_i)$$

 $\mathsf{degree}\;\theta=n$

• second-order cone: $K = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} : ||x|| \le t\}$

$$\psi(x,t) = \log\left(t^2 - x^{\top}x\right)$$

 $\mathsf{degree}\ \theta = 2$

• positive semidefinite cone: $K = S^n_+$

$$\psi(X) = \log \det(X)$$

 $\mathsf{degree}\ \theta = n$

Consider the approximation

minimize
$$tf(x) + \sum_{i=1}^{m} -\psi_i \left(-g_i(x)\right)$$
 subject to $Ax = b$

- Assume an unique minimizer $x^*(t)$
- $x^*(t)$ is (at most) $(\sum_{i=1}^m \theta_i)/t$ suboptimal:

$$f\left(x^{\star}(t)\right) - p^{\star} \le \frac{\sum_{i=1}^{m} \theta_{i}}{t}$$

- Central path = $\{x^*(t): t>0\}$
- Following the central path leads to a solution

• Example:

$$\begin{array}{ll} \text{minimize} & \operatorname{tr}(AX) \\ \text{subject to} & \operatorname{diag}(X) = 1 \\ & X \succeq 0 \end{array}$$

• Log barrier subproblem:

$$\begin{array}{ll} \mbox{minimize} & t \, \mbox{tr}(AX) - \log \det(X) \\ \mbox{subject to} & \mbox{diag}(X) = 1 \end{array}$$

with implicit constraint $X \succ 0$

KKT conditions for subproblem:

$$\begin{cases} tA - X^{-1} + \mathrm{Diag}(\lambda) = 0 \\ \mathrm{diag}(X) = 1 \end{cases}$$

with $X \succ 0$

• Linearizing around a feasible *X*:

$$\begin{cases} tA - X^{-1} + X^{-1}\Delta X^{-1} + \mathrm{Diag}(\lambda) = 0 \\ \mathrm{diag}(\Delta) = 0 \end{cases}$$

• Solution:

$$\begin{cases} (X \odot X) \lambda = X - tXAX \\ \Delta = X - tXAX - X \mathsf{Diag}(\lambda)X \end{cases}$$

Problem size $n=20~(\mu=20)$

 $\mathrm{Time} \simeq 0.06 \; \mathrm{sec}$

Problem size $n=20~(\mu=50)$

 $\mathrm{Time} \simeq 0.06 \; \mathrm{sec}$

Problem size $n=20~(\mu=100)$

 $\mathrm{Time} \simeq 0.06 \; \mathrm{sec}$

Problem size $n=100~(\mu=20)$

 $\mathrm{Time} \simeq 1.2 \; \mathrm{sec}$

Problem size $n=150~(\mu=20)$

 ${\rm Time} \simeq 3.4 \, \sec$

Thank you!

Special thanks to João Paulo and Rob