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Duality
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Primal problem:

minimize f(x)

subject to hi(x) = 0 i = 1, . . . , p

gj(x) ≤ 0 j = 1, . . . , m

x ∈ X

• f : R
n → R ∪ {+∞} is the cost function

• x is the optimization variable
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Lagrangian:

L : R
n×R

p×R
m → R∪{+∞} L(x; λ, μ) = f(x)+λ�h(x)+μ�g(x)

Lagrange dual function:

L : R
p × R

m → R ∪ {−∞} L(λ, μ) = inf {L(x; λ, μ) : x ∈ X}

Dual function is concave (usually, no explicit formula)
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Lagrange dual problem:

maximize L(λ, μ)

subject to μ ≥ 0

Dual problem is convex
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Toy example:

Primal

minimize c�x

subject to x ≥ 0

1�n x = 1

Dual

maximize λ

subject to c = μ + λ1n

μ ≥ 0

Optimal value of the two problems is min{c1, c2, . . . , cn}
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Theorem (Weak duality) If x is primal feasible and (λ, μ) is dual

feasible then

L(λ, μ) ≤ f(x).

Thus,

d� ≤ p�

where

p� := inf {f(x) : h(x) = 0, g(x) ≤ 0, x ∈ X}
and

d� := sup {L(λ, μ) : μ ≥ 0}
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Duality gap

Primal Dual

x (λ, μ)

The duality gap is defined as p� − d� and belongs to [0, +∞]
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Corollary

• Primal is unbounded implies dual is infeasible

(Proof: p� = −∞ ⇒ d� = −∞)

• Dual is unbounded implies primal is infeasible

(Proof: d� = +∞ ⇒ p� = +∞)
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Theorem (Strong duality) Let the primal be

minimize f(x)

subject to x ∈ X

Ax ≤ b

Assume:

• X is convex

• f : X → R is convex

• (Slater point) there exists x0 ∈ ri X such that Ax0 ≤ b

Then, strong duality holds (p� = d�) and the dual problem is solvable

when p� = d� are finite
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When there is no Slater point, anything can happen

Example: no Slater point, no duality gap, dual is solvable

minimize x

subject to x ∈ X = [−1, 1]

x ≥ 1
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Example: no Slater point, no duality gap, dual is not solvable

minimize x

subject to (x, y) ∈ X = {(x, y) : x2 ≤ y}
y ≤ 0
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Example (support vector machines):

Primal

minimize ‖s‖2

subject to X�s ≥ (r + 1)1K

Y �s ≤ (r − 1)1L

Dual

maximize − 1
4 ‖Xμ − Y ν‖2 + 1�Kμ + 1�Lν

subject to 1�Kμ = 1�Lν

μ ≥ 0, ν ≥ 0
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Dual shows that p�(= d�) only depends on X , Y through their

inner-products ⎡
⎣X�X X�Y

Y �X Y �Y

⎤
⎦

The dual can be simplified:

minimize ‖Xμ − Y ν‖2

subject to 1�Kμ = 1�Lν = 1

μ ≥ 0, ν ≥ 0

Geometrical interpretation: computing p� is equivalent to evaluating

dist (co X, coY )
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Example: Portfolio optimization

• T euros to invest among n assets

• ri is the random rate of return of ith asset

• diversity constraint: no more than 80% of the investment should be

concentrated in any k ≤ n stocks

Goal: maximize expected return subject to the constraints
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Optimization problem:

maximize r�x

subject to x ≥ 0, 1�n x = T

x[1] + x[2] + · · · + x[k] ≤ 0.8T

Optimization variable is x ∈ R
n
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Equivalent problem:

maximize r�x

subject to x ≥ 0, 1�n x = T

1�n ν − kλ ≤ 0.8T

x ≤ ν − λ1n

ν ≥ 0

Optimization variable is (x, ν, λ) ∈ R
n × R

n × R
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Theorem (Strong duality) Let the primal be

minimize f(x)

subject to x ∈ X

Ax ≤ b

g(x) = (g1(x), . . . , gm(x)) ≤ 0

Assume:

• X = C ∩ P where C is convex and P is a polyhedron

• f, g1, . . . , gm : C → R are convex

• (Slater point) there exists x0 ∈ (riC) ∩ P such that Ax0 ≤ b and

g(x0) = (g1(x0), . . . , gm(x0)) < 0

Then, strong duality holds (p� = d�) and the dual problem is solvable

when p� = d� are finite
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Duality gap depends on how the problem is represented

Example:

minimize e−y

subject to x ≥ 0

y = 0

No duality gap: p� = d� = 1

“Same” example:

minimize e−y

subject to
√

x2 + y2 ≤ x

There is a duality gap: p� = 1 and d� = 0
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Example: nonconvex problem with zero duality gap (A ∈ Sn)

Primal

minimize x�Ax

subject to x�x = 1

Dual

maximize λ

subject to A − λIn � 0

p� = d� = λmin(A)

20



Example: projection onto an ellipsoid

minimize ‖x − a‖2

subject to (x − c)�A(x − c) ≤ 1

a

c
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By the strong duality theorem p� = d�

The dual program is

maximize − 1
2 (c − a)� (In + μA)−1 (c − a) − μ + ‖c − a‖2

subject to μ ≥ 0

22



Application of duality: certificates of infeasibility

m ellipsoids Ei = {x ∈ R
n : x�Aix + 2b�i x + ci ≤ 0} are given

Do their interiors intersect ?
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Equivalently: is this system of strict quadratic inequalities solvable ?

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x�A1x + 2b�1 x + c1 < 0

x�A2x + 2b�2 x + c2 < 0
...

x�Amx + 2b�mx + cm < 0
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System is unsolvable iff p� ≥ 0 where

p� = inf{s : g(x) ≤ s1m}

where g = (g1, g2, . . . , gm), gi(x) = x�Aix + 2b�i x + ci
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Through the strong duality theorem:

p� ≥ 0 ⇔ ∃μ ≥ 0, μ �= 0 : c(μ) − b(μ)�A(μ)−1b(μ) ≥ 0

where

A(μ) :=
m∑

i=1

μiAi b(μ) :=
m∑

i=1

μibi c(μ) :=
m∑

i=1

μici

Using Schur’s complement, the answer boils down to feasibility of a LMI:

μ ≥ 0, 1�μ > 0,

⎡
⎣ A(μ) b(μ)

b(μ)� c(μ)

⎤
⎦ � 0

A feasible μ for the above LMI certifies that
⋂m

i=1 int Ei = ∅
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Example: approximating sum of ellipsoids

• Discrete-time linear dynamical system:

⎧⎪⎪⎨
⎪⎪⎩

x[n + 1] = Ax[n] + Bu[n] (A : m × m and B are known)

x[0] = 0 (system initially at rest)

‖u[t]‖ ≤ 1 (inputs u[t] are unknown)

• What is the set SN ⊂ R
m of reachable states at n = N ?
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Since

x[N ] = A1u[1] + A2u[2] + · · · + ANu[N ] (An := AN−nB)

the set SN is a sum of ellipsoids

SN can be written as

SN = E(W1) + E(W2) + · · · + E(WN )

for appropriate matrices Wn, where E(W ) := {x ∈ R
m : x�Wx ≤ 1}
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Approximate SN by one outer ellipsoid E(W ):

minimize vol (E(W ))

subject to SN ⊂ E(W )

vol(E(W )) ∝ det
(
W−1

)
is the volume of the ellipsoid E(W )
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How to code the constraint ?

SN = E(W1) + · · · + E(WN ) ⊂ E(W ) if and only if

sup{(x1 + · · · + xN )�W (x1 + · · · + xN ) : x�
i Wixi ≤ 1} ≤ 1
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By weak duality, a sufficient condition for SN ⊂ E(W ) to hold is:

∃μ=(μ1,μ2,...,μN ) : μ ≥ 0, 1�μ ≤ 1, B(μ, W ) � 0

where

B(μ, W ) :=

⎡
⎢⎢⎢⎢⎢⎣

W − μ1W1 W · · · W

W W − μ2W2 · · · W
...

. . .
. . .

...

W · · · W W − μNWN

⎤
⎥⎥⎥⎥⎥⎦
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Convex approximation of the original problem:

minimize − log det(W )

subject to μ ≥ 0

1�μ ≤ 1

B(μ, W ) � 0

The variable to optimize is (μ, W ) ∈ R
N
+ × SN

++
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Primal problem:

minimize f(x)

subject to hi(x) = 0 i = 1, . . . , p

g(x) �K 0

x ∈ X

• f : R
n → R ∪ {+∞} is the cost function

• g : R
n → R

m

• K is a convex cone in R
m

• x is the optimization variable
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Lagrangian:

L : R
n×R

p×R
m → R∪{+∞} L(x; λ, μ) = f(x)+〈λ, h(x)〉+〈μ, g(x)〉

Lagrange dual function:

L : R
p × R

m → R ∪ {−∞} L(λ, μ) = inf {L(x; λ, μ) : x ∈ X}
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Lagrange dual problem:

maximize L(λ, μ)

subject to μ �K∗ 0

Dual problem is convex
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Theorem (Weak duality) If x is primal feasible and (λ, μ) is dual

feasible then

L(λ, μ) ≤ f(x).

Thus,

d� ≤ p�

where

p� := inf {f(x) : h(x) = 0, g(x) ≤ 0, x ∈ X}
and

d� := sup {L(λ, μ) : μ �K∗ 0}

Corollary

• Primal is unbounded implies dual is infeasible

• Dual is unbounded implies primal is infeasible
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Theorem (Strong duality) Let the primal be

minimize f(x)

subject to x ∈ X

A(x) ≤ b

g(x) �K 0

Assume:

• X = C ∩ P where C is convex and P is a polyhedron

• f : C → R is convex, A(·) is a linear map and g is K-convex

• (Slater point) there exists x0 ∈ (riC) ∩ P such that A(x0) ≤ b and

g(x0) ≺K 0

Then, strong duality holds (p� = d�) and the dual problem is solvable

when p� = d� are finite

37



Example: “MAXCUT”-like optimization problem

maximize x�Ax

subject to x2
i = 1 i = 1, . . . , n

Equivalent reformulation:

maximize tr(AX)

subject to Xii = 1 i = 1, . . . , n

X � 0

rankX = 1
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Convex relaxation:

maximize tr(AX)

subject to Xii = 1 i = 1, . . . , n

X � 0
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Dual of “MAXCUT”-like problem is

minimize 1�λ

subject to A − Diag(λ) � 0

Strong duality holds: dualizing again (bi-dual) gives

maximize tr(AX)

subject to Xii = 1 i = 1, . . . , n

X � 0
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Karush-Kuhn Tucker (KKT) conditions
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Convex primal problem:

minimize f(x)

subject to hi(x) = 0 i = 1, . . . , p

gj(x) ≤ 0 j = 1, . . . , m

x ∈ X

Dual problem:

maximize L(λ, μ)

subject to μ ≥ 0
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Associated KKT system is:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ arg min {L(y; λ, μ) : y ∈ X} (“stationarity”)

h(x) = 0, g(x) ≤ 0 (primal feasibility)

μ ≥ 0 (dual feasibility)

g(x)�μ = 0 (complementary slackness)

System of conditions posed on (x, λ, μ) ∈ R
n × R

p × R
m
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Theorem
⎧⎪⎪⎨
⎪⎪⎩

x� is a primal solution

(λ�, μ�) is a dual solution

Strong duality (SD) holds

⇔ (x�, λ�, μ�) solves the KKT system
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Assumption: primal & dual solvability + SD

Solving the primal through the dual:

• solve dual and get (λ�, μ�)

• set of primal solutions is

X� = X�(λ�, μ�) ∩ {x : h(x) = 0, g(x) ≤ 0} ∩ {x : g(x)�μ� = 0}

where

X�(λ�, μ�) := arg min {L(x; λ�, μ�) : x ∈ X}
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Example:

• Primal

minimize −x

subject to x ∈ X = [−1, 1]

x ≤ 0

X� = {0}
• Dual

maximize −|μ − 1|
subject to μ ≥ 0

Dual solution is μ� = 1 and X�(μ�) = [−1, 1]

• There holds:

X� = X�(μ�) ∩ {x : x ≤ 0} ∩ {x : xμ� = 0}

46



Special case:

• f is strictly convex

• X is convex

• h(x) = Ax − b

• g = (g1, g2, . . . , gm) is a convex map

Then, X�(λ�, μ�) is a singleton, i.e.,

X� = X�(λ�, μ�)
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Example:

• Primal

minimize x2

subject to x ∈ X = [−1, 1]

x ≤ 0

X� = {0}
• Dual problem

maximize L(μ)

subject to μ ≥ 0

where

L(μ) =

⎧⎨
⎩

−μ2

4 , 0 ≤ μ ≤ 2

1 − μ , μ ≥ 2

Dual solution is μ� = 0 and X�(μ�) = X�
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Example: separable problems

minimize f1(x1) + f2(x2) + · · · + fn(xn)

subject to xi ∈ Xi

g1(x1) + g2(x2) + · · · + gn(xn) ≤ 0

Dual function is

L(μ) =
n∑

i=1

inf
xi∈Xi

fi(xi) + μ�g(xi)
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Example: projection onto the probability simplex

minimize 1
2 ‖x − a‖2

subject to x ≥ 0

1�n x = 1

a
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KKT system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − μ = a + λ1n

x ≥ 0

μ ≥ 0

x�μ = 0

1�n x = 1
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Fact: for a, b, c ∈ R
n

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a − b = c

a ≥ 0

b ≥ 0

a�b = 0

⇔
⎧⎨
⎩

a = c+

b = c−
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Simplification of KKT system:

⎧⎪⎪⎨
⎪⎪⎩

x = (a + λ1n)+

μ = (a + λ1n)−

1�n x = 1

Solution:

• solve the piecewise linear equation 1�n (a + λ�1n)+ = 1

• primal solution is x� = (a + λ�1n)+
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Example: capacity of K parallel Gaussian channels

+

+x1

xK

y1

yK

n1

nK

xk ∼ N (0, Pk) and nk ∼ N (0, Nk)

Power budget: P1 + P2 + · · · + PK = P0
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Goal: choose Pk’s to maximize capacity

maximize
∑K

k=1 log
(
1 + Pk

Nk

)

subject to P ≥ 0

1�KP = P0

Optimization variable is P = (P1, P2, . . . , PK)
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KKT system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1/Nk

1+Pk/Nk
= μk − λ, k = 1, 2, . . . , K

P ≥ 0, 1�KP = P0

μ ≥ 0

P�μ = 0
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Top conditions ensure λ > 0 and defining η := 1/λ yields

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ηNkμk − Pk = Nk − η, k = 1, 2, . . . , K

P ≥ 0, 1�KP = P0

μ ≥ 0

P�μ = 0
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Equivalent KKT system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pk − ηNkμk = η − Nk

Pk ≥ 0

ηNkμk ≥ 0

Pk(ηNkμk) = 0

1�KP = P0

Using the fact on page 52 yields
⎧⎨
⎩

Pk = (η − Nk)+

1�KP = P0
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Solution:

• solve the piecewise linear equation 1�n (η�1K − N)+ = P0

• primal solution is

P � = (η�1K − N)+

This is known as a water-filling solution
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Primal problem:

minimize f(x)

subject to hi(x) = 0 i = 1, . . . , p

g(x) � 0

x ∈ X

Dual problem:

maximize L(λ, μ)

subject to μ �K∗ 0
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Associated KKT system is:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ arg min {L(y; λ, μ) : y ∈ X} (“stationarity”)

h(x) = 0, g(x) �K 0 (primal feasibility)

μ �K∗ 0 (dual feasibility)

〈g(x), μ〉 = 0 (complementary slackness)

System of conditions posed on (x, λ, μ) ∈ R
n × R

p × R
m
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Theorem
⎧⎪⎪⎨
⎪⎪⎩

x� is a primal solution

(λ�, μ�) is a dual solution

Strong duality (SD) holds

⇔ (x�, λ�, μ�) solves the KKT system
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Example: analysis of a multiuser binary detector

sp

y1 yN

P binary users and base station with N antennas
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Data model is y = Hs + v

• y ∈ R
N is array snapshot

• H ∈ R
N×P is full column-rank channel matrix (assumed known)

• s ∈ R
P is a binary vector

• Gaussian noise v ∼ N (0, σ2IN )
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ML detector solves

minimize ‖y − Hs‖2

subject to s2
p = 1 p = 1, . . . , P

Optimization variable is s = (s1, s2, . . . , sP )

Complexity of ML detector is exponential in P
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Equivalent problem:

minimize tr (AS)

subject to diag(S) = 1p+1

S � 0

rank S = 1

where

A :=

⎡
⎣ H�H −H�y

−y�H 0

⎤
⎦
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Dropping the rank constraint yields the SDP detector

minimize tr (AS)

subject to diag(S) = 1p+1

S � 0

Suppose s� was transmitted. When is the SDP detector correct, i.e.,

when is

S� =

⎡
⎣s�

1

⎤
⎦ [

(s�)� 1
]

a solution of the SDP ?
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By the KKT conditions S� is a solution iff there exists (λ�, Z�) such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A = Z� + Diag(λ�)

S� � 0, diag(S�) = 1P+1

Z� � 0

〈Z�, S�〉 = 0
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Use the first condition to eliminate Z� and get
⎧⎨
⎩

A − Diag(λ�) � 0

〈A − Diag(λ�), S�〉 = 0

Thus, S� is optimal iff there exist λ� such that

⎧⎪⎪⎨
⎪⎪⎩

A − Diag(λ�) � 0

(A − Diag(λ�))

⎡
⎣s�

1

⎤
⎦ = 0
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The second condition gives

λ� =

⎡
⎣Diag(s�)−1 0

0 1

⎤
⎦ A

⎡
⎣s�

1

⎤
⎦

Using y = Hs� + v, the first condition is equivalent to

H�H + Diag(s�)−1Diag(H�v) � 0

(expected to hold with high probability at high SNR, i.e, small σ2)
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The solution S� is unique if

H�H + Diag(s�)−1Diag(H�v) � 0
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