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Duality



Primal problem:

minimize  f(x)

subject to h;(z)=0 i=1,...

gi(x) <0 j=1,....m

re X

o f:R" — RU{+00} is the cost function

e 1 is the optimization variable



Lagrangian:

L : R"XRPXR™ — RU{+o00} Lz M\ p) = f(2)+X " h(z)+p' g(z)

Lagrange dual function:

L:RPxXR™ —RU{—o0} LA p) =inf{L(x;\,pn) : x € X}

Dual function is concave (usually, no explicit formula)



Lagrange dual problem:

maximize  L(\, u)
subjectto >0

Dual problem is convex



Toy example:

Primal
minimize ¢'x
subjectto x>0
1)z =1
Dual

maximize A\
subject to c¢=pu+ A1,
w0

Optimal value of the two problems is min{cy, cs, . ..



Theorem (Weak duality) If = is primal feasible and (A, ) is dual
feasible then

L(A, p) < f(z).

Thus,
d* <p*
where
=inf {f(x) : h(z) =0,9(x) <0,z € X}
and

d* :=sup{L(A, p) : p >0}
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The duality gap is defined as p* — d* and belongs to [0, +o¢]



Corollary

e Primal is unbounded implies dual is infeasible

(Proof: p* = —0c0 = d* = —0)

e Dual is unbounded implies primal is infeasible

(Proof: d* = 400 = p* = +0)



Theorem (Strong duality) Let the primal be

minimize  f(x)
subjectto z € X
Az <)
Assume:
e X Is convex
e f: X — Ris convex
e (Slater point) there exists xg € ri X such that Axg < b

Then, strong duality holds (p* = d*) and the dual problem is solvable

when p* = d* are finite
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When there is no Slater point, anything can happen

Example: no Slater point, no duality gap, dual is solvable

minimize x
subjectto z € X = [—1,1]
x> 1
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Example: no Slater point, no duality gap, dual is not solvable
minimize
subject to  (z,y) € X = {(z,y) : z° <y}
y <0
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Example (support vector machines):

Primal
C .. 2
minimize  ||s]|
subject to X 's> (r+ 1)1k
Yis<(r—1)1g
Dual

maximize —7 [|Xp — Y|P +1 p+1]v
subject to 1pu=1,v

uw=>0,v>0
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Dual shows that p*(= d*) only depends on X, Y through their

inner-products

XX X'y
YTX Y'Y
The dual can be simplified:
minimize || Xpu— Y|’

subjectto lppu=1,v=1

w=>0,v>0

Geometrical interpretation: computing p* is equivalent to evaluating

dist (co X,coY)
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Example: Portfolio optimization
e T euros to invest among n assets
e 7, is the random rate of return of ¢th asset

e diversity constraint: no more than 80% of the investment should be
concentrated in any k < n stocks

Goal: maximize expected return subject to the constraints
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Optimization problem:

maximize r'zx

subjectto >0,1 2z =T

Optimization variable is £ € R™
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Equivalent problem:

maximize r'zx

subjectto x>0,1'2=T
1) v —kX<0.8T
r<v-—Al,
v >0

Optimization variable is (z,,A\) € R x R” x R
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Theorem (Strong duality) Let the primal be

minimize  f(x)
subjectto rz € X
Az <)

g(z) = (g1(2), ..., gm(x)) <0
Assume:

e X =(C NP where C is convex and P is a polyhedron

e f.91,..., gm : C — R are convex

e (Slater point) there exists xg € (riC') N P such that Azg < b and

g(zo) = (91(x0), - -, gm(w0)) <O

Then, strong duality holds (p* = d*) and the dual problem is solvable

when p* = d* are finite
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Duality gap depends on how the problem is represented

Example:
minimize e Y
subjectto z >0
y =10
No duality gap: p* =d* =1

“Same” example:

minimize e Y
subject to /z?2 +y?2 <=z

There is a duality gap: p* =1and d* =0
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Example: nonconvex problem with zero duality gap (A € S™)

Primal
minimize z' Az

T

subjectto z'z =1

Dual

maximize A\

subjectto A— A, =0

p* =d* = )\min (A)
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Example: projection onto an ellipsoid

L 2
minimize ||z — a|

subject to (z —¢) ' A(z —¢) < 1
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By the strong duality theorem p* = d*

The dual program is

(c—a) (In+pd) " (c—a)—p+|c—al
subjectto >0

N

maximize —
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Application of duality: certificates of infeasibility

m ellipsoids E; = {x € R" : r! A;x + 2b;r:1: + ¢; < 0} are given

Do their interiors intersect ?

A
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Equivalently: is this system of strict quadratic inequalities solvable ?

(2T Az +2] x4+ < 0
r! Asx + 2b2Ta: + ¢ < 0

2" A+ 20 24, < O
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System is unsolvable iff p* > 0 where
p* =inf{s : g(x) < sl,,}

where g = (91,92, --,9m), gi(x) = x' Az + QbiTx + ¢
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Through the strong duality theorem:

P20 & 3,50 20 clw)—bp) Alp) T b(u) =0

where

A(p) == piAi b(p) =Y pabi c(p) =) picy
=1 1=1 1=1

Using Schur's complement, the answer boils down to feasibility of a LMI:

Alp) b
1>0, 1Tu>0, () Bl

B b(p) " e(p)

A feasible i for the above LMI certifies that (), int E; = ()
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Example: approximating sum of ellipsoids

e Discrete-time linear dynamical system:

p

xz[n + 1] = Azx[n] 4+ Buln] (A : m x m and B are known)
q§ x[0] =0 (system initially at rest)
L [Jult]]] <1 (inputs u[t] are unknown)

e What is the set Sy C R™ of reachable states at n = N 7
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Since
z|N| = Aju[l] + Asul2] + - - - + Anu[N] (4, = AN""B)

the set S is a sum of ellipsoids
S can be written as

Sy = E(W1) +E(W3) + -+ E(Wy)

for appropriate matrices W,,, where EW) :={z ¢ R™ : ' Wz < 1}
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Approximate Sy by one outer ellipsoid E(WW):

minimize  vol (E(W))
subject to Sy C E(W)

vol(E(W)) oc det (W) is the volume of the ellipsoid E(W)
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How to code the constraint ?

Sy =E(W1)+---+ E(Wx) C E(W) if and only if

sup{(xy + - - —l—xN)TW(xl +---+aN) xZTVVZxZ <1} <1
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By weak duality, a sufficient condition for Sy C E(W) to hold is:

where
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Convex approximation of the original problem:

minimize  —logdet(W)

subjectto u >0
1"u<1
B(u, W) =<0

The variable to optimize is (u, W) € RY x S,
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Primal problem:
minimize  f(x)
subject to hi(z)=0 i=1,...,p
g9(z) 2k 0
re X
e f: R" - RU{+00} is the cost function
e g : R" —R™
e K Is a convex cone in R™

e 1 is the optimization variable
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Lagrangian:

L : R"XRPxR"™ — RU{+o0} L(x; N\, ) = f(z)+(\, h(x))+{(u, g(x))

Lagrange dual function:

L:RP xR™ - RU{—00} L\, p)=inf{L(x; A\, ) : z € X}

34



Lagrange dual problem:

maximize  L(\, u)
subject to u =g+ 0

Dual problem is convex
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Theorem (Weak duality) If = is primal feasible and (A, ) is dual
feasible then

L(A p) < f(2).

Thus,
d* < p*
where
p*:=inf{f(x) : h(x) =0,9(x) <0,z € X}
and
d* :=sup{L(A p) : p =k~ 0}
Corollary

e Primal is unbounded implies dual is infeasible

e Dual is unbounded implies primal is infeasible
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Theorem (Strong duality) Let the primal be

minimize  f(x)
subjectto rz € X
A(x) <b
9(z) 2k 0
Assume:
e X =(C NP where C is convex and P is a polyhedron
e f: C — Risconvex, A(:) is a linear map and g is K-convex

e (Slater point) there exists g € (riC') N P such that A(xg) < b and
g(xo) <K 0

Then, strong duality holds (p* = d*) and the dual problem is solvable
when p* = d* are finite

37



Example: “MAXCUT"-like optimization problem

maximize z' Az

subjectto z?=1 i=1,...,n

Equivalent reformulation:

maximize tr(AX)

subject to X;; =1 1=1,...
X >0
rank X =1
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Convex relaxation:

maximize tr(AX)
subjectto X;; =1 1=1,...,n
X =0
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Dual of “MAXCUT" -like problem is

minimize 1"\

subject to A — Diag(A) <0

Strong duality holds: dualizing again (bi-dual) gives

maximize tr(AX)
subjectto X;; =1 1=1,...,n
X >0
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Karush-Kuhn Tucker (KKT) conditions
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Convex primal problem:

minimize  f(x)

subject to hi(z)=0 ¢=1,...,p
gi(x) <0 j=1,....m
re X

Dual problem:

maximize  L(\, )
subjectto © >0
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Associated KKT system is:

/

r€argmin{L(y;\,u) : y € X} (“stationarity”)
h(x) =0, g(x) <0 (primal feasibility)
< >0 (dual feasibility)
\ g(z) " u=0 (complementary slackness)

System of conditions posed on (z, A, t) € R™ x RP x R™

43



Theorem

(%

2™ is a primal solution

I\

(A*, w*) is a dual solution & (xF, A%, u*) solves the KKT system
| Strong duality (SD) holds
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Assumption: primal & dual solvability + SD

Solving the primal through the dual:
e solve dual and get (\*, u*)

e set of primal solutions is
X* =X\, p) 0 {z - h(z) =0, g(x) <0}n{z : g(z) p* =0}

where
X (A5, p") :=argmin {L(x; \*, 1*) : x € X}

45



Example:

e Primal
minimize  —x
subjectto z € X =[—1,1]
<0
X*={0}
e Dual
maximize —|u — 1]

subjectto © >0
Dual solution is p* =1 and X™*(u*) = [—1, 1]
e There holds:

X*=X"p)Nn{z : z<0}n{x : zu* =0}
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Special case:
e f is strictly convex

e X Is convex
° h(aj) = Ax — b

e g=(91,92,--.,9m) IS a convex map

Then, X*(\*, u*) is a singleton, i.e.,

X* — X*()\*,ILL*>
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Example:

e Primal
minimize 2
subjectto xz € X =|[—1,1]
x <0
X* =10}

e Dual problem
maximize  L(u)
subjectto >0
where
12
1 - Y > 2
Dual solution is * =0 and X*(pu*) = X~

L(p) =
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Example: separable problems

minimize  fi(z1) + fa(@2) + - + fu(zn)
subject to z; € X

g1(z1) + g2(22) + - + gn(zn) <0

Dual function is
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Example: projection onto the probability simplex

“ e 1 2
minimize 3 ||z — al
subjectto x>0

1)e=1

. .
. L)
. .
. = =
"= s o=
" s o=
"= a o=
. T
x n
-
A * u
*
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KKT system:

r—pu=a+ A,
x>0

w>0

2/

T =

1)e=1
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Fact: for a,b,c € R"

/

a—b=c
a>0 a=c"
< &
b>0 b=c"
a'b=0
\
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Simplification of KKT system:

y

r=(a+A,)"
{ p=(a+Alp)”
1y =1

Solution:
e solve the piecewise linear equation 1, (a + \*1,)" =1

e primal solution is z* = (a + A*1,) ™
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Example: capacity of K parallel Gaussian channels
ni
T *)A—Ié—> (%1
o
o
o

nK

TK Héé—)?ﬂ{

Ll ~~ N(O,Pk) and 2% NN(O,Nk>
Power budget: Pi + Po +---+ Px = P,
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Goal: choose P.'s to maximize capacity

maximize Zi(:l log (1 + ]I\D,—’Z)
subjectto P >0
1, P =P

Optimization variable is P = (P, Ps, ..., Pg)
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KKT system

2

__YNe _

P>0,1,P =P
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Top conditions ensure A > 0 and defining 1 := 1/ yields

i

NNppur — P = N —n, k=1,2,..., K
P>0,1,P =P

w>0

P'iu=0
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Equivalent KKT system

i

Py —nNgpr =n — Ni
P,>0

y "NVepr >0

Py (nNgpx) =0

1,P =P,

Using the fact on page 52 yields

Py =(n—Ni)"
1, P = Py
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Solution:
e solve the piecewise linear equation 1! (n*1x — N)* = P

e primal solution is
P* = (n"lg = N)*

This is known as a water-filling solution
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Primal problem:

Dual problem:

minimize  f(x)

subject to  hi(x)=0 i=1,...

maximize  L(\, )
subject to =g+ 0
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Associated KKT system is:

/

r€argmin{L(y;\,u) : y € X} (“stationarity”)
. h(z) =0, g(z) <k 0 (primal feasibility)
p =g+ 0 (dual feasibility)
L (g(z), 1) =0 (complementary slackness)

System of conditions posed on (z, A, 1) € R™ x RP x R™
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Theorem

(%

2™ is a primal solution

I\

(A*, w*) is a dual solution & (xF, A%, u*) solves the KKT system
| Strong duality (SD) holds
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Example: analysis of a multiuser binary detector

‘ ;
o’ ' 1
1
o \ o !
‘ ;
' 1
1 1
(N 1
£ [} H
£\ 1 )
£\ 1
L} ) o
‘ 1 |
A Y [} | |
N % H
N
XY | v A\
Y1

YN
P binary users and base station with /N antennas
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Data model is y = Hs + v
e y € R" is array snapshot
o H ¢ RN*F is full column-rank channel matrix (assumed known)
o s € RY is a binary vector

e Gaussian noise v ~ N (0, 0%1Iy)
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ML detector solves

minimize |y — Hs||”
subject to 52 =1 p=1,...
Optimization variable is s = (s1,s2,...,5p)

Complexity of ML detector is exponential in P
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Equivalent problem:

minimize  tr (AS)

subject to diag(S) = 1,41

S >0
rank S =1
where i i
4 H'H —-H'y
| =yTH 0
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Dropping the rank constraint yields the SDP detector

minimize  tr (AS)
subject to diag(S) = 1,41
S >0

Suppose s* was transmitted. When is the SDP detector correct, i.e.,
when is

= |||l 1]

a solution of the SDP 7
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By the KKT conditions S* is a solution iff there exists (A*, Z*) such that

(A= Z* + Diag(\*)

S* = 0, diag(5*) = 1p4
Z* = 0

(Z*,5%) = 0

\
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Use the first condition to eliminate Z* and get

A — Diag(A\*) = 0

(A — Diag(A\*), S™*)

Thus, S* is optimal iff there exist \* such that

(A — Diag(\*) = 0

(A — Diag(\*))
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The second condition gives

Diag(s)"! 0]  [s*]
\« _ | Pias(s) Al
0 1|1

Using y = Hs™ + v, the first condition is equivalent to
H'H + Diag(s*) 'Diag(H 'v) = 0

(expected to hold with high probability at high SNR, i.e, small o2)

70



The solution S™ is unique if

H' H + Diag(s*) 'Diag(H "v) = 0
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