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Estimation in static undirected networks

n agents; agent ¢ holds time-varying dataset D;(t)
the probability distribution of the D;(t)'s depends on parameter 6
communication network is static and undirected
communication happens in discrete time ¢t =1,2,3,...
t n
goal: guess 6 from | J,_, U,_, Di(s) at t =1,2,3,...



Crash course on parametric estimation

e a parametric estimation problem requires:

> a parameter space ©
> an observation space Y
> a family of probability density functions {ps : ¥ — R}eceo:

poly) > 0 for all , / po(y)dy = 1
Y

e the estimation game:

> mother Nature chooses a § € © and uses py to draw a sample y
> you see y and have to guess 0
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Example: noisy channel

v

l

§ ———»] H —»@—»U

e data model:

» 0 € RP is the message

» H € R¥*? s the channel, assumed full column-rank
» v~ N (0,%) is gaussian noise

» y € R% is the measurement

> goal is channel inversion: given y, guess 0

e corresponds to:
> parameter space © = R?
» observation space Y = R¢
> parametric family
1 ~Yy-HO)TS (y—Ho)

P i)
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an estimator is a map

~

:Y =0, y—iy)

(implemented as a closed-form expression, a matlab file, ...)

an estimator is a random variable: it acts on the random variable y

distribution of y varies with the 6 chosen by mother Nature

so, distribution of é\also varies with the 6 chosen by mother Nature
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e mean value of 0 is

(5) = (i)

/Y 6o (y)dy

e interpretation: g (5) is the mean value of & when mother Nature

chooses 6

6/32



e covariance of 0 is
covy (5) = Ey ((5(21) — o (5)) (5(2/) — o (5))T)
= /Y (A(y) — Ho (5» (5(31) — Ho (5))Tp9(y)dy

e interpretation: covy (5) tell us how aspreads when mother Nature
chooses 6



o
©)

a realization of 6(y)

e what is a perfect estimator?

16 (é) -y

covy (5) =0 forallfecoO



e Cramér-Rao bound says perfect estimators cannot exist:
> if é\is unbiased,
e (9) -0 forallfco,

> then

covy (@\) =I1(6)""

where
1(0) = Eo (—V3logpe(y))
is the Fisher information matrix

e sometimes, we can design efficient estimators:

16 (5) -6 covp (5) —1(0)" foralldcO
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e how can we design efficient estimators?

e sometimes, the maximum likelihood (ML) principle works:

~

0 1Y -0 —
ML , y > argmax Po(y)

(finds the 6 that makes the observation the most plausible)

e in general, solving the ML optimization problem is hard. ..



Example: noisy channel from page 4

ML estimator is

O (y) = (HTEle)_l HTx 1y

OmL is unbiased:

T (é\ML) =0 forall@ecO

the covariance of Oy is

covy () = (H'S71H) ™

Oy is efficient because I(0) = HTS"'H forall € ©
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Distributed parameter estimation

v\
\

_ O
/

O

at time ¢, agent i observes y;(t) = H;(t)0 + v;(t): D;(t) = {y:(t)}
v;(t) ~ N(0,021) is independent across agents and time

agent i only knows its measurements y;(t) and matrices H;(t)
goal: guess 0 from Ui:l Ui, Di(s) at t=1,2,3,...



e what would a centralized estimator do?

e at time ¢, a centralized estimator would know:

» H;(s) for all i and s = 1,2,...,t (all the sensing matrices up to t)
» UL_, U, vi(s) (all the network observations up to t)
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e data model from the perspective of the central node, at time ¢:

y(1) H(1) (1)
y(2) H(2) v(2)
= : 0+
) o] Lo
H(t)
where
p it o
2 2 t (%) t
wy = |70 m@ = | =
yn(t) Hn(t) Un(t)
e assumptions:
> (bounded sensing) || H;(t)| < for all 7 and ¢

> (unbounded information) H(t ) ( ) > ooast— oo



e at time t, the central node could implement the ML estimator:

(0= ( ZH ) H(s )1(;§H<8>Ty<s>)

P(t) z(t)

e the inverse of P(t) exists for large t because H(t)TH(t) — oo

e note the recursions:
Hi(t+ )Ty (¢t + 1))

Pit+1) = ——P{t)+— (i Zn: H;(t+ )T H;(t + 1))
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e ML estimator is unbiased and has covariance

covy (§ML(t)) = o2 (Z H(s)TH(s)>

1

= o?(HOTH®))

e we have R
covy <0ML(t)) —0 ast— o

because H(t)TH(t) —

e the ML estimator gets more and more accurate as time goes: at
t = o0 it “knows" 6 exactly
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e structure of ML estimator suggests the estimator at agent i:

where z;(t) and P;(t) are local estimates of z(¢) and P(t)

e agent i updates P;(t) and z;(t) as follows:

t 1

(1) = —— Wizi(t) + —H;(t+ DTyt +1

zi(t+1) le m()+t+1 (t+1) yi(t+1)
t

Pit+1) = —S WP+ —H;t+1DTH;(t+1

(t+1) t+1jwi “()th+1 (t+1)" Hi(t+1)

e W € R™ ™ is a primitive matrix with diagonal entries, W1 = 1 and
Wi; =0ifity
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e how good is the distributed estimator @-?

e each @(t) is unbiased:

Eq (@-(t)) =0 foralltandc©

o each 0;(t) is asymptotically equivalent to By (t):
So(t) T e(t)Se(t) 2 — I, ast— oo,
for all 6 € ©, where

So(t) := covy (éML(t)> and  Ty(t) := covy (@(t))



Proof for scalar parameter 6
e data model at agent ::
yl(t) = hi (t)e + ’Ui(t)

where
» e R
> hl(t) R
> v;(t) ~ N(0,07)

e in vector notation, the network measurement at time ¢ is
y(t) = h(t)0 + v(t)
where

) v (t)
Y2(t) |2 ()

(1) i (2) on(t)
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e data model from the perspective of the central node, at time ¢:

y(1) h(1) o(1)
y(2) h(2) o(2)
| e+
] [rw] Lo
e ML estimator is
O (t) = 2t Dot 1(s)Ty(s)

i Yt ()]

e ML estimator is unbiased and has variance

o2

varo (B () = =T



e estimator at agent i is

-~ Z}(t)
0;(t) =
i(t) i)
where
(t+1) = o i »(t)+ih-(t+1) (t+1)
Zi - t+1 i ZJZ] +1 ) Yi
(t+1) = o i ‘(t)—f'il hi(t + 1)
Di — t+1 o ijDj t+1 7
e in vector notation:
t 1
t+1) = —— t ——h(t+1 t+1 1
A+D) = WO+ kDO (D)
t 1
1) = —— —_— 1 1 2
p(t+1) t+1Wp(t)+t+1h(t+ YJORt+1) (2



e taking expected values in (1):

o

Ee(z(t+1)):t+1

WEg (2(t)) + H%h(t +1)oh(t+1)0

Eo (2(t)) =p(t)§ forall t

e we conclude

£ (i) = Elow
= 0 foralle®

(i.e., each @(t) is unbiased)



e the variance of @(t) is

~ varg(z;(t))
vary (Qi(t)) = pi(t)z
Ey (2i(t) — ps(t)0)’
pi(t)?

e we have the recursion

t 1



e decomposing (1)

S(t+1) =

S(t+1) =

= 5(t)1 + Ud(t) we have

e equation (3) tells us

t - 1 T
T 15(t) + n(t—|—l)h(t+ 1) U(t+1)
t 1
1 t
— T
- ;Zl h(s)"v(s) forallt>1

vary (t0(t =3 Z I (s)



e equation (4) tell us that vary (tg(t)> is bounded

e from equation (2) we have

t

_ _ — 1 2
Pt +1) = P+ gy I+
N t 1 .
= — —U"h(t+1)Oh(t+1
Ft+1) = AR + U A+ 1) © At +1)

e it follows that ,
. 1
(t) = - > Ihs))?
s=1

and tp(t) is bounded



e we have

vano (B:0)  vany 6()
var, (§ML(t)) pi(t)2varg (§ML(t))
_var (6:(t)) 1

pi(t)  pi(t)varg (aML(t)>

e there holds:

tvaro (5i(1)) _, o* 4 1 e

pi(t) n tp;(t)vary <§ML(t)) o




o if {A(t)}i>0,{B(t)},~, are sequences of positive-definite matrices
and -
ATYV2 B ATV () — 1,

then



Useful formulas for random vectors

e if z € R is a random variable and f : R — R a function,

E(f(x)) = /R f(@)p(a)d,

where p : R — R is the probability density function of z

o if X = (z;;) € R™™ is a random matrix,

g(ﬂ?n) g($12) g(xlm)
- | B ()
E(Inl) E($n2) s E(xnm)

(random vectors correspond to m = 1)



e the covariance of a random vector x € R" is

cov (z) = E (¢ ~ E(2)) (v ~ E())") e R

e the variance of a random vector x € R" is

var () = tr (cov (x))

e note that
var(z) = E (||$ - E(ff)HQ)
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e the covariance between random vectors x € R™ and y € R™ is
cov(z,y) = E ((z - E()) (y - E(y)") € R

(note: we use cov(z) = cov(z,x))

e we say that the random vectors x and y are uncorrelated if

cov(z,y) =0

e if x is a random vector,

E (Az) = AE(x) cov(Azx) = Acov(z)AT



if  and y are random vectors,

E(z+y) = E(z)+E(y)
cov(z+y) = cov(z)+ cov(y)+ cov(z,y)+ cov(y, z)

z and y are independent random vectors if

p(x,y) = p(x)p(y)

(joint pdf is the product of the marginal pdfs)
if  and y are independent random vectors,

cov(z +y) = cov(r)+cov(y)

if (x,y) is a gaussian random vector and z and y are uncorrelated,
then x and y are independent



e if x and y are random vectors such that x < y, then

E(z) <E(y)



To know more

e distributed estimation:

» Z. Weng and P. Djuri¢, “Efficient estimation of linear parameters

from correlated node measurements over networks,” IEEE Sig. Proc.
Lett., 21(11), 2014.

e background on statistical signal processing:

» S. Kay, Fundamentals of Statistical Signal Processing, vol 1:
Estimation Theory, Prentice Hall.

> L. Scharf, Statistical Signal Processing: Detection, Estimation, and
Time Series Analysis.
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