
Network Science
Models and Distributed Algorithms

IST-CMU Phd course
João Xavier

TA: João Martins

November 9, 2016

1 / 32



Estimation in static undirected networks

D1(t)

D2(t)

D3(t)

D4(t)

D5(t)

• n agents; agent i holds time-varying dataset Di(t)
• the probability distribution of the Di(t)’s depends on parameter θ

• communication network is static and undirected

• communication happens in discrete time t = 1, 2, 3, . . .

• goal: guess θ from
⋃t
s=1

⋃n
i=1Di(s) at t = 1, 2, 3, . . .
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Crash course on parametric estimation

• a parametric estimation problem requires:
I a parameter space Θ
I an observation space Y
I a family of probability density functions {pθ : Y → R}θ∈Θ:

pθ(y) ≥ 0 for all y,

∫
Y

pθ(y)dy = 1

• the estimation game:
I mother Nature chooses a θ ∈ Θ and uses pθ to draw a sample y
I you see y and have to guess θ
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Example: noisy channel

H✓

v

y

• data model:
I θ ∈ Rp is the message
I H ∈ Rd×p is the channel, assumed full column-rank
I v ∼ N (0,Σ) is gaussian noise
I y ∈ Rd is the measurement
I goal is channel inversion: given y, guess θ

• corresponds to:
I parameter space Θ = Rp

I observation space Y = Rd

I parametric family

pθ(y) =
1

(2π)d/2
√

det (Σ)
e−

1
2

(y−Hθ)T Σ−1(y−Hθ)
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• an estimator is a map

θ̂ : Y → Θ, y 7→ θ̂(y)

(implemented as a closed-form expression, a matlab file, . . . )

• an estimator is a random variable: it acts on the random variable y

• distribution of y varies with the θ chosen by mother Nature

• so, distribution of θ̂ also varies with the θ chosen by mother Nature
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• mean value of θ̂ is

µθ

(
θ̂
)

= Eθ

(
θ̂(y)

)

=

∫

Y

θ̂(y)pθ(y)dy

• interpretation: µθ
(
θ̂
)

is the mean value of θ̂ when mother Nature

chooses θ
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• covariance of θ̂ is

covθ
(
θ̂
)

= Eθ

((
θ̂(y)− µθ

(
θ̂
))(

θ̂(y)− µθ
(
θ̂
))T)

=

∫

Y

(
θ̂(y)− µθ

(
θ̂
))(

θ̂(y)− µθ
(
θ̂
))T

pθ(y)dy

• interpretation: covθ
(
θ̂
)

tell us how θ̂ spreads when mother Nature

chooses θ
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⇥

µ✓

⇣
b✓
⌘

cov✓

⇣
b✓
⌘

✓

a realization of b✓(y)

• what is a perfect estimator?

µθ

(
θ̂
)

= θ covθ
(
θ̂
)

= 0 for all θ ∈ Θ
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• Cramér-Rao bound says perfect estimators cannot exist:
I if θ̂ is unbiased,

µθ
(
θ̂
)

= θ for all θ ∈ Θ,

I then
covθ

(
θ̂
)
� I(θ)−1

where
I(θ) = Eθ

(
−∇2

θ log pθ(y)
)

is the Fisher information matrix

• sometimes, we can design efficient estimators:

µθ

(
θ̂
)

= θ covθ
(
θ̂
)

= I (θ)
−1 for all θ ∈ Θ
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• how can we design efficient estimators?

• sometimes, the maximum likelihood (ML) principle works:

θ̂ML : Y → Θ, y 7→ arg max
θ∈Θ

pθ(y)

(finds the θ that makes the observation the most plausible)

• in general, solving the ML optimization problem is hard. . .
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Example: noisy channel from page 4

• ML estimator is

θ̂ML(y) =
(
HTΣ−1H

)−1
HTΣ−1y

• θ̂ML is unbiased:

µθ

(
θ̂ML

)
= θ for all θ ∈ Θ

• the covariance of θ̂ML is

covθ

(
θ̂ML

)
=
(
HTΣ−1H

)−1

• θ̂ML is efficient because I(θ) = HTΣ−1H for all θ ∈ Θ
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Distributed parameter estimation

D1(t)

D2(t)

D3(t)

D4(t)

D5(t)

• at time t, agent i observes yi(t) = Hi(t)θ + vi(t): Di(t) = {yi(t)}
• vi(t) ∼ N (0, σ2I) is independent across agents and time

• agent i only knows its measurements yi(t) and matrices Hi(t)

• goal: guess θ from
⋃t
s=1

⋃n
i=1Di(s) at t = 1, 2, 3, . . .
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• what would a centralized estimator do?

• at time t, a centralized estimator would know:
I Hi(s) for all i and s = 1, 2, . . . , t (all the sensing matrices up to t)
I
⋃t
s=1

⋃n
i=1 yi(s) (all the network observations up to t)
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• data model from the perspective of the central node, at time t:




y(1)
y(2)

...
y(t)


 =




H(1)
H(2)

...
H(t)




︸ ︷︷ ︸
H(t)

θ +




v(1)
v(2)

...
v(t)




where

y(t) :=




y1(t)
y2(t)

...
yn(t)


 H(t) :=




H1(t)
H2(t)

...
Hn(t)


 v(t) :=




v1(t)
v2(t)

...
vn(t)




• assumptions:
I (bounded sensing) ‖Hi(t)‖ ≤M , for all i and t
I (unbounded information) H(t)TH(t)→∞ as t→∞
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• at time t, the central node could implement the ML estimator:

θ̂ML(t) =

(
1

nt

t∑

s=1

H(s)TH(s)

︸ ︷︷ ︸
P (t)

)−1(
1

nt

t∑

s=1

H(s)T y(s)

︸ ︷︷ ︸
z(t)

)

• the inverse of P (t) exists for large t because H(t)TH(t)→∞

• note the recursions:

z(t+ 1) =
t

t+ 1
z(t) +

1

t+ 1

(
1

n

n∑

i=1

Hi(t+ 1)T yi(t+ 1)

)

P (t+ 1) =
t

t+ 1
P (t) +

1

t+ 1

(
1

n

n∑

i=1

Hi(t+ 1)THi(t+ 1)

)
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• ML estimator is unbiased and has covariance

covθ
(
θ̂ML(t)

)
= σ2

(
t∑

s=1

H(s)TH(s)

)−1

= σ2
(
H(t)TH(t)

)−1

• we have
covθ

(
θ̂ML(t)

)
→ 0 as t→∞

because H(t)TH(t)→∞

• the ML estimator gets more and more accurate as time goes: at
t =∞ it “knows” θ exactly
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• structure of ML estimator suggests the estimator at agent i:

θ̂i(t) = Pi(t)
−1zi(t)

where zi(t) and Pi(t) are local estimates of z(t) and P (t)

• agent i updates Pi(t) and zi(t) as follows:

zi(t+ 1) =
t

t+ 1

∑

j∼i
Wijzj(t) +

1

t+ 1
Hi(t+ 1)T yi(t+ 1)

Pi(t+ 1) =
t

t+ 1

∑

j∼i
WijPj(t) +

1

t+ 1
Hi(t+ 1)THi(t+ 1)

• W ∈ Rn×n is a primitive matrix with diagonal entries, W1 = 1 and
Wij = 0 if i 6∼ j
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• how good is the distributed estimator θ̂i?

• each θ̂i(t) is unbiased:

Eθ

(
θ̂i(t)

)
= θ for all t and θ ∈ Θ

• each θ̂i(t) is asymptotically equivalent to θ̂ML(t):

Σθ(t)
− 1

2 Υθ(t)Σθ(t)
− 1

2 → I, as t→∞,

for all θ ∈ Θ, where

Σθ(t) := covθ
(
θ̂ML(t)

)
and Υθ(t) := covθ

(
θ̂i(t)

)
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Proof for scalar parameter θ
• data model at agent i:

yi(t) = hi(t)θ + vi(t)

where
I θ ∈ R
I hi(t) ∈ R
I vi(t) ∼ N (0, σ2)

• in vector notation, the network measurement at time t is

y(t) = h(t)θ + v(t)

where

y(t) :=




y1(t)
y2(t)

...
yn(t)


 h(t) :=




h1(t)
h2(t)

...
hn(t)


 v(t) :=




v1(t)
v2(t)

...
vn(t)
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• data model from the perspective of the central node, at time t:




y(1)
y(2)

...
y(t)


 =




h(1)
h(2)

...
h(t)


 θ +




v(1)
v(2)

...
v(t)




• ML estimator is

θ̂ML(t) =
1
nt

∑t
s=1 h(s)T y(s)

1
nt

∑t
s=1 ‖h(s)‖2

• ML estimator is unbiased and has variance

varθ
(
θ̂ML(t)

)
=

σ2

∑t
s=1 ‖h(s)‖2
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• estimator at agent i is

θ̂i(t) =
zi(t)

pi(t)

where

zi(t+ 1) =
t

t+ 1

∑

j∼i
Wijzj(t) +

1

t+ 1
hi(t+ 1)yi(t+ 1)

pi(t+ 1) =
t

t+ 1

∑

j∼i
Wijpj(t) +

1

t+ 1
hi(t+ 1)2

• in vector notation:

z(t+ 1) =
t

t+ 1
Wz(t) +

1

t+ 1
h(t+ 1)� y(t+ 1) (1)

p(t+ 1) =
t

t+ 1
Wp(t) +

1

t+ 1
h(t+ 1)� h(t+ 1) (2)
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• taking expected values in (1):

Eθ (z(t+ 1)) =
t

t+ 1
WEθ (z(t)) +

1

t+ 1
h(t+ 1)� h(t+ 1)θ

• so,
Eθ (z(t)) = p(t)θ for all t

• we conclude

Eθ

(
θ̂i(t)

)
=

Eθ (zi(t))

pi(t)

= θ for all θ ∈ Θ

(i.e., each θ̂i(t) is unbiased)
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• the variance of θ̂i(t) is

varθ
(
θ̂i(t)

)
=

varθ(zi(t))

pi(t)2

=
Eθ (zi(t)− pi(t)θ)2

pi(t)2

• let δi(t) := zi(t)− pi(t)θ and

δ(t) :=




δ1(t)
δ2(t)

...
δn(t)


 = z(t)− p(t)θ

• we have the recursion

δ(t+ 1) =
t

t+ 1
Wδ(t) +

1

t+ 1
h(t+ 1)� v(t+ 1)
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• decomposing δ(t) = δ(t)1 + Uδ̂(t) we have

δ(t+ 1) =
t

t+ 1
δ(t) +

1

n(t+ 1)
h(t+ 1)T v(t+ 1) (3)

δ̂(t+ 1) =
t

t+ 1
Λδ̂(t) +

1

t+ 1
UTh(t+ 1)� v(t+ 1) (4)

• equation (3) tells us

δ(t) =
1

nt

t∑

s=1

h(s)T v(s) for all t ≥ 1

• so,

varθ
(
tδ(t)

)
=
σ2

n2

t∑

s=1

‖h(s)‖2

24 / 32



• equation (4) tell us that varθ
(
tδ̂(t)

)
is bounded

• from equation (2) we have

p(t+ 1) =
t

t+ 1
p(t) +

1

n(t+ 1)
‖h(t+ 1)‖2

p̂(t+ 1) =
t

t+ 1
Λp̂(t) +

1

t+ 1
UTh(t+ 1)� h(t+ 1)

• it follows that

tp(t) =
1

n

t∑

s=1

‖h(s)‖2

and tp̂(t) is bounded
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• we have

varθ
(
θ̂i(t)

)

varθ
(
θ̂ML(t)

) =
varθ (δi(t))

pi(t)2varθ
(
θ̂ML(t)

)

=
varθ (δi(t))

pi(t)

1

pi(t)varθ
(
θ̂ML(t)

)

• there holds:

tvarθ (δi(t))

pi(t)
→ σ2

n
and

1

tpi(t)varθ
(
θ̂ML(t)

) → n

σ2
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• if {A(t)}t≥0, {B(t)}t≥0 are sequences of positive-definite matrices
and

A−1/2(t)B(t)A−1/2(t)→ I,

then
tr (B(t))

tr (A(t))
→ 1.
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Useful formulas for random vectors

• if x ∈ R is a random variable and f : R→ R a function,

E (f(x)) =

∫

R

f(x)p(x)dx,

where p : R→ R is the probability density function of x

• if X = (xij) ∈ Rn×m is a random matrix,

E (X) =




E(x11) E(x12) · · · E(x1m)
E(x21) E(x22) · · · E(x2m)

...
E(xn1) E(xn2) · · · E(xnm)




(random vectors correspond to m = 1)
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• the covariance of a random vector x ∈ Rn is

cov (x) = E
(

(x−E(x)) (x−E(x))
T
)
∈ Rn×n

• the variance of a random vector x ∈ Rn is

var (x) = tr (cov (x))

• note that
var(x) = E

(
‖x−E(x)‖2

)
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• the covariance between random vectors x ∈ Rn and y ∈ Rm is

cov(x, y) = E
(

(x−E(x)) (y −E(y))
T
)
∈ Rn×m

(note: we use cov(x) ≡ cov(x, x))

• we say that the random vectors x and y are uncorrelated if

cov(x, y) = 0

• if x is a random vector,

E (Ax) = AE(x) cov(Ax) = Acov(x)AT
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• if x and y are random vectors,

E(x+ y) = E(x) + E(y)

cov(x+ y) = cov(x) + cov(y) + cov(x, y) + cov(y, x)

• x and y are independent random vectors if

p(x, y) = p(x)p(y)

(joint pdf is the product of the marginal pdfs)

• if x and y are independent random vectors,

cov(x+ y) = cov(x) + cov(y)

• if (x, y) is a gaussian random vector and x and y are uncorrelated,
then x and y are independent
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• if x and y are random vectors such that x ≤ y, then

E (x) ≤ E (y)
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To know more

• distributed estimation:
I Z. Weng and P. Djurić, “Efficient estimation of linear parameters

from correlated node measurements over networks,” IEEE Sig. Proc.
Lett., 21(11), 2014.

• background on statistical signal processing:
I S. Kay, Fundamentals of Statistical Signal Processing, vol 1:

Estimation Theory, Prentice Hall.
I L. Scharf, Statistical Signal Processing: Detection, Estimation, and

Time Series Analysis.
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