
Network Science
Models and Distributed Algorithms

IST-CMU Phd course
João Xavier

TA: João Martins

October 27, 2016

1 / 79

Optimization in static undirected networks

f1

f2

f3

f4

f5

• n agents; agent i holds function fi : Rd → R ∪ {∞}
• communication network is static and undirected
• communication happens in discrete time t = 0, 1, 2, 3, . . .
• goal: compute

x? ∈ arg min
x∈Rd

f(x) :=
f1(x) + · · ·+ fn(x)

n 2 / 79

Example: consensus

• we can view the arithmetic mean

θ =
θ1 + · · ·+ θn

n

as the solution of

minimize
x∈R

1
n

∑n
i=1

1

2
(x− θi)2

︸ ︷︷ ︸
fi(x)

3 / 79

Example: distributed logistic regression

• parametric model linking feature A ∈ Rd to outcome B ∈ {0, 1}:

log
P (B = 1 |A = a;x)

P (B = 0 |A = a;x)
= aTx

• equivalent to

P(B = 0 |A = a;x) =
1

1 + eaT x
P(B = 1 |X = x;w) =

ea
T x

1 + eaT x

• x ∈ Rd is the model parameter

4 / 79

• example:

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
B = 1

B = 0

5 / 79

• we are given the dataset
{

(ai, bi) ∈ Rd × {0, 1} : i = 1, . . . , n
}

• how do we learn x from the training dataset?

• maximum likelihood (ML) formulation:

maximize
x∈Rd

P (B1 = b1, . . . , Bn = bn |A1 = a1, . . . , An = an;x)

• boils down to solving

minimize
x∈Rd

∑n
i=1−biaTi x+ log

(
1 + ea

T
i x
)

6 / 79

• adding a regularizer (ρ > 0):

minimize
x∈Rd

1
n

∑n
i=1−biaTi x+ log

(
1 + ea

T
i x
)

+
ρ

2
‖x‖2

︸ ︷︷ ︸
fi(x)

• agent i holds training point (ai, bi) (for simplicity; it can hold more)

7 / 79

Example: target localization

• target at unknown position p ∈ Rm (m = 2 or 3)

• agent i at known position qi ∈ Rm, i = 1, . . . , n

• agent i measures
di = ‖p− qi‖+ noise

• how to find the target position p from the network data d1, . . . , dn?

8 / 79

• assuming measurement noise is small:

‖p‖2 − 2qTi p+ ‖qi‖2 ' d2i

or
[
1 −2qTi

]
︸ ︷︷ ︸

aTi

[
‖p‖2
p

]

︸ ︷︷ ︸
x

' d2i − ‖qi‖2︸ ︷︷ ︸
bi

• find x =
(
‖p‖2 , p

)
by solving a distributed least-squares problem:

minimize
x∈Rm+1

1
n

∑n
i=1

1

2

(
aTi x− bi

)2
︸ ︷︷ ︸

fi(x)

• suboptimal approach, but exact for typical agents’ configurations
with noiseless measurements

9 / 79

The optimization class C2(m,M)

• notation: let

C2(m,M) =
{
φ ∈ Rd → R : φ is continuously twice-differentiable

and mI � ∇2φ(x) �MI, for all x ∈ Rd
}

• assume each fi ∈ C2(0,Mi) and f ∈ C2(m,M) with m > 0
(we can always take M = M1+···+Mn

n)

10 / 79

• examples:
I consensus

Mi = 1, M = 1, m = 1

I regularized logistic regression

Mi = ‖ai‖2 + ρ, M =
‖a1‖2 + · · ·+ ‖an‖2

n
+ ρ, m = ρ

I target localization

Mi = ‖ai‖2 , M =
‖a1‖2 + · · ·+ ‖an‖2

n
, m =

σ2
min

([
a1 · · · an

])
n

(m > 0 if {q1, . . . , qn} is an affine independent set)

11 / 79

• if φ ∈ C2(m,M) then
I φ(y) +∇φ(y)T (x− y) + m

2
‖x− y‖2 ≤ φ(x)

I φ(x) ≤ φ(y) +∇φ(y)T (x− y) + M
2
‖x− y‖2

(φ is sandwiched between two quadratics)

I m ‖x− y‖2 ≤ (∇φ(x)−∇φ(y))T (x− y) ≤M ‖x− y‖2

I m ‖x− y‖ ≤ ‖∇φ(x)−∇φ(y)‖ ≤M ‖x− y‖

• if φ ∈ C2(m,M) with m > 0, then optimization problem

minimize
x∈Rd

φ(x)

has unique minimizer x?

12 / 79

• consider simple gradient method: x0 ∈ Rd and

xk+1 = xk − α∇φ
(
xk
)
, k = 0, 1, 2, . . .

• converges linearly for 0 < α < 2m
M2 :

∥∥xk − x?
∥∥ ≤

(√
1 + α2M2 − 2αm

)k ∥∥x0 − x?
∥∥

• with optimum α = m
M2 :

∥∥xk − x?
∥∥ ≤

(√
1− 1

M
m

)k ∥∥x0 − x?
∥∥

13 / 79

• example:

f(x) = log (1 + ex) +
1

2
x2

5 10 15 20 25 30

10
−3

10
−2

10
−1

10
0

10
1

k

∥

∥x
k
− x

⋆
∥

∥

14 / 79

• how to apply the gradient method in distributed settings?

• for simplicity, take d = 1

• naive approach: each agent
I does a (local) gradient step and
I averages the result with neighbors

• in matrix notation:

x(t+ 1) = W (x(t)− α∇F (x(t))) , t = 0, 1, 2, . . . ,

where F : R× · · · ×R→ R,

F (x1, . . . , xn) = f1(x1) + · · ·+ fn(xn),

and W is a primitive matrix, W1 = 1 and Wij = 0 whenever i 6∼ j
15 / 79

• let’s try on consensus problem with metropolis W and 0 < α < 2

• naive scheme doesn’t work:

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5

5

t

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x
⋆

• how can we fix this?
16 / 79

• for consensus: F (x1, . . . , xn) = 1
2 (x− θ1)

2
+ · · ·+ 1

2 (xn − θn)
2

• in matrix notation:

F (x) =
1

2
‖x− θ‖2 , ∇F (x) = x− θ

• algorithm is
x(t+ 1) = W (x(t)− α (x(t)− θ))

• we will change coordinates to analyze the algorithm

17 / 79

• the EVD of W is

W =
[

1√
n
1 U

] [1
Λ

] [1√
n
1T

UT

]

• U ∈ Rn×n−1 spans the orthogonal complement of span(1):

UTU = I, UT1 = 0

• in

Λ =



λ1

. . .

λn−1


 ,

all |λi| < 1 (since W is a primitive matrix)

18 / 79

• any x ∈ Rn can be uniquely decomposed as

x = x1 + Ux̂

where x = 1
n1

Tx and x̂ = UTx

1

x1

Rn

x

Ubx

span(1)

span(U)

19 / 79

• in the (x, x̂) coordinates, algorithm is:

x(t+ 1) = x(t)− α(x(t)− θ)
x̂(t+ 1) = Λ

(
x̂(t)− α

(
x̂(t)− θ̂

))

• we would like:
x(t) →

t→∞
θ and x̂(t) →

t→∞
0

• on one hand, since x(0) = θ:

x(t) ≡ θ, for all t

20 / 79

• on the other hand:

x̂i(t) →
t→∞

αλiθ̂i
1− λi(1− α)

6= 0

• this is what we need to fix

• how?

21 / 79

• by making the stepsize time-variant and diminishing to zero:

x(t+ 1) = W (x(t)− α(t)∇F (x(t)))

with α(t) ↓ 0

22 / 79

• back to example on page 16 with α(t) = (0.1)
t:

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5

5

t

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x
⋆

• we fixed the problem

• is this the end of the story?

23 / 79

• let’s try on the optimization problem

minimize
x∈R

1
n

∑n
i=1

1

2σ2
i

(x− θi)2
︸ ︷︷ ︸

fi(x)

• problema data is

θ1, . . . , θ5 = 1, 2, 3, 4, 5 σ2
1 , . . . , σ

2
5 = 1, 1, 0.5, 0.2, 1

• algorithm is: x(0) = θ and

x(t+ 1) = W (x(t)− α(t)∇F (x(t))) ,

with α(t) = (0.1)t

24 / 79

• algorithm doesn’t work:

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x
⋆

• can we fix the problem?

25 / 79

• yes, if the stepsize sequence satisfies:

α(t) > 0,
∑

t

α(t) =∞,
∑

t

α(t)2 <∞

• see proof in K. Kvaternik and L. Pavel, “Lyapunov analysis of a
distributed optimization scheme,” 5th Int. Conf. on Network
Games, Control and Opt., 2011.

26 / 79

• back to example on page 24 with α(t) = 1
t+1 :

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x
⋆

27 / 79

• unfortunately, we have lost linear convergence. . .

0 50 100 150
10

−2

10
−1

10
0

10
1

t

‖x(t) − x
⋆
1‖

28 / 79

EXTRA algorithm
• EXTRA1 algorithm is a constant stepsize gradient algorithm:

x(0) = initialization

x(1) = Wx(0)− α∇F (x(0))

x(t+ 1) = (I +W)x(t)− α∇F (x(t))− W̃x(t− 1) + α∇F (x(t− 1))

with W̃ = I+W
2 (other choices for W̃ are possible)

• equivalently:

x(t+ 1) = Wx(t)− α∇F (x(t))− (W̃ −W)

t−1∑

s=0

x(s)

for t ≥ 0

• algorithm form is not obvious! We will offer an intuitive path

1W. Shi et al., “EXTRA: an exact first-order algorithm for decentralized consensus
optimization,” 25(2), SIAM Journal on Opt., 2015.

29 / 79

• recall our goal: to compute

x? ∈ arg min
x∈R

f(x) :=
f1(x) + · · ·+ fn(x)

n

• let’s go back to naive idea2 on page 15:

x(t+ 1) = Wx(t)− α∇F (x(t)) , t = 0, 1, 2, . . . ,

where F : R× · · · ×R→ R,

F (x1, . . . , xn) = f1(x1) + · · ·+ fn(xn),

and W is a primitive matrix, W1 = 1 and Wij = 0 whenever i 6∼ j

2with a slight change: W acts only on x(t), not on ∇F (x(t)).
30 / 79

• for consensus, we have fi(x) = 1
2 (x− θi)2 and

x(t+ 1) = Wx(t)− α (x(t)− θ) t = 0, 1, 2, . . .

with x(0) = θ

• using the general decomposition x = x1 + Ux̂ on pages 18-19:

x(t+ 1) = x(t)− α
(
x(t)− θ

)

x̂(t+ 1) = Λx̂(t)− α
(
x̂(t)− θ̂

)

• we need x(t) →
t→∞

θ and x̂(t) →
t→∞

0

31 / 79

• x(t) ≡ θ but

x̂i(t+ 1) = (λi − α)x̂i(t) + αθ̂i ⇒ x̂i(t) →
t→∞

αθ̂i
1− (λi − α)

(assuming 0 < α < 2)

• shrinking the stepsize α(t) ↓ 0 solves the problem but kills linear
convergence

• can we make x̂i(t)→ 0 with a constant α?

32 / 79

• an insight from control theory: view the recursion

x̂i(t+ 1) = (λi − α)x̂i(t) + αθ̂i

as the feedback proportional controller

KPr(t)
e(t)

P (z)

d(t)

bxi(t)

• r(t) ≡ 0 is the reference

• KP = −(λi − α) is the controller gain

• P (z) = z−1 is the z-transform of the plant

• d(t) ≡ αθ̂i is the disturbance

• e(t) = r(t)− x̂i(t) is the mismatch between r(t) and x̂i(t)

33 / 79

• transfer function from disturbance to error is

E(z)

D(z)
=

1

1 +KP z−1

• for d(t) ≡ αθ̂i for t ≥ 0, we have D(z) = αθ̂i
1−z−1 and

E(z) =
αθ̂i

(1− (λi − α)z−1) (1− z−1)

• from the Final Value Theorem,

lim
t→∞

e(t) = lim
z→1

(z − 1)E(z)

=
αθ̂i

1− (λi − α)

(confirms the steady-state error that we already knew)

34 / 79

• how can we suppress a steady-state error?

• standard control trick: add an integral controller (Ki 6= 0)

r(t)
e(t)

P (z)

d(t)

bxi(t)KP +
KI

1 � z�1

35 / 79

• transfer function becomes

E(z)

D(z)
=

1

1 +
(
KP + KI

1−z−1

)
z−1

• plugging D(z) = αθ̂i
1−z−1 gives

E(z) =
αθ̂i(

1 +
(
−(λi − α) + KI

1−z−1

)
z−1
)

(1− z−1)

• Final Value Theorem gives

lim
t→∞

e(t) = lim
z→1

(z − 1)E(z)

= 0

36 / 79

r(t)
e(t)

P (z)

d(t)

bxi(t)KP +
KI

1 � z�1

• corresponds to time-dynamics:

x̂i(t+ 1) = (λi − α)x̂i(t) + αθ̂i −KI

t−1∑

s=0

x̂i(s)

• last equation is in (x, x̂) coordinates

• can we backtrack to natural coordinates x?
37 / 79

• let’s try the obvious idea:

x(t+ 1) = Wx(t)− α (x(t)− θ)−KI

t−1∑

s=0

x(s)

• gives

x(t+ 1) = x(t)− α
(
x(t)− θ

)
−KI

t−1∑

s=0

xi(s)

and
x(t) →

t→∞
0!

• we need KI = 0 for the coordinate x. . .

38 / 79

• possible approach:

x(t+ 1) = Wx(t)− α (x(t)− θ)− I −W
2

t−1∑

s=0

x(s)

• in (x, x̂) coordinates:

x(t+ 1) = x(t)− α
(
x(t)− θ

)

x̂i(t+ 1) = λix̂(t)− α
(
x̂i(t)− θ̂i

)
−Ki

t−1∑

s=0

x̂i(s)

with Ki := 1−λi

2 6= 0 (recall that |λi| < 1)

39 / 79

• our path led us to the recursion:

x(t+ 1) = Wx(t)− α (x(t)− θ)− I −W
2

t−1∑

s=0

x(s)

• equivalent form:

x(t+ 1) = Wx(t)− α∇F (x(t))−
(
W̃ −W

) t−1∑

s=0

x(s)

because ∇F (x) = x− θ and W̃ := I+W
2 ,

• compare with EXTRA algorithm:

x(t+ 1) = Wx(t)− α∇F (x(t))− (W̃ −W)

t−1∑

s=0

x(s)

for generic F

40 / 79

Brief analysis of EXTRA

• EXTRA has the right “fixed-point” property: if x(t)→ x then
x = x?1 with

x? ∈ arg min
x∈R

f(x) :=
f1(x) + · · ·+ fn(x)

n

• EXTRA converges linearly for consensus problem: from

x̂i(t+ 1) = λix̂(t)− α
(
x̂i(t)− θ̂i

)
−Ki

t−1∑

s=0

x̂i(s)

with Ki = 1−λi

2 , we get

x̂i(t+ 1) = (1− α+ λi)x̂i(t) +

(
α− 1 + λi

2

)
x̂i(t− 1)

41 / 79

• in vector form:
[
x̂i(t+ 1)
x̂i(t)

]
=

[
1− α+ λi α− 1+λi

2
1 0

]

︸ ︷︷ ︸
A(α)

[
x̂i(t)

x̂i(t− 1)

]

• we conclude: [
x̂i(t+ 1)
x̂i(t)

]
= A(α)t

[
x̂i(1)
x̂i(0)

]

• linear convergence occurs if ρ (A(α)) < 1

• we will show that ρ (A(α)) < 1 for 0 < α < 1
2

42 / 79

• characteristic polynomial of A(α) is

p(s) = s2 − (1 + λi − α)s+

(
1 + λi

2
− α

)

• we need to know how the roots of p(s) vary with α

• idea: re-arrange

p(s) = s2 − (1 + λi)s+
1 + λi

2︸ ︷︷ ︸
d(s)

+α (s− 1)︸ ︷︷ ︸
n(s)

and apply well-known root locus techniques from basic control

43 / 79

• proportional controller structure:

n(s)

d(s)
↵

• for α = 0, the roots of p(s) are those of d(s):

1 + λi
2
± i1

2

√
(1 + λi)(1− λi)

with absolute value √
1 + λi

2
∈]0, 1[

(recall that |λi| < 1)

44 / 79

• as α→∞, one root of p(s) goes to ∞ and the other goes to 1

• example with λi = 0.2:

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Root Locus

Real Axis (seconds
−1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
−

1
)

45 / 79

• we see that ρ (A(α)) < 1 until s = −1 becomes a root of p(s):

p(−1) = 0 ⇔ 1 + (1 + λi) +
1 + λi

2
− 2α = 0

⇔ α =
1

2
+

3

4
(λi + 1)

• we conclude that ρ (A(α)) < 1 for 0 < α < 1
2

46 / 79

• Theorem. Assume
I fi ∈ C2(0,Mi)
I f ∈ C2(m,M) with m > 0
I W � 0.

Then, EXTRA converges linearly for

0 < α <
m

max{M2
1 , . . . ,M

2
n}
.

• design of stepsize is independent from the network topology

• see proof of theorem 3.7 in W. Shi et al., “EXTRA: an exact
first-order algorithm for decentralized consensus optimization,”
25(2), SIAM Journal on Opt., 2015.

• theorem 3.7 shows that the condition f ∈ C2(m,M) can be
weakened (f only needs to be restricted strongly convex)

47 / 79

• comparing EXTRA with algorithm on page 27:

0 50 100 150
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

t

‖x(t) − x
⋆
1‖

EXTRA

48 / 79

Another gradient approach with constant stepsize
• G. Qu and N. Li, “Harnessing smoothness to accelerate distributed

optimization,” https://arxiv.org/abs/1605.07112, 2016.

• algorithm:

xi(0) = initialization, i = 1, . . . , n

si(0) = ∇fi (xi(0)) , i = 1, . . . , n

x(t+ 1) = Wx(t)− αs(t)
s(t+ 1) = Ws(t) +∇F (x(t+ 1))−∇F (x(t))

• we can see s(t) as tracking

1

n

n∑

i=1

∇fi (xi(t))

(recall problem 3 from homework 1)

49 / 79

https://arxiv.org/abs/1605.07112

Brief analysis

• The algorithm has the right “fixed-point” property: if
(x(t), s(t))→ (x, s) then x = x?1 with

x? ∈ arg min
x∈R

f(x) :=
f1(x) + · · ·+ fn(x)

n
,

and s = 0

• The algorithm converges linearly for consensus problem:
initialization x(0) = θ, s = 0, and

x(t+ 1) = Wx(t)− αs(t)
s(t+ 1) = Ws(t) + x(t+ 1)− x(t)

imply
x(t) ≡ θ s(t) ≡ 0

50 / 79

• on the other hand:

x̂(t+ 1) = Λx̂(t)− αŝ(t)
ŝ(t+ 1) = Λŝ(t) + x̂(t+ 1)− x̂(t)

= (Λ− αI) ŝ(t) + (Λ− I) x̂(t)

• in vector form:
[
x̂(t+ 1)
ŝ(t+ 1)

]
=

[
Λ −αI

Λ− I Λ− αI

]

︸ ︷︷ ︸
A(α)

[
x̂(t)
ŝ(t)

]

• we want to show that ρ (A(α)) < 1 for some interval α ∈]0, α[with
α > 0

51 / 79

• A(α) is similar to a block-diagonal matrix:

A(α) ∼




A1(α)
A2(α)

. . .

An−1(α)




where

Ai(α) =

[
λi −α

λi − 1 λi − α

]

• it suffices to show that ρ (Ai(α)) < 1 for α ∈]0, α[

52 / 79

• characteristic polynomial of Ai(α) is

p(s) = (s− λi)2︸ ︷︷ ︸
d(s)

+α (s− 1)︸ ︷︷ ︸
n(s)

• for α = 0, the roots of p(s) are those of d(s):

λi

with absolute value
|λi| ∈ [0, 1[

(recall that |λi| < 1)

53 / 79

• as α→∞, one root of p(s) goes to ∞ and the other goes to 1

• example with λi = 0.2:

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Root Locus

Real Axis (seconds
−1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
−

1
)

54 / 79

• we see that ρ (A(α)) < 1 until s = −1 becomes a root of p(s):

p(−1) = 0 ⇔ (λi + 1)2 − 2α = 0

⇔ α =
(λi + 1)2

2

• if all λi ≥ 0, we conclude that ρ (A(α)) < 1 for 0 < α < α := 1
2

55 / 79

• Theorem. Assume fi ∈ C2(m,M) with m > 0. Then, the
algorithm converges linearly for

0 < α < α.

• α depends on the network topology

• see proof of theorem 1 in G. Qu and N. Li, “Harnessing smoothness
to accelerate distributed optimization,”
https://arxiv.org/abs/1605.07112, 2016.

56 / 79

https://arxiv.org/abs/1605.07112

The optimization class C1(M)
• notation:

C1(M) =
{
φ ∈ Rd → R : φ is continuously-differentiable

and ‖∇φ(x)−∇φ(y)‖ ≤M ‖x− y‖ ,
for all x, y ∈ Rd

}

• C2(m,M) is contained in C1(M)

• some papers that only assume fi are convex and in C1(M):
I D. Jakovetić et al., “Fast distributed gradient methods,” IEEE

Trans, on Aut. Control, 59(5), 2014. Rate: O
(
1/t2

)
(with further

assumption of bounded gradients: ‖∇fi(x)‖ ≤ C for all x)
I W. Shi et al., “EXTRA: an exact first-order algorithm for

decentralized consensus optimization,” 25(2), SIAM Journal on Opt.,
2015. Rate: O(1/t)

I G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” https://arxiv.org/abs/1605.07112, 2016. Rate:
O(1/t)

57 / 79

https://arxiv.org/abs/1605.07112

ADMM

• ADMM = Alternate Direction Method of Multipliers

• “old” optimization method for

minimize
x,z

g(y) + h(z)

subject to Ay +Bz = c

where g and h are convex functions

• applied to distributed optimization in I. Schizas et al., “Consensus in
ad hoc WSNs with noisy links,” IEEE Trans. on Sig. Proc, 56(1),
2008

58 / 79

• ADMM is based on the augmented Lagrangian function

L(y, z;λ) = g(y) + h(z) + λT (Ay +Bz − c) +
ρ

2
‖Ay +Bz − c‖2

where ρ > 0 is chosen by the user

• λ = (. . . , λi, . . .) is lagrange multiplier: λi is associated with ith
constraint in Ay +Bz = c

• ADMM:

z(0) = initialization

λ(0) = initialization

y(t+ 1) = arg min
y
L (y, z(t);λ(t))

z(t+ 1) = arg min
z
L (y(t+ 1), z;λ(t))

λ(t+ 1) = λ(t) + ρ (Ay(t+ 1) +Bz(t+ 1)− c)

for t = 0, 1, 2, . . .

59 / 79

f1

f2

f3

f4

f5

• we will now see how ADMM can generate a distributed algorithm for

minimize
x

f(x) :=
f1(x) + · · ·+ fn(x)

n

60 / 79

step 1: choose a direction for each edge in the network

• example:

f1

f2

f3

f4

f5

I vertex set is V = {1, 2, . . . , 5}
I arc set is A = {(1, 4), (1, 3), (2, 1), (3, 2), (2, 5)}
I for an arc a ∈ A: S(a) := source of arc a, T (a) := sink or arc a

(S(1, 4) = 1, T (1, 4) = 4, S(1, 3) = 1, T (1, 3) = 3, . . .)

61 / 79

step 2: clone variables

• we want to solve
minimize

x

∑

v

fv(x)

• reformulate as

minimize
yv,za

∑
v fv (yv)

subject to yS(a) = za, a ∈ A
yT (a) = za, a ∈ A

• because network is connected, constraints make all yv’s the same:

yv = yu, for all v, u ∈ V

62 / 79

step 3: apply ADMM to reformulated problem

minimize
yv,za

∑

v

fv (yv)

︸ ︷︷ ︸
g(y)

+ 0︸︷︷︸
h(z)

subject to yS(a) = za, a ∈ A
yT (a) = za, a ∈ A

• (primal) variables are y = {yv}v∈V and z = {za}a∈A

• associate lagrange multiplier sa with constraint yS(a) = za

• associate lagrange multiplier ta with constraint yT (a) = za

63 / 79

• augmented lagrangian function is

L (yv, za; sa, ta) =
∑

v

fv(yv) +

∑

a

sTa
(
yS(a) − za

)
+
ρ

2

∑

a

∥∥yS(a) − za
∥∥2 +

∑

a

tTa
(
yT (a) − za

)
+
ρ

2

∑

a

∥∥yT (a) − za
∥∥2

• the ADMM iterations are

y(t+ 1) = arg min
y
L (yv, za(t); sa(t), ta(t)) (1)

z(t+ 1) = arg min
z
L (yv(t+ 1), z; sa(t), ta(t)) (2)

sa(t+ 1) = sa(t) + ρ
(
yS(a)(t+ 1)− za(t+ 1)

)
(3)

ta(t+ 1) = ta(t) + ρ
(
yT (a)(t+ 1)− za(t+ 1)

)
(4)

64 / 79

step 4: simplify the iterations

• from (2), we get

za(t+ 1) =
yS(a)(t+ 1) + yT (a)(t+ 1)

2
− sa(t) + ta(t)

2ρ
(5)

• plugging (5) into (3) and (4) gives

sa(t+ 1) = sa(t) + ρ

(
yS(a)(t+ 1)− yT (a)(t+ 1)

2
+
sa(t) + ta(t)

2ρ

)

(6)

ta(t+ 1) = ta(t) + ρ

(
yT (a)(t+ 1)− yS(a)(t+ 1)

2
+
sa(t) + ta(t)

2ρ

)

(7)

65 / 79

• trick: if sa(0) = 0 and ta(0) = 0 for a ∈ A, then (6) and (7) imply

sa(t) = −ta(t), for t ≥ 0 (8)

• plugging (8) into (5)–(7) gives

za(t+ 1) =
yS(a)(t+ 1) + yT (a)(t+ 1)

2
(9)

sa(t+ 1) = sa(t) + ρ
yS(a)(t+ 1)− yT (a)(t+ 1)

2
(10)

ta(t+ 1) = ta(t) + ρ
yT (a)(t+ 1)− yS(a)(t+ 1)

2
(11)

66 / 79

• rewrite (1) as a separable problem across agents:

y(t+ 1) = arg min
y

∑

v

fv (yv) +




∑

a∈S(v)
sa(t) +

∑

a∈T (v)

ta(t)

︸ ︷︷ ︸
λv(t)




T

yv +

ρ

2

∑

a∈S(v)
‖yv − za(t)‖2 +

ρ

2

∑

a∈T (v)

‖yv − za(t)‖2

where
I S(v) = set of arcs that leave v
I T (v) = set of arcs that arrive at v

67 / 79

• example:

f1

f2

f3

f4

f5

I S(1) = {(1, 4), (1, 3)}
I T (1) = {(2, 1)}
I S(2) = {(2, 1), (2, 5)}
I T (2) = {(3, 2)}
I S(4) = ∅
I . . .

68 / 79

• equivalently:

yv(t+1) = arg min
yv

fv (yv)+λv(t)
T yv+

ρ

2

∑

u∼v

∥∥∥∥yv −
yv(t) + yu(t)

2

∥∥∥∥
2

(12)

• update (12) does not depend on sa(t) or ta(t); only on λv(t)

• we can find a recursion for λv(t):

λv(t+ 1) =
∑

a∈S(v)
sa(t+ 1) +

∑

a∈T (v)

ta(t+ 1)

= λv(t) + ρ
∑

u∼v
yv(t+ 1)− yu(t+ 1) (13)

(we used (10) and (11))

69 / 79

• final algorithm:

yv(0) = initialization

λv(0) = 0

yv(t+ 1) = arg min
yv

fv (yv) + λv(t)
T yv +

ρ

2

∑

u∼v

∥∥∥∥yv −
yv(t) + yu(t)

2

∥∥∥∥
2

λv(t+ 1) = λv(t) + ρ
∑

u∼v
yv(t+ 1)− yu(t+ 1)

for t = 0, 1, 2, . . .

• algorithm is distributed

• agent v manages yv(t) and λv(t)

70 / 79

Example: distributed logistic regression

f1

f2

f3

f4

f5

• dataset of agent i:
{

(ai(k), bi(k)) ∈ R2 × {0, 1} : k = 1, . . . , 10
}

• private function of agent i: fi : R2 → R

fi(x) =

10∑

k=1

−bk(i)ak(i)Tx+ log
(

1 + eak(i)
T x
)

71 / 79

ρ = 0.01

0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

Coordinate 1

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x
⋆

72 / 79

ρ = 0.01

0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

Coordinate 2

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x
⋆

73 / 79

ρ = 0.1

0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

Coordinate 1

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x
⋆

74 / 79

ρ = 0.1

0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

Coordinate 2

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x
⋆

75 / 79

ρ = 1

0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

Coordinate 1

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x
⋆

76 / 79

ρ = 1

0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

Coordinate 2

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x
⋆

77 / 79

To know more (a tiny slice of available work)

• some (sub)gradient methods with shrinking stepsize:
I A. Nedic and A. Ozdaglar, “Distributed subgradient methods for

multi-agent optimization,” IEEE Trans. on Aut. Control, 54(1),
2009.

I K. Kvaternik and L. Pavel, “Lyapunov analysis of a distributed
optimization scheme,” 5th Int. Conf. on Network Games, Control
and Opt., 2011.

• some gradient algorithms for C2(m,M) with constant stepsize:
I D. Jakovetić et al., “Linear convergence rate of a class of distributed

augmented lagrangian algorithms,” IEEE Trans. on Aut. Control,
60(4), 2015.

I W. Shi et al., “EXTRA: an exact first-order algorithm for
decentralized consensus optimization,” 25(2), SIAM Journal on Opt.,
2015.

I G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” https://arxiv.org/abs/1605.07112, 2016.

78 / 79

https://arxiv.org/abs/1605.07112

• some gradient algorithms for C1(m,M):
I D. Jakovetić et al., “Fast distributed gradient methods,” IEEE

Trans, on Aut. Control, 59(5), 2014.
I W. Shi et al., “EXTRA: an exact first-order algorithm for

decentralized consensus optimization,” 25(2), SIAM Journal on Opt.,
2015.

I G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” https://arxiv.org/abs/1605.07112, 2016.

• some papers on ADMM:
I I. Schizas et al., “Consensus in ad hoc WSNs with noisy links,” IEEE

Trans. on Sig. Proc, 56(1), 2008.
I J. Bazerque and G. Giannakis,“Distributed spectrum sensing for

cognitive radio networks by exploiting sparsity,” IEEE Trans. on Sig.
Proc., 58(3), 2010.

I S. Boyd et al., Distributed optimization and statistical learning via
the ADMM, Foundations and Trends in Machine Learning, 3(1),
2011.

79 / 79

https://arxiv.org/abs/1605.07112

