Network Science
 Models and Distributed Algorithms

IST-CMU Phd course
João Xavier
TA: João Martins

October 27, 2016

Optimization in static undirected networks

- n agents; agent i holds function $f_{i}: \mathbf{R}^{d} \rightarrow \mathbf{R} \cup\{\infty\}$
- communication network is static and undirected
- communication happens in discrete time $t=0,1,2,3, \ldots$
- goal: compute

$$
x^{\star} \in \arg \min _{x \in \mathbf{R}^{d}} f(x):=\frac{f_{1}(x)+\cdots+f_{n}(x)}{n}
$$

Example: consensus

- we can view the arithmetic mean

$$
\bar{\theta}=\frac{\theta_{1}+\cdots+\theta_{n}}{n}
$$

as the solution of

$$
\operatorname{minimize}_{x \in \mathbf{R}} \frac{1}{n} \sum_{i=1}^{n} \underbrace{\frac{1}{2}\left(x-\theta_{i}\right)^{2}}_{f_{i}(x)}
$$

Example: distributed logistic regression

- parametric model linking feature $A \in \mathbf{R}^{d}$ to outcome $B \in\{0,1\}$:

$$
\log \frac{\mathbf{P}(B=1 \mid A=a ; x)}{\mathbf{P}(B=0 \mid A=a ; x)}=a^{T} x
$$

- equivalent to

$$
\mathbf{P}(B=0 \mid A=a ; x)=\frac{1}{1+e^{a^{T} x}} \quad \mathbf{P}(B=1 \mid X=x ; w)=\frac{e^{a^{T} x}}{1+e^{a^{T} x}}
$$

- $x \in \mathbf{R}^{d}$ is the model parameter
- example:

- we are given the dataset $\left\{\left(a_{i}, b_{i}\right) \in \mathbf{R}^{d} \times\{0,1\}: i=1, \ldots, n\right\}$
- how do we learn x from the training dataset?
- maximum likelihood (ML) formulation:

$$
\underset{x \in \mathbf{R}^{d}}{\operatorname{maximize}} \mathbf{P}\left(B_{1}=b_{1}, \ldots, B_{n}=b_{n} \mid A_{1}=a_{1}, \ldots, A_{n}=a_{n} ; x\right)
$$

- boils down to solving

$$
\underset{x \in \mathbf{R}^{d}}{\operatorname{minimize}} \sum_{i=1}^{n}-b_{i} a_{i}^{T} x+\log \left(1+e^{a_{i}^{T} x}\right)
$$

- adding a regularizer $(\rho>0)$:

$$
\underset{x \in \mathbf{R}^{d}}{\operatorname{minimize}} \frac{1}{n} \sum_{i=1}^{n} \underbrace{-b_{i} a_{i}^{T} x+\log \left(1+e^{a_{i}^{T} x}\right)+\frac{\rho}{2}\|x\|^{2}}_{f_{i}(x)}
$$

- agent i holds training point $\left(a_{i}, b_{i}\right)$ (for simplicity; it can hold more)

Example: target localization

- target at unknown position $p \in \mathbf{R}^{m}$ ($m=2$ or 3)
- agent i at known position $q_{i} \in \mathbf{R}^{m}, i=1, \ldots, n$
- agent i measures

$$
d_{i}=\left\|p-q_{i}\right\|+\text { noise }
$$

- how to find the target position p from the network data d_{1}, \ldots, d_{n} ?
- assuming measurement noise is small:

$$
\|p\|^{2}-2 q_{i}^{T} p+\left\|q_{i}\right\|^{2} \simeq d_{i}^{2}
$$

or

$$
\underbrace{\left[\begin{array}{cc}
1 & -2 q_{i}^{T}
\end{array}\right]}_{a_{i}^{T}} \underbrace{\left[\begin{array}{c}
\|p\|^{2} \\
p
\end{array}\right]}_{x} \simeq \underbrace{d_{i}^{2}-\left\|q_{i}\right\|^{2}}_{b_{i}}
$$

- find $x=\left(\|p\|^{2}, p\right)$ by solving a distributed least-squares problem:

$$
\operatorname{minimize}_{x \in \mathbf{R}^{m+1}} \frac{1}{n} \sum_{i=1}^{n} \underbrace{\frac{1}{2}\left(a_{i}^{T} x-b_{i}\right)^{2}}_{f_{i}(x)}
$$

- suboptimal approach, but exact for typical agents' configurations with noiseless measurements

The optimization class $C^{2}(m, M)$

- notation: let

$$
\begin{aligned}
C^{2}(m, M)= & \left\{\phi \in \mathbf{R}^{d} \rightarrow \mathbf{R}: \phi\right. \text { is continuously twice-differentiable } \\
& \text { and } \left.m I \preceq \nabla^{2} \phi(x) \preceq M I, \text { for all } x \in \mathbf{R}^{d}\right\}
\end{aligned}
$$

- assume each $f_{i} \in C^{2}\left(0, M_{i}\right)$ and $f \in C^{2}(m, M)$ with $m>0$ (we can always take $M=\frac{M_{1}+\cdots+M_{n}}{n}$)
- examples:
- consensus

$$
M_{i}=1, \quad M=1, \quad m=1
$$

- regularized logistic regression

$$
M_{i}=\left\|a_{i}\right\|^{2}+\rho, \quad M=\frac{\left\|a_{1}\right\|^{2}+\cdots+\left\|a_{n}\right\|^{2}}{n}+\rho, \quad m=\rho
$$

- target localization

$$
\begin{aligned}
& M_{i}=\left\|a_{i}\right\|^{2}, \quad M=\frac{\left\|a_{1}\right\|^{2}+\cdots+\left\|a_{n}\right\|^{2}}{n}, \quad m=\frac{\sigma_{\min }^{2}\left(\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right]\right)}{n} \\
& \left(m>0 \text { if }\left\{q_{1}, \ldots, q_{n}\right\} \text { is an affine independent set }\right)
\end{aligned}
$$

- if $\phi \in C^{2}(m, M)$ then
- $\phi(y)+\nabla \phi(y)^{T}(x-y)+\frac{m}{2}\|x-y\|^{2} \leq \phi(x)$
- $\phi(x) \leq \phi(y)+\nabla \phi(y)^{T}(x-y)+\frac{M}{2}\|x-y\|^{2}$ (ϕ is sandwiched between two quadratics)
- $m\|x-y\|^{2} \leq(\nabla \phi(x)-\nabla \phi(y))^{T}(x-y) \leq M\|x-y\|^{2}$
- $m\|x-y\| \leq\|\nabla \phi(x)-\nabla \phi(y)\| \leq M\|x-y\|$
- if $\phi \in C^{2}(m, M)$ with $m>0$, then optimization problem

$$
\underset{x \in \mathbf{R}^{d}}{\operatorname{minimize}} \quad \phi(x)
$$

has unique minimizer x^{\star}

- consider simple gradient method: $x^{0} \in \mathbf{R}^{d}$ and

$$
x^{k+1}=x^{k}-\alpha \nabla \phi\left(x^{k}\right), \quad k=0,1,2, \ldots
$$

- converges linearly for $0<\alpha<\frac{2 m}{M^{2}}$:

$$
\left\|x^{k}-x^{\star}\right\| \leq\left(\sqrt{1+\alpha^{2} M^{2}-2 \alpha m}\right)^{k}\left\|x^{0}-x^{\star}\right\|
$$

- with optimum $\alpha=\frac{m}{M^{2}}$:

$$
\left\|x^{k}-x^{\star}\right\| \leq\left(\sqrt{1-\frac{1}{\frac{M}{m}}}\right)^{k}\left\|x^{0}-x^{\star}\right\|
$$

- example:

$$
f(x)=\log \left(1+e^{x}\right)+\frac{1}{2} x^{2}
$$

- how to apply the gradient method in distributed settings?
- for simplicity, take $d=1$
- naive approach: each agent
- does a (local) gradient step and
- averages the result with neighbors
- in matrix notation:

$$
x(t+1)=W(x(t)-\alpha \nabla F(x(t))), \quad t=0,1,2, \ldots,
$$

where $F: \mathbf{R} \times \cdots \times \mathbf{R} \rightarrow \mathbf{R}$,

$$
F\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+\cdots+f_{n}\left(x_{n}\right),
$$

and W is a primitive matrix, $W \mathbf{1}=\mathbf{1}$ and $W_{i j}=0$ whenever $i \nsim j$

- let's try on consensus problem with metropolis W and $0<\alpha<2$
- naive scheme doesn't work:

- how can we fix this?
- for consensus: $F\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{2}\left(x-\theta_{1}\right)^{2}+\cdots+\frac{1}{2}\left(x_{n}-\theta_{n}\right)^{2}$
- in matrix notation:

$$
F(x)=\frac{1}{2}\|x-\theta\|^{2}, \quad \nabla F(x)=x-\theta
$$

- algorithm is

$$
x(t+1)=W(x(t)-\alpha(x(t)-\theta))
$$

- we will change coordinates to analyze the algorithm
- the EVD of W is

$$
W=\left[\begin{array}{ll}
\frac{1}{\sqrt{n}} \mathbf{1} & U
\end{array}\right]\left[\begin{array}{ll}
1 & \\
& \Lambda
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{n}} \mathbf{1}^{T} \\
U^{T}
\end{array}\right]
$$

- $U \in \mathbf{R}^{n \times n-1}$ spans the orthogonal complement of $\operatorname{span}(\mathbf{1})$:

$$
U^{T} U=I, \quad U^{T} \mathbf{1}=0
$$

- in

$$
\Lambda=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n-1}
\end{array}\right]
$$

all $\left|\lambda_{i}\right|<1$ (since W is a primitive matrix)

- any $x \in \mathbf{R}^{n}$ can be uniquely decomposed as

$$
x=\bar{x} \mathbf{1}+U \widehat{x}
$$

where $\bar{x}=\frac{1}{n} \mathbf{1}^{T} x$ and $\widehat{x}=U^{T} x$

- in the (\bar{x}, \widehat{x}) coordinates, algorithm is:

$$
\begin{aligned}
\bar{x}(t+1) & =\bar{x}(t)-\alpha(\bar{x}(t)-\bar{\theta}) \\
\widehat{x}(t+1) & =\Lambda(\widehat{x}(t)-\alpha(\widehat{x}(t)-\widehat{\theta}))
\end{aligned}
$$

- we would like:

$$
\bar{x}(t) \underset{t \rightarrow \infty}{\rightarrow} \bar{\theta} \quad \text { and } \quad \widehat{x}(t) \underset{t \rightarrow \infty}{\rightarrow} 0
$$

- on one hand, since $\bar{x}(0)=\bar{\theta}$:

$$
\bar{x}(t) \equiv \bar{\theta}, \quad \text { for all } t
$$

- on the other hand:

$$
\widehat{x}_{i}(t) \underset{t \rightarrow \infty}{\rightarrow} \frac{\alpha \lambda_{i} \widehat{\theta}_{i}}{1-\lambda_{i}(1-\alpha)} \neq 0
$$

- this is what we need to fix
- how?
- by making the stepsize time-variant and diminishing to zero:

$$
x(t+1)=W(x(t)-\alpha(t) \nabla F(x(t)))
$$

with $\alpha(t) \downarrow 0$

- back to example on page 16 with $\alpha(t)=(0.1)^{t}$:

- we fixed the problem
- is this the end of the story?
- let's try on the optimization problem

$$
\underset{x \in \mathbf{R}}{\operatorname{minimize}} \frac{1}{n} \sum_{i=1}^{n} \underbrace{\frac{1}{2 \sigma_{i}^{2}}\left(x-\theta_{i}\right)^{2}}_{f_{i}(x)}
$$

- problema data is

$$
\theta_{1}, \ldots, \theta_{5}=1,2,3,4,5 \quad \sigma_{1}^{2}, \ldots, \sigma_{5}^{2}=1,1,0.5,0.2,1
$$

- algorithm is: $x(0)=\theta$ and

$$
x(t+1)=W(x(t)-\alpha(t) \nabla F(x(t))),
$$

with $\alpha(t)=(0.1)^{t}$

- algorithm doesn't work:

- can we fix the problem?
- yes, if the stepsize sequence satisfies:

$$
\alpha(t)>0, \quad \sum_{t} \alpha(t)=\infty, \quad \sum_{t} \alpha(t)^{2}<\infty
$$

- see proof in K. Kvaternik and L. Pavel, "Lyapunov analysis of a distributed optimization scheme," 5th Int. Conf. on Network Games, Control and Opt., 2011.
- back to example on page 24 with $\alpha(t)=\frac{1}{t+1}$:

- unfortunately, we have lost linear convergence. . .

EXTRA algorithm

- EXTRA ${ }^{1}$ algorithm is a constant stepsize gradient algorithm:

$$
\begin{aligned}
& x(0)=\text { initialization } \\
& x(1)=W x(0)-\alpha \nabla F(x(0)) \\
& x(t+1)=(I+W) x(t)-\alpha \nabla F(x(t))-\widetilde{W} x(t-1)+\alpha \nabla F(x(t-1)) \\
& \text { with } \widetilde{W}=\frac{I+W}{2} \text { (other choices for } \widetilde{W} \text { are possible) }
\end{aligned}
$$

- equivalently:

$$
x(t+1)=W x(t)-\alpha \nabla F(x(t))-(\widetilde{W}-W) \sum_{s=0}^{t-1} x(s)
$$

for $t \geq 0$

- algorithm form is not obvious! We will offer an intuitive path

[^0]- recall our goal: to compute

$$
x^{\star} \in \arg \min _{x \in \mathbf{R}} f(x):=\frac{f_{1}(x)+\cdots+f_{n}(x)}{n}
$$

- let's go back to naive idea ${ }^{2}$ on page 15 :

$$
x(t+1)=W x(t)-\alpha \nabla F(x(t)), \quad t=0,1,2, \ldots,
$$

where $F: \mathbf{R} \times \cdots \times \mathbf{R} \rightarrow \mathbf{R}$,

$$
F\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+\cdots+f_{n}\left(x_{n}\right)
$$

and W is a primitive matrix, $W \mathbf{1}=\mathbf{1}$ and $W_{i j}=0$ whenever $i \nsim j$
${ }^{2}$ with a slight change: W acts only on $x(t)$, not on $\nabla F(x(t))$.

- for consensus, we have $f_{i}(x)=\frac{1}{2}\left(x-\theta_{i}\right)^{2}$ and

$$
x(t+1)=W x(t)-\alpha(x(t)-\theta) \quad t=0,1,2, \ldots
$$

with $x(0)=\theta$

- using the general decomposition $x=\bar{x} \mathbf{1}+U \widehat{x}$ on pages 18-19:

$$
\begin{aligned}
& \bar{x}(t+1)=\bar{x}(t)-\alpha(\bar{x}(t)-\bar{\theta}) \\
& \widehat{x}(t+1)=\Lambda \widehat{x}(t)-\alpha(\widehat{x}(t)-\widehat{\theta})
\end{aligned}
$$

- we need $\bar{x}(t) \underset{t \rightarrow \infty}{\rightarrow} \bar{\theta}$ and $\widehat{x}(t) \underset{t \rightarrow \infty}{\rightarrow} 0$
- $\bar{x}(t) \equiv \bar{\theta}$ but

$$
\widehat{x}_{i}(t+1)=\left(\lambda_{i}-\alpha\right) \widehat{x}_{i}(t)+\alpha \widehat{\theta}_{i} \quad \Rightarrow \quad \widehat{x}_{i}(t) \underset{t \rightarrow \infty}{\rightarrow} \frac{\alpha \widehat{\theta}_{i}}{1-\left(\lambda_{i}-\alpha\right)}
$$

(assuming $0<\alpha<2$)

- shrinking the stepsize $\alpha(t) \downarrow 0$ solves the problem but kills linear convergence
- can we make $\widehat{x}_{i}(t) \rightarrow 0$ with a constant α ?
- an insight from control theory: view the recursion

$$
\widehat{x}_{i}(t+1)=\left(\lambda_{i}-\alpha\right) \widehat{x}_{i}(t)+\alpha \widehat{\theta}_{i}
$$

as the feedback proportional controller

- $r(t) \equiv 0$ is the reference
- $K_{P}=-\left(\lambda_{i}-\alpha\right)$ is the controller gain
- $P(z)=z^{-1}$ is the z-transform of the plant
- $d(t) \equiv \alpha \widehat{\theta}_{i}$ is the disturbance
- $e(t)=r(t)-\widehat{x}_{i}(t)$ is the mismatch between $r(t)$ and $\widehat{x}_{i}(t)$
- transfer function from disturbance to error is

$$
\frac{E(z)}{D(z)}=\frac{1}{1+K_{P} z^{-1}}
$$

- for $d(t) \equiv \alpha \widehat{\theta}_{i}$ for $t \geq 0$, we have $D(z)=\frac{\alpha \widehat{\theta}_{i}}{1-z^{-1}}$ and

$$
E(z)=\frac{\alpha \widehat{\theta}_{i}}{\left(1-\left(\lambda_{i}-\alpha\right) z^{-1}\right)\left(1-z^{-1}\right)}
$$

- from the Final Value Theorem,

$$
\begin{aligned}
\lim _{t \rightarrow \infty} e(t) & =\lim _{z \rightarrow 1}(z-1) E(z) \\
& =\frac{\alpha \widehat{\theta}_{i}}{1-\left(\lambda_{i}-\alpha\right)}
\end{aligned}
$$

(confirms the steady-state error that we already knew)

- how can we suppress a steady-state error?
- standard control trick: add an integral controller $\left(K_{i} \neq 0\right)$

- transfer function becomes

$$
\frac{E(z)}{D(z)}=\frac{1}{1+\left(K_{P}+\frac{K_{I}}{1-z^{-1}}\right) z^{-1}}
$$

- plugging $D(z)=\frac{\alpha \widehat{\theta}_{i}}{1-z^{-1}}$ gives

$$
E(z)=\frac{\alpha \widehat{\theta}_{i}}{\left(1+\left(-\left(\lambda_{i}-\alpha\right)+\frac{K_{I}}{1-z^{-1}}\right) z^{-1}\right)\left(1-z^{-1}\right)}
$$

- Final Value Theorem gives

$$
\begin{aligned}
\lim _{t \rightarrow \infty} e(t) & =\lim _{z \rightarrow 1}(z-1) E(z) \\
& =0
\end{aligned}
$$

- corresponds to time-dynamics:

$$
\widehat{x}_{i}(t+1)=\left(\lambda_{i}-\alpha\right) \widehat{x}_{i}(t)+\alpha \widehat{\theta}_{i}-K_{I} \sum_{s=0}^{t-1} \widehat{x}_{i}(s)
$$

- last equation is in (\bar{x}, \widehat{x}) coordinates
- can we backtrack to natural coordinates x ?
- let's try the obvious idea:

$$
x(t+1)=W x(t)-\alpha(x(t)-\theta)-K_{I} \sum_{s=0}^{t-1} x(s)
$$

- gives

$$
\bar{x}(t+1)=\bar{x}(t)-\alpha(\bar{x}(t)-\bar{\theta})-K_{I} \sum_{s=0}^{t-1} \bar{x}_{i}(s)
$$

and

$$
\bar{x}(t) \underset{t \rightarrow \infty}{\rightarrow} 0!
$$

- we need $K_{I}=0$ for the coordinate \bar{x}...
- possible approach:

$$
x(t+1)=W x(t)-\alpha(x(t)-\theta)-\frac{I-W}{2} \sum_{s=0}^{t-1} x(s)
$$

- in (\bar{x}, \widehat{x}) coordinates:

$$
\begin{aligned}
\bar{x}(t+1) & =\bar{x}(t)-\alpha(\bar{x}(t)-\bar{\theta}) \\
\widehat{x}_{i}(t+1) & =\lambda_{i} \widehat{x}(t)-\alpha\left(\widehat{x}_{i}(t)-\widehat{\theta}_{i}\right)-K_{i} \sum_{s=0}^{t-1} \widehat{x}_{i}(s)
\end{aligned}
$$

with $K_{i}:=\frac{1-\lambda_{i}}{2} \neq 0$ (recall that $\left.\left|\lambda_{i}\right|<1\right)$

- our path led us to the recursion:

$$
x(t+1)=W x(t)-\alpha(x(t)-\theta)-\frac{I-W}{2} \sum_{s=0}^{t-1} x(s)
$$

- equivalent form:

$$
x(t+1)=W x(t)-\alpha \nabla F(x(t))-(\widetilde{W}-W) \sum_{s=0}^{t-1} x(s)
$$

because $\nabla F(x)=x-\theta$ and $\widetilde{W}:=\frac{I+W}{2}$,

- compare with EXTRA algorithm:

$$
x(t+1)=W x(t)-\alpha \nabla F(x(t))-(\widetilde{W}-W) \sum_{s=0}^{t-1} x(s)
$$

for generic F

Brief analysis of EXTRA

- EXTRA has the right "fixed-point" property: if $x(t) \rightarrow x$ then $x=x^{\star} \mathbf{1}$ with

$$
x^{\star} \in \arg \min _{x \in \mathbf{R}} f(x):=\frac{f_{1}(x)+\cdots+f_{n}(x)}{n}
$$

- EXTRA converges linearly for consensus problem: from

$$
\widehat{x}_{i}(t+1)=\lambda_{i} \widehat{x}(t)-\alpha\left(\widehat{x}_{i}(t)-\widehat{\theta}_{i}\right)-K_{i} \sum_{s=0}^{t-1} \widehat{x}_{i}(s)
$$

with $K_{i}=\frac{1-\lambda_{i}}{2}$, we get

$$
\widehat{x}_{i}(t+1)=\left(1-\alpha+\lambda_{i}\right) \widehat{x}_{i}(t)+\left(\alpha-\frac{1+\lambda_{i}}{2}\right) \widehat{x}_{i}(t-1)
$$

- in vector form:

$$
\left[\begin{array}{c}
\widehat{x}_{i}(t+1) \\
\widehat{x}_{i}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
1-\alpha+\lambda_{i} & \alpha-\frac{1+\lambda_{i}}{2} \\
1 & 0
\end{array}\right]}_{A(\alpha)}\left[\begin{array}{c}
\widehat{x}_{i}(t) \\
\widehat{x}_{i}(t-1)
\end{array}\right]
$$

- we conclude:

$$
\left[\begin{array}{c}
\widehat{x}_{i}(t+1) \\
\widehat{x}_{i}(t)
\end{array}\right]=A(\alpha)^{t}\left[\begin{array}{l}
\widehat{x}_{i}(1) \\
\widehat{x}_{i}(0)
\end{array}\right]
$$

- linear convergence occurs if $\rho(A(\alpha))<1$
- we will show that $\rho(A(\alpha))<1$ for $0<\alpha<\frac{1}{2}$
- characteristic polynomial of $A(\alpha)$ is

$$
p(s)=s^{2}-\left(1+\lambda_{i}-\alpha\right) s+\left(\frac{1+\lambda_{i}}{2}-\alpha\right)
$$

- we need to know how the roots of $p(s)$ vary with α
- idea: re-arrange

$$
p(s)=\underbrace{s^{2}-\left(1+\lambda_{i}\right) s+\frac{1+\lambda_{i}}{2}}_{d(s)}+\alpha \underbrace{(s-1)}_{n(s)}
$$

and apply well-known root locus techniques from basic control

- proportional controller structure:

- for $\alpha=0$, the roots of $p(s)$ are those of $d(s)$:

$$
\frac{1+\lambda_{i}}{2} \pm i \frac{1}{2} \sqrt{\left(1+\lambda_{i}\right)\left(1-\lambda_{i}\right)}
$$

with absolute value

$$
\left.\sqrt{\frac{1+\lambda_{i}}{2}} \in\right] 0,1[
$$

(recall that $\left|\lambda_{i}\right|<1$)

- as $\alpha \rightarrow \infty$, one root of $p(s)$ goes to ∞ and the other goes to 1
- example with $\lambda_{i}=0.2$:

Root Locus

- we see that $\rho(A(\alpha))<1$ until $s=-1$ becomes a root of $p(s)$:

$$
\begin{aligned}
p(-1)=0 & \Leftrightarrow 1+\left(1+\lambda_{i}\right)+\frac{1+\lambda_{i}}{2}-2 \alpha=0 \\
& \Leftrightarrow \alpha=\frac{1}{2}+\frac{3}{4}\left(\lambda_{i}+1\right)
\end{aligned}
$$

- we conclude that $\rho(A(\alpha))<1$ for $0<\alpha<\frac{1}{2}$
- Theorem. Assume
- $f_{i} \in C^{2}\left(0, M_{i}\right)$
- $f \in C^{2}(m, M)$ with $m>0$
- $W \succeq 0$.

Then, EXTRA converges linearly for

$$
0<\alpha<\frac{m}{\max \left\{M_{1}^{2}, \ldots, M_{n}^{2}\right\}}
$$

- design of stepsize is independent from the network topology
- see proof of theorem 3.7 in W. Shi et al., "EXTRA: an exact first-order algorithm for decentralized consensus optimization," 25(2), SIAM Journal on Opt., 2015.
- theorem 3.7 shows that the condition $f \in C^{2}(m, M)$ can be weakened (f only needs to be restricted strongly convex)
- comparing EXTRA with algorithm on page 27 :

Another gradient approach with constant stepsize

- G. Qu and N. Li, "Harnessing smoothness to accelerate distributed optimization," https://arxiv.org/abs/1605.07112, 2016.
- algorithm:

$$
\begin{aligned}
x_{i}(0) & =\text { initialization, } \quad i=1, \ldots, n \\
s_{i}(0) & =\nabla f_{i}\left(x_{i}(0)\right), \quad i=1, \ldots, n \\
x(t+1) & =W x(t)-\alpha s(t) \\
s(t+1) & =W s(t)+\nabla F(x(t+1))-\nabla F(x(t))
\end{aligned}
$$

- we can see $s(t)$ as tracking

$$
\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(x_{i}(t)\right)
$$

(recall problem 3 from homework 1)

Brief analysis

- The algorithm has the right "fixed-point" property: if $(x(t), s(t)) \rightarrow(x, s)$ then $x=x^{\star} \mathbf{1}$ with

$$
x^{\star} \in \arg \min _{x \in \mathbf{R}} f(x):=\frac{f_{1}(x)+\cdots+f_{n}(x)}{n}
$$

and $s=0$

- The algorithm converges linearly for consensus problem: initialization $x(0)=\theta, s=0$, and

$$
\begin{aligned}
x(t+1) & =W x(t)-\alpha s(t) \\
s(t+1) & =W s(t)+x(t+1)-x(t)
\end{aligned}
$$

imply

$$
\bar{x}(t) \equiv \bar{\theta} \quad \bar{s}(t) \equiv 0
$$

- on the other hand:

$$
\begin{aligned}
\widehat{x}(t+1) & =\Lambda \widehat{x}(t)-\alpha \widehat{s}(t) \\
\widehat{s}(t+1) & =\Lambda \widehat{s}(t)+\widehat{x}(t+1)-\widehat{x}(t) \\
& =(\Lambda-\alpha I) \widehat{s}(t)+(\Lambda-I) \widehat{x}(t)
\end{aligned}
$$

- in vector form:

$$
\left[\begin{array}{l}
\widehat{x}(t+1) \\
\widehat{s}(t+1)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\Lambda & -\alpha I \\
\Lambda-I & \Lambda-\alpha I
\end{array}\right]}_{A(\alpha)}\left[\begin{array}{l}
\widehat{x}(t) \\
\widehat{s}(t)
\end{array}\right]
$$

- we want to show that $\rho(A(\alpha))<1$ for some interval $\alpha \in] 0, \bar{\alpha}[$ with $\bar{\alpha}>0$
- $A(\alpha)$ is similar to a block-diagonal matrix:

$$
A(\alpha) \sim\left[\begin{array}{llll}
A_{1}(\alpha) & & & \\
& A_{2}(\alpha) & & \\
& & \ddots & \\
& & & A_{n-1}(\alpha)
\end{array}\right]
$$

where

$$
A_{i}(\alpha)=\left[\begin{array}{cc}
\lambda_{i} & -\alpha \\
\lambda_{i}-1 & \lambda_{i}-\alpha
\end{array}\right]
$$

- it suffices to show that $\rho\left(A_{i}(\alpha)\right)<1$ for $\left.\alpha \in\right] 0, \bar{\alpha}[$
- characteristic polynomial of $A_{i}(\alpha)$ is

$$
p(s)=\underbrace{\left(s-\lambda_{i}\right)^{2}}_{d(s)}+\alpha \underbrace{(s-1)}_{n(s)}
$$

- for $\alpha=0$, the roots of $p(s)$ are those of $d(s)$:

$$
\lambda_{i}
$$

with absolute value

$$
\left|\lambda_{i}\right| \in[0,1[
$$

(recall that $\left|\lambda_{i}\right|<1$)

- as $\alpha \rightarrow \infty$, one root of $p(s)$ goes to ∞ and the other goes to 1
- example with $\lambda_{i}=0.2$:

Root Locus

- we see that $\rho(A(\alpha))<1$ until $s=-1$ becomes a root of $p(s)$:

$$
\begin{aligned}
p(-1)=0 & \Leftrightarrow\left(\lambda_{i}+1\right)^{2}-2 \alpha=0 \\
& \Leftrightarrow \alpha=\frac{\left(\lambda_{i}+1\right)^{2}}{2}
\end{aligned}
$$

- if all $\lambda_{i} \geq 0$, we conclude that $\rho(A(\alpha))<1$ for $0<\alpha<\bar{\alpha}:=\frac{1}{2}$
- Theorem. Assume $f_{i} \in C^{2}(m, M)$ with $m>0$. Then, the algorithm converges linearly for

$$
0<\alpha<\bar{\alpha} .
$$

- $\bar{\alpha}$ depends on the network topology
- see proof of theorem 1 in G. Qu and N. Li, "Harnessing smoothness to accelerate distributed optimization," https://arxiv.org/abs/1605.07112, 2016.

The optimization class $C^{1}(M)$

- notation:

$$
\begin{aligned}
C^{1}(M)= & \left\{\phi \in \mathbf{R}^{d} \rightarrow \mathbf{R}: \phi\right. \text { is continuously-differentiable } \\
& \text { and }\|\nabla \phi(x)-\nabla \phi(y)\| \leq M\|x-y\| \\
& \text { for all } \left.x, y \in \mathbf{R}^{d}\right\}
\end{aligned}
$$

- $C^{2}(m, M)$ is contained in $C^{1}(M)$
- some papers that only assume f_{i} are convex and in $C^{1}(M)$:
- D. Jakovetić et al., "Fast distributed gradient methods," IEEE Trans, on Aut. Control, 59(5), 2014. Rate: $\mathcal{O}\left(1 / t^{2}\right)$ (with further assumption of bounded gradients: $\left\|\nabla f_{i}(x)\right\| \leq C$ for all $\left.x\right)$
- W. Shi et al., "EXTRA: an exact first-order algorithm for decentralized consensus optimization," 25(2), SIAM Journal on Opt., 2015. Rate: $\mathcal{O}(1 / t)$
- G. Qu and N. Li, "Harnessing smoothness to accelerate distributed optimization," https://arxiv.org/abs/1605.07112, 2016. Rate: $\mathcal{O}(1 / t)$

ADMM

- ADMM $=$ Alternate Direction Method of Multipliers
- "old" optimization method for

$$
\begin{array}{ll}
\underset{x, z}{\operatorname{minimize}} & g(y)+h(z) \\
\text { subject to } & A y+B z=c
\end{array}
$$

where g and h are convex functions

- applied to distributed optimization in I. Schizas et al., "Consensus in ad hoc WSNs with noisy links," IEEE Trans. on Sig. Proc, 56(1), 2008
- ADMM is based on the augmented Lagrangian function

$$
L(y, z ; \lambda)=g(y)+h(z)+\lambda^{T}(A y+B z-c)+\frac{\rho}{2}\|A y+B z-c\|^{2}
$$

where $\rho>0$ is chosen by the user

- $\lambda=\left(\ldots, \lambda_{i}, \ldots\right)$ is lagrange multiplier: λ_{i} is associated with i th constraint in $A y+B z=c$
- ADMM:

$$
\begin{aligned}
z(0) & =\text { initialization } \\
\lambda(0) & =\text { initialization } \\
y(t+1) & =\arg \min _{y} L(y, z(t) ; \lambda(t)) \\
z(t+1) & =\arg \min _{z} L(y(t+1), z ; \lambda(t)) \\
\lambda(t+1) & =\lambda(t)+\rho(A y(t+1)+B z(t+1)-c)
\end{aligned}
$$

for $t=0,1,2, \ldots$

- we will now see how ADMM can generate a distributed algorithm for

$$
\underset{x}{\operatorname{minimize}} f(x):=\frac{f_{1}(x)+\cdots+f_{n}(x)}{n}
$$

step 1: choose a direction for each edge in the network

- example:

- vertex set is $\mathcal{V}=\{1,2, \ldots, 5\}$
- arc set is $\mathcal{A}=\{(1,4),(1,3),(2,1),(3,2),(2,5)\}$
- for an arc $a \in \mathcal{A}: S(a):=$ source of arc $a, T(a):=$ sink or arc a

$$
(S(1,4)=1, T(1,4)=4, S(1,3)=1, T(1,3)=3, \ldots)
$$

step 2: clone variables

- we want to solve

$$
\underset{x}{\operatorname{minimize}} \sum_{v} f_{v}(x)
$$

- reformulate as

$$
\begin{array}{ll}
\underset{y_{v}, z_{a}}{\operatorname{minimize}} & \sum_{v} f_{v}\left(y_{v}\right) \\
\text { subject to } & y_{S(a)}=z_{a}, \quad a \in \mathcal{A} \\
& y_{T(a)}=z_{a}, \quad a \in \mathcal{A}
\end{array}
$$

- because network is connected, constraints make all y_{v} 's the same:

$$
y_{v}=y_{u}, \quad \text { for all } v, u \in \mathcal{V}
$$

step 3: apply ADMM to reformulated problem

- (primal) variables are $y=\left\{y_{v}\right\}_{v \in \mathcal{V}}$ and $z=\left\{z_{a}\right\}_{a \in \mathcal{A}}$
- associate lagrange multiplier s_{a} with constraint $y_{S(a)}=z_{a}$
- associate lagrange multiplier t_{a} with constraint $y_{T(a)}=z_{a}$
- augmented lagrangian function is

$$
\begin{aligned}
L\left(y_{v}, z_{a} ; s_{a}, t_{a}\right)= & \sum_{v} f_{v}\left(y_{v}\right)+ \\
& \sum_{a} s_{a}^{T}\left(y_{S(a)}-z_{a}\right)+\frac{\rho}{2} \sum_{a}\left\|y_{S(a)}-z_{a}\right\|^{2}+ \\
& \sum_{a} t_{a}^{T}\left(y_{T(a)}-z_{a}\right)+\frac{\rho}{2} \sum_{a}\left\|y_{T(a)}-z_{a}\right\|^{2}
\end{aligned}
$$

- the ADMM iterations are

$$
\begin{align*}
y(t+1) & =\arg \min _{y} L\left(y_{v}, z_{a}(t) ; s_{a}(t), t_{a}(t)\right) \tag{1}\\
z(t+1) & =\arg \min _{z} L\left(y_{v}(t+1), z ; s_{a}(t), t_{a}(t)\right) \tag{2}\\
s_{a}(t+1) & =s_{a}(t)+\rho\left(y_{S(a)}(t+1)-z_{a}(t+1)\right) \tag{3}\\
t_{a}(t+1) & =t_{a}(t)+\rho\left(y_{T(a)}(t+1)-z_{a}(t+1)\right) \tag{4}
\end{align*}
$$

step 4: simplify the iterations

- from (2), we get

$$
\begin{equation*}
z_{a}(t+1)=\frac{y_{S(a)}(t+1)+y_{T(a)}(t+1)}{2}-\frac{s_{a}(t)+t_{a}(t)}{2 \rho} \tag{5}
\end{equation*}
$$

- plugging (5) into (3) and (4) gives

$$
\begin{align*}
& s_{a}(t+1)=s_{a}(t)+\rho\left(\frac{y_{S(a)}(t+1)-y_{T(a)}(t+1)}{2}+\frac{s_{a}(t)+t_{a}(t)}{2 \rho}\right) \tag{6}\\
& t_{a}(t+1)=t_{a}(t)+\rho\left(\frac{y_{T(a)}(t+1)-y_{S(a)}(t+1)}{2}+\frac{s_{a}(t)+t_{a}(t)}{2 \rho}\right) \tag{7}
\end{align*}
$$

- trick: if $s_{a}(0)=0$ and $t_{a}(0)=0$ for $a \in \mathcal{A}$, then (6) and (7) imply

$$
\begin{equation*}
s_{a}(t)=-t_{a}(t), \quad \text { for } t \geq 0 \tag{8}
\end{equation*}
$$

- plugging (8) into (5)-(7) gives

$$
\begin{align*}
& z_{a}(t+1)=\frac{y_{S(a)}(t+1)+y_{T(a)}(t+1)}{2} \tag{9}\\
& s_{a}(t+1)=s_{a}(t)+\rho \frac{y_{S(a)}(t+1)-y_{T(a)}(t+1)}{2} \tag{10}\\
& t_{a}(t+1)=t_{a}(t)+\rho \frac{y_{T(a)}(t+1)-y_{S(a)}(t+1)}{2} \tag{11}
\end{align*}
$$

- rewrite (1) as a separable problem across agents:

$$
\begin{aligned}
y(t+1)= & \arg \min _{y} \sum_{v} f_{v}\left(y_{v}\right)+(\underbrace{\sum_{a \in \mathcal{S}(v)} s_{a}(t)+\sum_{a \in \mathcal{T}(v)} t_{a}(t)}_{\lambda_{v}(t)})^{T} y_{v}+ \\
& \frac{\rho}{2} \sum_{a \in \mathcal{S}(v)}\left\|y_{v}-z_{a}(t)\right\|^{2}+\frac{\rho}{2} \sum_{a \in \mathcal{T}(v)}\left\|y_{v}-z_{a}(t)\right\|^{2}
\end{aligned}
$$

where

- $\mathcal{S}(v)=$ set of arcs that leave v
- $\mathcal{T}(v)=$ set of arcs that arrive at v
- example:

- $\mathcal{S}(1)=\{(1,4),(1,3)\}$
- $\mathcal{T}(1)=\{(2,1)\}$
- $\mathcal{S}(2)=\{(2,1),(2,5)\}$
- $\mathcal{T}(2)=\{(3,2)\}$
- $\mathcal{S}(4)=\emptyset$
- ...
- equivalently:

$$
\begin{equation*}
y_{v}(t+1)=\arg \min _{y_{v}} f_{v}\left(y_{v}\right)+\lambda_{v}(t)^{T} y_{v}+\frac{\rho}{2} \sum_{u \sim v}\left\|y_{v}-\frac{y_{v}(t)+y_{u}(t)}{2}\right\|^{2} \tag{12}
\end{equation*}
$$

- update (12) does not depend on $s_{a}(t)$ or $t_{a}(t)$; only on $\lambda_{v}(t)$
- we can find a recursion for $\lambda_{v}(t)$:

$$
\begin{align*}
\lambda_{v}(t+1) & =\sum_{a \in \mathcal{S}(v)} s_{a}(t+1)+\sum_{a \in \mathcal{T}(v)} t_{a}(t+1) \\
& =\lambda_{v}(t)+\rho \sum_{u \sim v} y_{v}(t+1)-y_{u}(t+1) \tag{13}
\end{align*}
$$

(we used (10) and (11))

- final algorithm:

$$
\begin{aligned}
y_{v}(0) & =\text { initialization } \\
\lambda_{v}(0) & =0 \\
y_{v}(t+1) & =\arg \min _{y_{v}} f_{v}\left(y_{v}\right)+\lambda_{v}(t)^{T} y_{v}+\frac{\rho}{2} \sum_{u \sim v}\left\|y_{v}-\frac{y_{v}(t)+y_{u}(t)}{2}\right\|^{2} \\
\lambda_{v}(t+1) & =\lambda_{v}(t)+\rho \sum_{u \sim v} y_{v}(t+1)-y_{u}(t+1)
\end{aligned}
$$

$$
\text { for } t=0,1,2, \ldots
$$

- algorithm is distributed
- agent v manages $y_{v}(t)$ and $\lambda_{v}(t)$

Example: distributed logistic regression

- dataset of agent i :

$$
\left\{\left(a_{i}(k), b_{i}(k)\right) \in \mathbf{R}^{2} \times\{0,1\}: k=1, \ldots, 10\right\}
$$

- private function of agent $i: f_{i}: \mathbf{R}^{2} \rightarrow \mathbf{R}$

$$
f_{i}(x)=\sum_{k=1}^{10}-b_{k}(i) a_{k}(i)^{T} x+\log \left(1+e^{a_{k}(i)^{T} x}\right)
$$

$$
\rho=0.01
$$

Coordinate 1

$$
\rho=0.01
$$

Coordinate 2

$$
\rho=0.1
$$

Coordinate 1

$$
\rho=0.1
$$

Coordinate 2

$$
\rho=1
$$

Coordinate 1

$$
\rho=1
$$

Coordinate 2

To know more (a tiny slice of available work)

- some (sub)gradient methods with shrinking stepsize:
- A. Nedic and A. Ozdaglar, "Distributed subgradient methods for multi-agent optimization," IEEE Trans. on Aut. Control, 54(1), 2009.
- K. Kvaternik and L. Pavel, "Lyapunov analysis of a distributed optimization scheme," 5th Int. Conf. on Network Games, Control and Opt., 2011.
- some gradient algorithms for $C^{2}(m, M)$ with constant stepsize:
- D. Jakovetić et al., "Linear convergence rate of a class of distributed augmented lagrangian algorithms," IEEE Trans. on Aut. Control, 60(4), 2015.
- W. Shi et al., "EXTRA: an exact first-order algorithm for decentralized consensus optimization," 25(2), SIAM Journal on Opt., 2015.
- G. Qu and N. Li, "Harnessing smoothness to accelerate distributed optimization," https://arxiv.org/abs/1605.07112, 2016.
- some gradient algorithms for $C^{1}(m, M)$:
- D. Jakovetić et al., "Fast distributed gradient methods," IEEE Trans, on Aut. Control, 59(5), 2014.
- W. Shi et al., "EXTRA: an exact first-order algorithm for decentralized consensus optimization," 25(2), SIAM Journal on Opt., 2015.
- G. Qu and N. Li, "Harnessing smoothness to accelerate distributed optimization," https://arxiv.org/abs/1605.07112, 2016.
- some papers on ADMM:
- I. Schizas et al., "Consensus in ad hoc WSNs with noisy links," IEEE Trans. on Sig. Proc, 56(1), 2008.
- J. Bazerque and G. Giannakis, "Distributed spectrum sensing for cognitive radio networks by exploiting sparsity," IEEE Trans. on Sig. Proc., 58(3), 2010.
- S. Boyd et al., Distributed optimization and statistical learning via the ADMM, Foundations and Trends in Machine Learning, 3(1), 2011.

[^0]: ${ }^{1}$ W. Shi et al., "EXTRA: an exact first-order algorithm for decentralized consensus optimization," 25(2), SIAM Journal on Opt., 2015.

