Network Science
Models and Distributed Algorithms

IST-CMU Phd course
Jo3o Xavier
TA: Jo3o Martins

October 27, 2016

1/79

Optimization in static undirected networks

/’

n agents; agent i holds function f; : RY — R U {oc}
communication network is static and undirected
communication happens in discrete time ¢t =0,1,2,3,...
goal: compute

z* e argznelir{ld f(ac) — fl(a?) + n 4 fn(x)

2/79

Example: consensus

e we can view the arithmetic mean

7= 01440,
n
as the solution of
minimize 137" 1 (z — 6;)°
zeR n =1 2 ‘
—_——

fi(z)

3/79

Example: distributed logistic regression

e parametric model linking feature A € R? to outcome B € {0,1}:

P(B=1|A=a;x) T
1 =
OgP(B:O|A:a;a:) “F

e equivalent to

1 ellTI

P(B=0|A=a2)=— PB=1|X=zxw)= ———
(0] a;) o (| Ty w) s

e = € R?% is the model parameter

4/79

example:

we are given the dataset {(a;,b;) € R* x {0,1} : i=1,...,n}

how do we learn x from the training dataset?

maximum likelihood (ML) formulation:

maximize P (B; = by, ...

zeR4

boils down to solving

minimize .1 —bal x + log

zeR4

B =by| A1 = a1, ..

yAp = an; @)

(1+e7)

6/79

e adding a regularizer (p > 0):

L 1 1 T T P 2
minimize > ey —bia; x +log (1 + e z) Ty]

fi(z)

e agent i holds training point (a;, b;) (for simplicity; it can hold more)

Example: target localization

target at unknown position p € R™ (m = 2 or 3)
agent ¢ at known position ¢; e R™, i =1,...,n

agent ¢ measures
d; = [|p — ;|| + noise

how to find the target position p from the network data dy, ...

8/79

assuming measurement noise is small:
Ipl* = 247 p + lla:|* ~ d7

or

2
1 2] [P =2 - o
~———— | P —_———
aoT SN—— b;

v T

find z = (Hp”2 ,p) by solving a distributed least-squares problem:

1 2
e 1 n T)
minimize Xz 5 (07—)

—_——

fi(z)

suboptimal approach, but exact for typical agents' configurations
with noiseless measurements

9/79

The optimization class C*(m, M)

e notation: let

C*(m,M) = {¢ € R? = R : ¢ is continuously twice-differentiable
and mI = V?¢(z) < M1, for all z € R%}

o assume each f; € C2(0,M;) and f € C2(m, M) with m > 0
(we can always take M = w)

10/79

e examples:
> consensus
Mi=1, M=1, m=1

> regularized logistic regression

2 2
arl® + -+ llan
_ Pt

M; = ||ail> +p, M p, m=p

> target localization

Ml o (o an])

M; = ||la;||”, M - -

(m > 0if {q1,...,gn} is an affine independent set)

11/79

o if € C*(m, M) then
> ¢(y) + Vo) (@ —y)+ 2z —ylI” < p(x)

> ¢(@) < ¢y) + Voy) (@ —y) + & llz —y*
(¢ is sandwiched between two quadratics)

> mlle—ylI* < (Vo) = Voy)" (z —y) < M|z —y|*
> mllz —yl| < [Ve(z) = Vo(y)| < Mz -yl

e if ¢ € C%(m, M) with m > 0, then optimization problem

minimize T
inimi p(x)

has unique minimizer z*

e consider simple gradient method: 20 € R? and

xk“:xk—aV(b(:Uk), k=0,1,2,...

e converges linearly for 0 < o < %

ka -zt < (\/1 +a2M? — 2am)k on - m*”

e with optimum a = 175:

o~ < (ﬂ) -

e example:

fla) =1og (1 + %) + 5o

’ — =]
10°]
107" J
107%L 3
10°F 3

5 10 15 20 25 30

14 /79

how to apply the gradient method in distributed settings?

for simplicity, take d =1

naive approach: each agent

> does a (local) gradient step and
> averages the result with neighbors

in matrix notation:
z(t+1) =W (z(t) — aVF (2(t)), t=0,1,2,...,
where F : Rx--- xR —- R,
F(zy,..., o) = fi(z1) + -+ falzn),

and W is a primitive matrix, W1 = 1 and W;; = 0 whenever i o j

e let's try on consensus problem

e naive scheme doesn't work:

5 .

with metropolis W and 0 < o < 2

4.5r

4

3.5F

e how can we fix this?

15

20

25

16/79

for consensus: F(z1,...,x,) = & (z —0;)° + -+ 1

in matrix notation:

1
F(az)=5lle~0|", VF(@) =x-0

algorithm is
z(t+1) =W (2(t) —a(z(t) —0))

we will change coordinates to analyze the algorithm

17

79

e the EVD of W is

-l]

e U € R™ "1 spans the orthogonal complement of span(1):

vtu=1, UvT1=0

A1
A =
>\n—1

all |\;] <1 (since W is a primitive matrix)

any x € R" can be uniquely decomposed as

r=71+UZ

where 7 =117z and 2= Uz

19/79

e in the (Z,Z) coordinates, algorithm is:

Z(t+1)
Z(t+1)

e we would like:

z(t) — a(z(t) -)

[
A (f(t) —a (’:E(t)

T(t) — 6 and ZT(t) —

t—o00

e on one hand, since 7(0) = 0:

z(t)

t—o0

=0, forallt

-9))

0

e on the other hand:

e this is what we need to fix

e how?

e by making the stepsize time-variant and diminishing to zero:
x(t+1) =W (x(t) — a®)VE (z(t)))

with a(t) L 0

e back to example on page 16 with a(t) = (0.1)":

5

=
450 —@a(E)
—x3(t)
—x5(t)
.:L.*
3.51
3
2.5F
2
1.5
1 s
0 5 10 15 20 25

e we fixed the problem

e is this the end of the story?

23/79

e let's try on the optimization problem

n 1

miQiErRize I 27 (z —0,)*
—_——
fi(x)

e problema data is

01,...,05=1,2,3,45 of,...,02 =1,1,0.5,0.2,1

e algorithm is: z(0) = 6 and
x(t+1) =W (2(t) — a(t)VF (z(t))),

with a(t) = (0.1)*

e algorithm doesn't work:

5

4.5

4

3.5

3

25

0 50 100
t

e can we fix the problem?

e yes, if the stepsize sequence satisfies:

a(t) >0, Y at)=o00, > a(t)’<oo

t t

e see proof in K. Kvaternik and L. Pavel, “Lyapunov analysis of a
distributed optimization scheme,” 5th Int. Conf. on Network
Games, Control and Opt., 2011.

26 /79

e back to example on page 24 with «(t)

1 .

T otlC
5

— ()

4.5 —Ig(t)’

. —a3(t)|

—z4(t)

35 ()l

I T+ i

3?7 i

25 E

2 4

1.5 -

.1 il

05} il
% 50 100 150

e unfortunately,

we have lost linear convergence. . .

() — =*1]]

50 100 150

EXTRA algorithm

e EXTRA! algorithm is a constant stepsize gradient algorithm:

x2(0) = initialization
z(1) = Wz(0) —aVF (z(0))
z(t+1) = (T+W)x(t) —aVF (x(t)) — Wzt — 1)+ aVF (z(t — 1))

with W = LW (other choices for W are possible)

e equivalently:

z(t+1) = Wa(t) — aVF (z(t)) — (W — W)

S

1

a(s)

=0

fort >0

e algorithm form is not obvious! We will offer an intuitive path

LW. Shi et al., “EXTRA: an exact first-order algorithm for decentralized consensus
optimization,” 25(2), SIAM Journal on Opt., 2015.

29/79

e recall our goal: to compute

fil@) + - 4 falz)

n

*e i =
o" € argmin flx)

e let's go back to naive idea® on page 15:
z(t+1) =Wz(t) — aVF (z(t)), t=0,1,2,...,
where ' : Rx--- xR — R,
F(zy,...,zn) = fi(@1) + - + falzn),

and W is a primitive matrix, W1 =1 and W;; = 0 whenever i ¢ j

2with a slight change: W acts only on x(t), not on VF(x(t)).

30/79

e for consensus, we have f;(z) =3 (z — 6;)* and

z(t+1) =Wa(t) —

with z(0) =0

e using the general decomposition x = T1 4+ UZ on pages 18-19:

Z(t+1) =
Tt+1) =

a(z(t)y—0) t=0,1,2,...

Z(t) — a (Z(t) — 0)
AZ(t) — o (E(t) - Ei)

e we need T(t) — fand T(t) — 0

t—o0

t—o0

31

79

(assuming 0 < ar < 2)

shrinking the stepsize a(t) | 0 solves the problem but kills linear
convergence

can we make Z;(t) — 0 with a constant a?

e an insight from control theory: view the recursion

r(t) Hoﬂ» Kp P(2) HC>7

ast

r(t)
Kp
P(z

d(t)
e(t)

2i(t+1) = (A — @)Fi(t) + ab;

he feedback proportional controller

= 0 is the reference

—(A\i — @) is the controller gain

) = 27! is the z-transform of the plant

= a@- is the disturbance

= r(t) — Z;(t) is the mismatch between r(t) and Z;(t)

— Zi(t)

e transfer function from disturbance to error is

E(z) 1
D(z) 1+ Kpz-!

e ford(t) = ab; for t > 0, we have D(z) = lf‘fil and

af;
(1=(i—a)zh)(1-271)

E(z) =

e from the Final Value Theorem,

tlg(r)lo e(t) = ll_}ml(z —1)E(2)
T a
- 1-— (>\z — a)

(confirms the steady-state error that we already knew)

e how can we suppress a steady-state error?

e standard control trick: add an integral controller (K; # 0)

d(t)

35

79

e transfer function becomes

E(2) 1

D(Z) 1+ (KP + 1_K2171) »—1

e plugging D(z) = lff'il gives

o~

a@i

(1 + (—(/\i —a) + I_KZI_l) 2—1) (1—2z71)

E(z) =

e Final Value Theorem gives

lim e(t) = lim(z—1)E(z)

t—o0 z—1

36/7

(t)
r(t) %Qe—> Kp +

K

1—271

P(z)

— Zi(t)

e corresponds to time-dynamics:

t—1

Bt +1) = (N —)T(t) + o — K1 Y (s)

e last equation is in (T, Z) coordinates

e can we backtrack to natural coordinates x7?

s=0

e let's try the obvious idea:

t—1

a(t+1) = Wa(t) —a(z(t) - 0) — K1 Y x(s)
s=0

e gives
T(t+1) =7(t) — o (T(t) — 0) — K1 > _Ti(s)
s=0
and
T(t) T 0!

e we need K; = 0 for the coordinate T. ..

e possible approach:

o(t+1) = Wa(t) — a(z(t) — 0) — d _QW ix(s)
s=0
e in (T,7) coordinates:
Z(t+1) = Z(t)—a(z(t) - 0)
t—1
Bt+1) = AF0) —a () - 0) - K. Y @ils)

with K; := % # 0 (recall that |\;| < 1)

e our path led us to the recursion:

I—W &
x(t+1)=Wa(t) — a(z(t) —6) — 5 ;Ox(s)
e equivalent form:
. t—1
2(t+1) = Wa(t) — aVF (z(t) — (W - W) 2(s)
s=0
because VF(z) =z — 6 and W= bW,
e compare with EXTRA algorithm:
. t—1
2(t+1) = Wa(t) — aVF (x(t) — (W = W) > a(s)
s=0

for generic F'

Brief analysis of EXTRA

e EXTRA has the right “fixed-point” property: if 2(t) — z then
x = z*1 with

Si(z) + -+ fulz)

* e ; =
2" € argmin f(z)

e EXTRA converges linearly for consensus problem: from

Fi(t+1) = \E(t) — a(-) KZ:&

with K; = 1521 we get

Z(t+1) =0 —a+X)T() + (a— ! _;)\z) Zi(t—1)

41/79

in vector form:

BT

we conclude:

_[l—oi—k)\i a_OH;zH 0]

linear convergence occurs if p (A(a)) < 1

we will show that p(A(a)) <1for0<a <3

e characteristic polynomial of A(«) is

p(s) = 82 — (14 \; —a)s—i—(l—;)\i—a)

e we need to know how the roots of p(s) vary with «

e idea: re-arrange

1+ A

Lta(s—1)
——

d(s) n(s)

and apply well-known root locus techniques from basic control

e proportional controller structure:

3
—

w
=

2
—~

w»
=

e for o = 0, the roots of p(s) are those of d(s):

14+ N\ 1
J; s/ T+ 21— A)

with absolute value
14+ N
2

€10,1]

(recall that |A;| < 1)

44 /79

e as o — 00, one root of p(s) goes to oo and the other goes to 1

e example with \; = 0.2:

Root Locus

o
©

o
[}

o
~

o
()

|
o
[N}
S N

Imaginary Axis (seconds™")
| |
o o
(2] > o

|
o4
®

-1 -0.5 0 0.5 1

Real Axis (seconds™")

45/79

e we see that p (A(a)) < 1 until s = —1 becomes a root of p(s):

L+ A

p(-1)=0 & 1+(1+XN)+ 20 =0

1 3
4 = = *)\i 1
a 2+4(+1)

e we conclude that p(A(a)) <1lfor0<a< i

46 /79

e Theorem. Assume
> fl € CQ(OvM’L)
> f € C?*m, M) withm >0
» W= 0.
Then, EXTRA converges linearly for

m

I<a< .
@ max{M?2, ..., M2}

e design of stepsize is independent from the network topology

e see proof of theorem 3.7 in W. Shi et al., “EXTRA: an exact
first-order algorithm for decentralized consensus optimization,”
25(2), SIAM Journal on Opt., 2015.

e theorem 3.7 shows that the condition f € C?(m, M) can be
weakened (f only needs to be restricted strongly convex)

e comparing EXTRA with algorithm on page 27:
ll«(t) — z*1]]

0 50 100 150
t

Another gradient approach with constant stepsize

e G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” https://arxiv.org/abs/1605.07112, 2016.

e algorithm:
x;(0) initialization, i=1,...,n
z(t+1) = Wa(t) — as(t)
s(t+1) Ws(t)+ VFE (z(t+1)) — VF (2(t))

® Wwe can see S(t) ast aCkIng

(recall problem 3 from homework 1)

49 /79

https://arxiv.org/abs/1605.07112

Brief analysis

e The algorithm has the right “fixed-point” property: if
(z(t),s(t)) — (z,s) then z = 2*1 with

e arggéigf(x) — fi(z) + n + fn(i[,’)’

and s =0

e The algorithm converges linearly for consensus problem:
initialization z(0) =0, s =0, and

z(t+1) = Wa(t) —as(t)
st+1) = Ws(t)+zt+1)—x(t)

imply

e on the other hand:

Ft+1) = AZ(t) — ad(t)
(t+1) = ASH)+F(t+1)—F()

(A — al)3(t) + (A — I) &(t)

e in vector form:

B B et]

Aa)

e we want to show that p (A(«)) < 1 for some interval o €]0, @[with
a>0

51/79

e A(«) is similar to a block-diagonal matrix:
Ai(a)
Afar) ~ Al
Ap—1(c)

where

e it suffices to show that p (4;(a)) < 1 for a €]0, @[

e characteristic polynomial of A;(«) is

p(s) = (s = \i)*+a(s—1)
———— ~——
d(s) n(s)

e for a = 0, the roots of p(s) are those of d(s):
Ai

with absolute value
|Ail € 10,1]

(recall that ;] < 1)

53 /79

e as o — 00, one root of p(s) goes to co and the other goes to 1

e example with \; = 0.2:

Root Locus
1 T T — T T
0.8 1
0.6f]
o 04f 1
P |
. |
Lo o
o |
g -0.2F g
£
_0.4f J
-0.6F 1
-0.8F 1
L ~_ | |
-1 -0.5 0 0.5 1

Real Axis (seconds™")

54 /79

e we see that p (A(a)) < 1 until s = —1 becomes a root of p(s):

p(-1)=0 < (>\¢+1)2720¢:0

= a=
2

e if all A\; > 0, we conclude that p (A(a)) < 1for0 < a<a:=3

55/79

e Theorem. Assume f; € C%(m, M) with m > 0. Then, the
algorithm converges linearly for

O<a<ua.
e « depends on the network topology

e see proof of theorem 1 in G. Qu and N. Li, “Harnessing smoothness
to accelerate distributed optimization,”
https://arxiv.org/abs/1605.07112, 2016.

56 /79

https://arxiv.org/abs/1605.07112

The optimization class C'' (M)
e notation:

ct(M) = {¢ e R? = R : ¢ is continuously-differentiable
and ||Vo(z) = Vo(y)l| < M [z —yll,
for all z,y € Rd}

e C?(m, M) is contained in C1(M)

e some papers that only assume f; are convex and in C1(M):

> D. Jakoveti¢ et al., “Fast distributed gradient methods,” IEEE
Trans, on Aut. Control, 59(5), 2014. Rate: O (1/t*) (with further
assumption of bounded gradients: |V f;(z)|| < C for all z)

> W. Shi et al.,, "EXTRA: an exact first-order algorithm for
decentralized consensus optimization,” 25(2), SIAM Journal on Opt.,
2015. Rate: O(1/t)

» G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” https://arxiv.org/abs/1605.07112, 2016. Rate:

o1/t

57/7

https://arxiv.org/abs/1605.07112

ADMM

e ADMM = Alternate Direction Method of Multipliers

e “old” optimization method for

minimize g(y) + h(z)
subject to Ay + Bz =c¢

where g and h are convex functions

e applied to distributed optimization in I. Schizas et al., “"Consensus in
ad hoc WSNs with noisy links,” IEEE Trans. on Sig. Proc, 56(1),
2008

e ADMM is based on the augmented Lagrangian function

L(y, 2 0) = g(y) + h(=) + AT (Ay+ Bz —) + £ | Ay + Bz — ol

where p > 0 is chosen by the user

®)\Z(,A“

.) is lagrange multiplier:)\; is associated with ith

constraint in Ay + Bz = ¢

e ADMM:

z(0
A0

—_

y(t+
z(t+1
At+1

fort=0,1,2,...

)
)
)
)
)

initialization
initialization
argmin L (y, z(t); A(t))
Y
argmin L (y(t + 1), z; A(t))
At)+p(Ay(t+ 1)+ Bz(t+1) —¢)

59

79

L9 \'l'

\f5

e we will now see how ADMM can generate a distributed algorithm for

Si(@) + -+ fa(z)

minigcmize f(z) =

60

79

step 1: choose a direction for each edge in the network

e example:
fi
O
(0
O
O

> vertex set is V ={1,2,...,5}

» arcset is A = {(1,4),(1,3),(2,1),(3,2),(2,5)}

» for an arc a € A: S(a) := source of arc a, T(a) := sink or arc a
(S(1,4)=1,T(1,4) =4, S1,3)=1,7(1,3) =3, ...)

61/79

step 2: clone variables

e we want to solve

minizmize Z fol(z)

e reformulate as

minimize Y fu (yo)

YvsZa

subject to ys() = 2, a €A
YT(a) = Zay Q€ A

e because network is connected, constraints make all y,,'s the same:

Yo = Yu, Torallv,ueV

62 /79

step 3: apply ADMM to reformulated problem

minimize > fu () + _0_
—_——— h(z)
9(y)

subject to Yg() = %4, a €A
YT(a) = %a, @ €A

e (primal) variables are y = {yv}, ¢y and 2 = {za},c 4
e associate lagrange multiplier s, with constraint ys(,) = 24

e associate lagrange multiplier ¢, with constraint yr(,) = 24

63 /79

e augmented lagrangian function is

L(ymza;saata) = va(yv) +
> (s = 7a) + 53 Jys — zal* +
p
St (yr) = 2a) + 5 2 llvrea — 2l

e the ADMM iterations are

y(t+1) = argminL (yo, 2a(t); sa(t), ta(t) (1)
z(t+1) = argmmL(yv(t +1),z2; sa(t),ta(t)) (2)
Sa(t + 1) = (yS(a) t+1 a()) (3)
ta(t+1) = ta(t) +p (yr() t+1)—zt+1) (4)

64 /79

step 4: simplify the iterations

e from (2), we get

alt+1) = Ys(a)(t +1) ';‘yT(a) t+1) sa(t)z‘;ta(t))

e plugging (5) into (3) and (4) gives

salt+1) = sa(t)+p(ys<a><t+1);ym)(tﬂ) . sa(t);;ta(t)>
(6)
ta(t+1) = ta(t)+p<yT(“)(t+1);ys(a)(t+1)_'_Sa(t);;ta(t))

e trick: if s,(0) =0 and ,(0) =0 for a € A, then (6) and (7) imply

sa(t) = —to(t), fort>0 (8)

e plugging (8) into (5)—(7) gives

YS(a) (t + 1) + YT (a) (t + 1)
2
Ys(a) (t + 1) — Y7 (a) (t + 1)
P 2

1) =t T I UED gy

za(t+1)

Il
—

(=]
~

Sa(t+1)

VA
S]
—

~
=

66

79

e rewrite (1) as a separable problem across agents:

y(t+1) = argrr{yinz:fv(yv)—l— Z sa(t) + Z ta(t) Yo +

a€eS(v) a€T(v)

Ay (t)

Y I —=®P+5 3l — =0

aeS(v) a€T (v)

where

> S(v) = set of arcs that leave v
> T (v) = set of arcs that arrive at v

67 /79

e example:

—~ S~
—~

~ N
~ N ~—

e equivalently:

po(t41) = argmin fy () 420 (0 v 5 D |l

u~v

+ yu H
(12)
e update (12) does not depend on s,(t) or t,(t); only on A, (t)

e we can find a recursion for A\, (t):
D salt+1)+ > ta(t+1)
a€S(v) a€T(v)
=)\v(t)—FpZyv(t—l—l)—yu(t—FI) (13)

u~v

Ao(t+1)

(we used (10) and (11))

69 /79

e final algorithm:

y»(0) = initialization

Ao(0) = 0
yo(t+1) = arg Imn fq, (yo) + M) Ty, + £ Z Yy — Jr”yu()HQ
A(t+1) = Au(t)+pZyv(t+1)—yu(t+1)
fort=0,1,2,...

e algorithm is distributed

e agent v manages y,(t) and \,(¢)

70/ 7

Example: distributed logistic regression

O
(0
I

O

e dataset of agent i:
{(ai(k),b;(k)) e R* x {0,1} : k=1,...,10}
e private function of agent i: f; : R? = R

10
fi@) =" ~bi(i)ar(i)Tx + log (1 n eakmu)
k=1

71/79

0.01

p:

Coordinate 1

50

40

30

10

-4

-6

-8

-10

72/79

0.01

p:

Coordinate 2

50

40

30

10

2
-4

-6

-8

-10

73/79

p=0.1

Coordinate 1

50

40

30

10

-4
-6
-8

-10

7

74

p=0.1

Coordinate 2

50

40

30

20

10

-4
-6
-8

-10

7

75

Coordinate 1

50

40

10

2
-4

-6

-8

-10

79

76

Coordinate 2

50

40

30

10

2
-4

-6

-8

-10

77/79

To know more (a tiny slice of available work)

e some (sub)gradient methods with shrinking stepsize:
> A. Nedic and A. Ozdaglar, “Distributed subgradient methods for
multi-agent optimization,” IEEE Trans. on Aut. Control, 54(1),
2009.
» K. Kvaternik and L. Pavel, “Lyapunov analysis of a distributed
optimization scheme,” 5th Int. Conf. on Network Games, Control
and Opt., 2011.

e some gradient algorithms for C?(m, M) with constant stepsize:

» D. Jakoveti¢ et al., “Linear convergence rate of a class of distributed
augmented lagrangian algorithms,” IEEE Trans. on Aut. Control,
60(4), 2015.

> W. Shi et al.,, "EXTRA: an exact first-order algorithm for
decentralized consensus optimization,” 25(2), SIAM Journal on Opt.,
2015.

» G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” https://arxiv.org/abs/1605.07112, 2016.

78/7

https://arxiv.org/abs/1605.07112

e some gradient algorithms for C'*(m, M):

> D. Jakovetié et al., “Fast distributed gradient methods,” IEEE
Trans, on Aut. Control, 59(5), 2014.

> W. Shi et al., "EXTRA: an exact first-order algorithm for
decentralized consensus optimization,” 25(2), SIAM Journal on Opt.,
2015.

> G. Qu and N. Li, “"Harnessing smoothness to accelerate distributed
optimization,” https://arxiv.org/abs/1605.07112, 2016.

e some papers on ADMM:
» |. Schizas et al., “"Consensus in ad hoc WSNs with noisy links,” IEEE
Trans. on Sig. Proc, 56(1), 2008.
> J. Bazerque and G. Giannakis, “Distributed spectrum sensing for
cognitive radio networks by exploiting sparsity,” IEEE Trans. on Sig.

Proc., 58(3), 2010.
> S. Boyd et al., Distributed optimization and statistical learning via

the ADMM, Foundations and Trends in Machine Learning, 3(1),
2011.

79/79

https://arxiv.org/abs/1605.07112

