Network Science
 Models and Distributed Algorithms

IST-CMU Phd course
João Xavier
TA: João Martins

October 3, 2016

Consensus in static directed networks

- n agents; agent i holds $\theta_{i} \in \mathbf{R}$
- communication network is static and directed
- communication happens in discrete time $t=0,1,2,3, \ldots$
- goal: compute the average

$$
\bar{\theta}=\frac{\theta_{1}+\cdots+\theta_{n}}{n}
$$

- we model the network as a directed graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$:
- $\mathcal{V}=\{1,2, \ldots, n\}$ is set of agents
- \mathcal{E} is set of communication channels
- agent i can send messages to agent j if and only if $(i, j) \in \mathcal{E}$
- example:

$$
\begin{aligned}
\mathcal{V}= & \{1,2,3,4,5\} \\
\mathcal{E}= & \{(1,1),(1,2),(1,4),(2,2),(2,3),(2,5),(3,1),(3,3) \\
& (4,2),(4,4),(5,3),(5,5)\}
\end{aligned}
$$

- we also use the notation: $i \rightarrow j \Leftrightarrow \quad(i, j) \in \mathcal{E}$

Naive scheme with row stochastic matrix

- agents repeatedly compute averages of themselves and neighbors
- $x_{i}(0):=\theta_{i}$ and

$$
\left\{\begin{array}{l}
x_{1}(t+1)=\frac{x_{1}(t)+x_{3}(t)}{2} \\
x_{2}(t+1)=\frac{x_{1}(t)+x_{2}(t)+x_{4}(t)}{3} \\
x_{3}(t+1)=\frac{x_{2}(t)+x_{3}(t)+x_{5}(t)}{3} \\
x_{4}(t+1)=\frac{x_{1}(t)+x_{4}(t)}{2} \\
x_{5}(t+1)=\frac{x_{2}(t)+x_{5}(t)}{2}
\end{array}\right.
$$

- naive scheme doesn't work:

- how can we fix this?

- naive scheme in matrix form: $x(0)=\underbrace{\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}\right)}_{\theta}$

$$
\underbrace{\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1) \\
x_{3}(t+1) \\
x_{4}(t+1) \\
x_{5}(t+1)
\end{array}\right]}_{x(t+1)}=\underbrace{\left[\begin{array}{ccccc}
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{array}\right]}_{W} \underbrace{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]}_{x(t)}
$$

- important: in distributed algorithms, $W_{i j}=0$ whenever $j \nrightarrow i$
- matrix W is row-stochastic:

$$
W \mathbf{1}=\mathbf{1}
$$

- unrolling the recursion $x(t+1)=W x(t)$ gives

$$
x(t)=W^{t} \theta
$$

for all $t \geq 0$

- analysis boils down to analyzing the powers of W
- W is a primitive matrix with $\rho(W)=1$
- from Perron-Frobenius theorem:

with $w>0, w^{T} \mathbf{1}=1$, and $\left|\lambda_{i}\right|<1$ for $i=2, \ldots, p$
- it follows that

$$
W^{t}=\underbrace{\left[\begin{array}{llll}
\mathbf{1} & s_{2} & \cdots & s_{n}
\end{array}\right]}_{S} \underbrace{\left[\begin{array}{cccc}
1 & & & \\
& J_{\lambda_{2}}^{t} & & \\
& & \ddots & \\
& & & J_{\lambda_{p}}^{t}
\end{array}\right]}_{J^{t}} \underbrace{\left[\begin{array}{c}
w^{T} \\
\widetilde{s}_{2}^{T} \\
\vdots \\
\widetilde{s}_{n}^{T}
\end{array}\right]}_{S^{-1}}
$$

- we reduced the analysis from powers of matrices to powers of Jordan blocks
- how does the sequence of powers of a Jordan block behave?
- fact ${ }^{1}$: if

$$
J_{\lambda}=\left[\begin{array}{ccccc}
\lambda & 1 & & & \\
& \lambda & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda & 1 \\
& & & & \lambda
\end{array}\right] \in \mathbf{C}^{n \times n}
$$

then

$$
J_{\lambda}^{t} \xrightarrow[t \rightarrow \infty]{\rightarrow} \begin{cases}0 & , \text { if }|\lambda|<1 \\ \infty & , \text { if }|\lambda|>1 \\ \infty & , \text { if }|\lambda|=1 \text { and } n>1 \\ \text { cycle } & , \text { if }|\lambda|=1, \lambda \neq 1, \text { and } n=1 \\ 1 & , \text { if } \lambda=1, \text { and } n=1\end{cases}
$$

${ }^{1}$ C. Meyer, Matrix Analysis and Applied Linear Algebra, p. 630;R. Horn, C. R. Johnson, Matrix Analysis.Theorem 5.6.12, p. 298.

- we conclude:

$$
W^{t} \underset{t \rightarrow \infty}{\rightarrow} \mathbf{1} w^{T}
$$

and

$$
x(t) \underset{t \rightarrow \infty}{\rightarrow}\left(w^{T} \theta\right) \mathbf{1}
$$

- interpretation: agents converge to a convex combination of the initial data θ
- a fix: if n and w_{i} are known at each agent i, initialize

$$
x_{i}(0)=\frac{\theta_{i}}{n w_{i}}
$$

- back to example in page 5 :

Naive scheme with column stochastic matrix

- agents repeatedly send fractions of their state to neighbors
- $x_{i}(0):=\theta_{i}$ and

$$
\left\{\begin{array}{l}
x_{1}(t+1)=\frac{1}{3} x_{1}(t)+\frac{1}{2} x_{3}(t) \\
x_{2}(t+1)=\frac{1}{3} x_{1}(t)+\frac{1}{3} x_{2}(t)+\frac{1}{2} x_{4}(t) \\
x_{3}(t+1)=\frac{1}{3} x_{2}(t)+\frac{1}{2} x_{3}+\frac{1}{2} x_{5}(t) \\
x_{4}(t+1)=\frac{1}{3} x_{1}(t)+\frac{1}{2} x_{4}(t) \\
x_{5}(t+1)=\frac{1}{3} x_{2}(t)+\frac{1}{2} x_{5}(t)
\end{array}\right.
$$

- naive scheme doesn't work:

- how can we fix this?

- naive scheme in matrix form: $x(0)=\underbrace{\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}\right)}_{\theta}$

$$
\underbrace{\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1) \\
x_{3}(t+1) \\
x_{4}(t+1) \\
x_{5}(t+1)
\end{array}\right]}_{x(t+1)}=\underbrace{\left[\begin{array}{ccccc}
\frac{1}{3} & 0 & \frac{1}{2} & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{3} & 0 & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{3} & 0 & 0 & \frac{1}{2}
\end{array}\right]}_{W} \underbrace{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]}_{x(t)}
$$

- important: in distributed algorithms, $W_{i j}=0$ whenever $j \nrightarrow i$
- matrix W is column-stochastic:

$$
\mathbf{1}^{T} W=\mathbf{1}^{T}
$$

- unrolling the recursion $x(t+1)=W x(t)$ gives

$$
x(t)=W^{t} \theta
$$

for all $t \geq 0$

- analysis boils down to analyzing the powers of W
- W is a primitive matrix with $\rho(W)=1$
- from Perron-Frobenius theorem:

$$
W=\underbrace{\left[\begin{array}{llll}
v & s_{2} & \cdots & s_{n}
\end{array}\right]}_{S} \underbrace{\left[\begin{array}{cccc}
1 & & & \\
& J_{\lambda_{2}} & & \\
& & \ddots & \\
& & & J_{\lambda_{p}}
\end{array}\right]}_{J} \underbrace{\left[\begin{array}{c}
1^{T} \\
\widetilde{s}_{2}^{T} \\
\vdots \\
\tilde{s}_{n}^{T}
\end{array}\right]}_{S^{-1}}
$$

with $v>0, \mathbf{1}^{T} v=1$ and $\left|\lambda_{i}\right|<1$ for $i=2, \ldots, p$

- we conclude:

$$
W^{t} \underset{t \rightarrow \infty}{\rightarrow} v \mathbf{1}^{T}
$$

and

$$
x(t) \underset{t \rightarrow \infty}{\rightarrow}\left(\mathbf{1}^{T} \theta\right) v
$$

- interpretation: agents converge to a fraction of the sum of initial data θ
- a fix: if n and v_{i} are known at each agent i, he computes on the side

$$
y_{i}(t)=\frac{x_{i}(t)}{n v_{i}}
$$

- back to example in page 14 :

- another fix: the push-sum algorithm
- initialize $x(0)=x, y(0)=\mathbf{1}$, and iterate

$$
\begin{aligned}
& x(t+1)=W x(t) \\
& y(t+1)=W y(t)
\end{aligned}
$$

- at each agent i :

$$
\frac{x_{i}(t)}{y_{i}(t)} \underset{t \rightarrow \infty}{\rightarrow} \frac{v_{i} \mathbf{1}^{T} x}{v_{i} \mathbf{1}^{T} \mathbf{1}}=\frac{\mathbf{1}^{T} x}{n}=\bar{x}
$$

- back to example in page 14 :

To know more

- Push-sum algorithm
- D. Kempe, A. Dobra, and J. Gehrke, "Gossip-based computation of aggregate information," IEEE Symp. on Found. of Comp. Science, 2003.
- Matrix analysis (Jordan forms, EVD, SVD)
- C. Meyer, Matrix Analysis and Applied Linear Algebra.
- R. Horn, C. R. Johnson, Matrix Analysis.

