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Consensus in static directed networks

✓1

✓4

✓3

✓2

✓5

• n agents; agent i holds θi ∈ R

• communication network is static and directed
• communication happens in discrete time t = 0, 1, 2, 3, . . .

• goal: compute the average

θ =
θ1 + · · ·+ θn

n
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• we model the network as a directed graph G = (V, E):
I V = {1, 2, . . . , n} is set of agents
I E is set of communication channels

• agent i can send messages to agent j if and only if (i, j) ∈ E
• example:

✓1

✓4

✓3

✓2

✓5

V = {1, 2, 3, 4, 5}
E = {(1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (2, 5), (3, 1), (3, 3)

(4, 2), (4, 4), (5, 3), (5, 5)}

• we also use the notation: i→ j ⇔ (i, j) ∈ E
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Naive scheme with row stochastic matrix

✓1

✓4

✓3

✓2

✓5

• agents repeatedly compute averages of themselves and neighbors
• xi(0) := θi and

x1(t+ 1) = x1(t)+x3(t)
2

x2(t+ 1) = x1(t)+x2(t)+x4(t)
3

x3(t+ 1) = x2(t)+x3(t)+x5(t)
3

x4(t+ 1) = x1(t)+x4(t)
2

x5(t+ 1) = x2(t)+x5(t)
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• naive scheme doesn’t work:
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• how can we fix this?
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✓1

✓4

✓3

✓2

✓5

• naive scheme in matrix form: x(0) = (θ1, θ2, θ3, θ4, θ5)︸ ︷︷ ︸
θ

x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)
x5(t+ 1)


︸ ︷︷ ︸

x(t+1)

=


1
2 0 1

2 0 0
1
3

1
3 0 1

3 0
0 1

3
1
3 0 1

3
1
2 0 0 1

2 0
0 1

2 0 0 1
2


︸ ︷︷ ︸

W


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)


︸ ︷︷ ︸
x(t)

• important: in distributed algorithms, Wij = 0 whenever j 6→ i
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• matrix W is row-stochastic:

W1 = 1

• unrolling the recursion x(t+ 1) =Wx(t) gives

x(t) =W tθ

for all t ≥ 0

• analysis boils down to analyzing the powers of W
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• W is a primitive matrix with ρ(W ) = 1

• from Perron-Frobenius theorem:

W =
[
1 s2 · · · sn

]︸ ︷︷ ︸
S


1

Jλ2

. . .

Jλp


︸ ︷︷ ︸

J


wT

s̃T2
...
s̃Tn


︸ ︷︷ ︸
S−1

with w > 0, wT1 = 1, and |λi| < 1 for i = 2, . . . , p
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• it follows that

W t =
[
1 s2 · · · sn

]︸ ︷︷ ︸
S


1

J tλ2

. . .

J tλp


︸ ︷︷ ︸

Jt


wT

s̃T2
...
s̃Tn


︸ ︷︷ ︸
S−1

• we reduced the analysis from powers of matrices to powers of Jordan
blocks
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• how does the sequence of powers of a Jordan block behave?

• fact1: if

Jλ =


λ 1

λ 1
. . .

. . .

λ 1
λ

 ∈ Cn×n,

then

J tλ →
t→∞


0 , if |λ| < 1
∞ , if |λ| > 1
∞ , if |λ| = 1 and n > 1
cycle , if |λ| = 1, λ 6= 1, and n = 1
1 , if λ = 1, and n = 1

1C. Meyer, Matrix Analysis and Applied Linear Algebra, p. 630;R. Horn, C. R.
Johnson, Matrix Analysis.Theorem 5.6.12, p. 298.
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• we conclude:
W t →

t→∞
1wT

and
x(t) →

t→∞
(wT θ)1

• interpretation: agents converge to a convex combination of the
initial data θ
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• a fix: if n and wi are known at each agent i, initialize

xi(0) =
θi
nwi

• back to example in page 5:
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Naive scheme with column stochastic matrix

✓1

✓4

✓3

✓2

✓5

• agents repeatedly send fractions of their state to neighbors
• xi(0) := θi and

x1(t+ 1) = 1
3x1(t) +

1
2x3(t)

x2(t+ 1) = 1
3x1(t) +

1
3x2(t) +

1
2x4(t)

x3(t+ 1) = 1
3x2(t) +

1
2x3 +

1
2x5(t)

x4(t+ 1) = 1
3x1(t) +

1
2x4(t)

x5(t+ 1) = 1
3x2(t) +

1
2x5(t)
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• naive scheme doesn’t work:

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5

5

t

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
θ

• how can we fix this?
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✓1

✓4

✓3

✓2

✓5

• naive scheme in matrix form: x(0) = (θ1, θ2, θ3, θ4, θ5)︸ ︷︷ ︸
θ

x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)
x5(t+ 1)


︸ ︷︷ ︸

x(t+1)

=


1
3 0 1

2 0 0
1
3

1
3 0 1

2 0
0 1

3
1
2 0 1

2
1
3 0 0 1

2 0
0 1

3 0 0 1
2


︸ ︷︷ ︸

W


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)


︸ ︷︷ ︸
x(t)

• important: in distributed algorithms, Wij = 0 whenever j 6→ i
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• matrix W is column-stochastic:

1TW = 1T

• unrolling the recursion x(t+ 1) =Wx(t) gives

x(t) =W tθ

for all t ≥ 0

• analysis boils down to analyzing the powers of W
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• W is a primitive matrix with ρ(W ) = 1

• from Perron-Frobenius theorem:

W =
[
v s2 · · · sn

]︸ ︷︷ ︸
S


1

Jλ2

. . .

Jλp


︸ ︷︷ ︸

J


1T

s̃T2
...
s̃Tn


︸ ︷︷ ︸
S−1

with v > 0, 1T v = 1 and |λi| < 1 for i = 2, . . . , p
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• we conclude:
W t →

t→∞
v1T

and
x(t) →

t→∞
(1T θ)v

• interpretation: agents converge to a fraction of the sum of initial
data θ
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• a fix: if n and vi are known at each agent i, he computes on the side

yi(t) =
xi(t)

nvi

• back to example in page 14:
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• another fix: the push-sum algorithm

• initialize x(0) = x, y(0) = 1, and iterate

x(t+ 1) = Wx(t)

y(t+ 1) = Wy(t)

• at each agent i:

xi(t)

yi(t)
→
t→∞

vi1
Tx

vi1T1
=

1Tx

n
= x
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• back to example in page 14:
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To know more

• Push-sum algorithm
I D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of

aggregate information,” IEEE Symp. on Found. of Comp. Science,
2003.

• Matrix analysis (Jordan forms, EVD, SVD)
I C. Meyer, Matrix Analysis and Applied Linear Algebra.
I R. Horn, C. R. Johnson, Matrix Analysis.
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