Network Science
 Models and Distributed Algorithms

IST-CMU Phd course
João Xavier
TA: João Martins

October 3, 2016

Consensus in static undirected networks

- n agents; agent i holds $\theta_{i} \in \mathbf{R}$
- communication network is static and undirected
- communication happens in discrete time $t=0,1,2,3, \ldots$
- goal: compute the average

$$
\bar{\theta}=\frac{\theta_{1}+\cdots+\theta_{n}}{n}
$$

- we model the network as an undirected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$:
- $\mathcal{V}=\{1,2, \ldots, n\}$ is set of agents
- \mathcal{E} is set of communication channels
- agents i and j can communicate if and only if $\{i, j\} \in \mathcal{E}$
- example:

$$
\mathcal{V}=\{1,2,3,4,5\} \quad \mathcal{E}=\{\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{2,5\}\}
$$

- we also use the notation: $i \sim j \quad \Leftrightarrow \quad\{i, j\} \in \mathcal{E}$

- naive scheme: agents repeatedly compute local averages
- $x_{i}(0):=\theta_{i}$ and

$$
\left\{\begin{array}{l}
x_{1}(t+1)=\frac{x_{1}(t)+x_{2}(t)+x_{3}(t)+x_{4}(t)}{4} \\
x_{2}(t+1)=\frac{x_{1}(t)+x_{2}(t)+x_{3}(t)+x_{5}(t)}{4} \\
x_{3}(t+1)=\frac{x_{1}(t)+x_{2}(t)+x_{3}(t)}{3} \\
x_{4}(t+1)=\frac{x_{1}(t)+x_{4}(t)}{2} \\
x_{5}(t+1)=\frac{x_{2}(t)+x_{5}(t)}{2}
\end{array}\right.
$$

- naive scheme doesn't work:

- how can we fix this?

- naive scheme in matrix form: $x(0)=\underbrace{\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}\right)}_{\theta}$

$$
\underbrace{\left[\begin{array}{l}
x_{1}(t+1) \\
x_{2}(t+1) \\
x_{3}(t+1) \\
x_{4}(t+1) \\
x_{5}(t+1)
\end{array}\right]}_{x(t+1)}=\underbrace{\left[\begin{array}{ccccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{array}\right]}_{W} \underbrace{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]}_{x(t)}
$$

- important: in distributed algorithms, $W_{i j}=0$ whenever $i \nsim j$
- consider a more general iterative scheme: $x(0)=\theta$ and

$$
x(t+1)=W x(t), \quad t=0,1,2, \ldots
$$

where

$$
W \in \mathcal{W}_{\mathcal{G}}:=\left\{W \in \mathbf{R}^{n \times n}: W_{i j}=0 \text { if } i \nsim j, W=W^{T}\right\}
$$

- can this scheme work for some weight matrix W ?
- "works" means agents' states converge to $\bar{\theta}=\frac{\theta_{1}+\cdots+\theta_{n}}{n}$:

$$
x(t) \underset{t \rightarrow \infty}{\rightarrow} \bar{\theta} \mathbf{1}
$$

where $\mathbf{1}:=(1,1, \ldots, 1) \in \mathbf{R}^{n}$

- equivalent to

$$
x(t) \underset{t \rightarrow \infty}{\rightarrow} J \theta
$$

where

$$
J:=\frac{1}{n} \mathbf{1 1}^{T}=\left[\begin{array}{ccc}
\frac{1}{n} & \cdots & \frac{1}{n} \\
\vdots & \cdots & \vdots \\
\frac{1}{n} & \cdots & \frac{1}{n}
\end{array}\right] \in \mathbf{R}^{n \times n}
$$

- J is the orthogonal projector onto $\operatorname{span}(\mathbf{1})$
- unrolling the recursion $x(t+1)=W x(t)$ gives

$$
x(t)=W^{t} \theta
$$

for all $t \geq 0$

- we conclude that

$$
x(t) \underset{t \rightarrow \infty}{\rightarrow} J \theta
$$

for all $\theta \in \mathbf{R}^{n}$ if and only if

$$
W^{t} \underset{t \rightarrow \infty}{\rightarrow} J
$$

- analysis boils down to analyzing the powers of W
- an useful tool for analyzing the powers of a matrix is the EVD
- EVD: for any symmetric $W \in \mathbf{R}^{n \times n}$, there exist $Q, \Lambda \in \mathbf{R}^{n \times n}$ such that

$$
\begin{aligned}
W & =\underbrace{\left[\begin{array}{lll}
q_{1} & \cdots & q_{n}
\end{array}\right]}_{Q} \underbrace{\left[\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{c}
q_{1}^{T} \\
\vdots \\
q_{n}^{T}
\end{array}\right]}_{Q^{T}} \\
& =\lambda_{1} q_{1} q_{1}^{T}+\cdots+\lambda_{n} q_{n} q_{n}^{T}
\end{aligned}
$$

with Q :orthogonal ($Q^{T} Q=I$) and Λ :diagonal $\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$

- $\left(q_{i}, \lambda_{i}\right)$ is an eigenpair:

$$
W q_{i}=\lambda_{i} q_{i}, \quad i=1, \ldots, n
$$

- EVD implies $W^{t}=Q \Lambda^{t} Q$, where

$$
\Lambda^{t}=\left[\begin{array}{llll}
\lambda_{1}^{t} & & & \\
& \lambda_{2}^{t} & & \\
& & \ddots & \\
& & & \lambda_{n}^{t}
\end{array}\right]
$$

- we reduced the analysis from powers of matrices to powers of scalars
- conclusion: $W^{t} \underset{t \rightarrow \infty}{\rightarrow} J$ if and only if W satisfies

$$
\left(q_{1}, \lambda_{1}\right)=\left(\frac{1}{\sqrt{n}} \mathbf{1}, 1\right) \text { and }\left|\lambda_{i}\right|<1, \text { for } i=2, \ldots, n
$$

- in terms of the EVD of W :

$$
\begin{aligned}
W & =\underbrace{\left[\begin{array}{ll}
\frac{1}{\sqrt{n}} \mathbf{1} & \widetilde{Q}
\end{array}\right]}_{Q} \underbrace{\left[\begin{array}{cc}
1 & \widetilde{\Lambda}
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{c}
\frac{1}{\sqrt{n}} \mathbf{1}^{T} \\
\widetilde{Q}^{T}
\end{array}\right]}_{Q^{T}} \\
& =J+\underbrace{\widetilde{Q} \widetilde{\Lambda} \widetilde{Q}^{T}}_{\widetilde{W}}
\end{aligned}
$$

where

$$
\widetilde{Q}:=\left[\begin{array}{lll}
q_{2} & \cdots & q_{n}
\end{array}\right] \quad \text { and } \quad \widetilde{\Lambda}:=\left[\begin{array}{lll}
\lambda_{2} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
$$

- note that $\|\widetilde{W}\|=\max \left\{\left|\lambda_{i}\right|: i=2, \ldots, n\right\}<1$
- for such W, we can interpret $x(t+1)=W x(t)$ geometrically
- for $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbf{R}^{n}$, consider the orthogonal decomposition

$$
v=\bar{v} \mathbf{1}+\widetilde{v}
$$

where $\bar{v}:=\frac{v_{1}+\cdots+v_{n}}{n}=\frac{1}{n} \mathbf{1}^{T} v \in \mathbf{R} \quad$ and $\quad \widetilde{v}:=(I-J) v \in \mathbf{R}^{n}$

- $\bar{v} \mathbf{1}$ is the in-consensus component; \widetilde{v} is the off-consensus component
- since $W=W^{T}$ and $(\mathbf{1}, 1)$ is an eigenpair of W :
- $W \mathbf{1}=\mathbf{1}, \mathbf{1}^{T} W=\mathbf{1}^{T}$
- $J W=W J=J$
- $(I-J) W=W(I-J)=W-J=\widetilde{W}$
- on one hand:

$$
\begin{aligned}
\bar{x}(t+1) & =\frac{1}{n} \mathbf{1}^{T} x(t+1) \\
& =\frac{1}{n} \mathbf{1}^{T} W x(t) \\
& =\frac{1}{n} \mathbf{1}^{T} x(t) \\
& =\bar{x}(t)
\end{aligned}
$$

- interpretation: algorithm preserves the in-consensus component

$$
\bar{x}(t) \mathbf{1}=\bar{x} \mathbf{1}, \quad \text { for all } t \geq 0
$$

- on the other hand:

$$
\begin{aligned}
\widetilde{x}(t+1) & =(I-J) x(t+1) \\
& =(I-J) W x(t) \\
& =(I-J) W(I-J) x(t) \\
& =\widetilde{W} \widetilde{x}(t)
\end{aligned}
$$

- it follows that

$$
\|\widetilde{x}(t)\| \leq\|\widetilde{W}\|^{t}\|\widetilde{x}\|
$$

- interpretation: algorithm shrinks the off-consensus component to 0 geometrically fast
- key question: can we find in $\mathcal{W}_{\mathcal{G}}$ a matrix $W=Q \Lambda Q^{T}$ such that

$$
\left(q_{1}, \lambda_{1}\right)=\left(\frac{1}{\sqrt{n}} \mathbf{1}, 1\right) \text { and }\left|\lambda_{i}\right|<1, \text { for } i=2, \ldots, n ?
$$

- answer: YES if and only if \mathcal{G} is connected
- proof:
- (\Rightarrow) : trivial
- (\Leftarrow) : we will show two examples of W that work:
- Laplacian weights
- Metropolis weights

Undirected graphs

- a graph is connected if there exists a path between any two nodes

connected graph

disconnected graph
- the degree d_{i} of an agent i is its number of neighbors
- $d=\left(d_{1}, \ldots, d_{n}\right) \in \mathbf{R}^{n}$ is the degree vector
- $D=\operatorname{diag}(d) \in \mathbf{R}^{n \times n}$ is the degree matrix
- example:

$$
d=\left[\begin{array}{l}
3 \\
3 \\
2 \\
1 \\
1
\end{array}\right] \quad D=\left[\begin{array}{lllll}
3 & & & & \\
& 3 & & & \\
& & 2 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right]
$$

- the (i, j) entry of the adjacency matrix $A=\left(a_{i j}\right) \in \mathbf{R}^{n \times n}$ is

$$
a_{i j}=\left\{\begin{array}{lc}
1, & \text { if } i \sim j \\
0, & \text { otherwise }
\end{array}\right.
$$

- example:

$$
A=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

- Elementary properties:
- A is symmetric: $A=A^{T}$
- $d=A 1$
- the laplacian is $L=D-A \in \mathbf{R}^{n \times n}$
- example:

- Properties of the laplacian:
- as a linear operator:

$$
(L x)_{i}=d_{i} x_{i}-\sum_{j \sim i} x_{j}=d_{i}\left(x_{i}-\frac{1}{d_{i}} \sum_{j \sim i} x_{j}\right)
$$

interpretation: quantifies local disagreement between each agent and its neighbors' average

- as a quadratic form:

$$
x^{T} L x=\sum_{i \sim j}\left(x_{i}-x_{j}\right)^{2}
$$

interpretation: quantifies global disagreement between agents

- $L \mathbf{1}=0$
- $L \succeq 0$
- letting $\sigma(L)=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right\}$ with $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{n}$:
- $\mu_{1}=0$
- $\mu_{2}>0$ if and only if \mathcal{G} is connected
- μ_{2} is the Fiedler eigenvalue of \mathcal{G}
- key question: can we find in $\mathcal{W}_{\mathcal{G}}$ a matrix $W=Q \Lambda Q^{T}$ such that

$$
\left(q_{1}, \lambda_{1}\right)=\left(\frac{1}{\sqrt{n}} \mathbf{1}, 1\right) \text { and }\left|\lambda_{i}\right|<1, \text { for } i=2, \ldots, n ?
$$

- answer: YES if and only if \mathcal{G} is connected
- proof: (\Leftarrow) the matrix $W=I-\alpha L$ works, if $0<\alpha<\frac{2}{\mu_{n}}$
- interpretation 1: the iterative algorithm

$$
x(t+1)=W x(t)=x(t)-\alpha L x(t)
$$

is gradient method applied to $f(x)=\frac{1}{2} x^{T} L x$ with stepsize α

- interpretation 2: in each iteration

$$
x_{i}(t+1)=x_{i}(t)+\alpha d_{i}\left(\frac{1}{d_{i}} \sum_{j \sim i} x_{j}(t)-x_{i}(t)\right)
$$

agent i moves a bit toward its local average

- back to example in page 5 with $W=I-\alpha L$ and $\alpha=\frac{1}{\mu_{n}}$:

- we fixed the problem
- which $0<\alpha<\frac{2}{\mu_{n}}$ gives the fastest network?
- answer:

$$
\alpha^{\star}=\frac{2}{\mu_{2}+\mu_{n}}
$$

Jordan canonical form

- for any $A \in \mathbf{C}^{n \times n}$, there exist $S, J \in \mathbf{C}^{n \times n}$ such that

$$
A=S J S^{-1}
$$

with S :non-singular and

$$
J=\left[\begin{array}{llll}
J_{\lambda_{1}} & & & \\
& J_{\lambda_{2}} & & \\
& & \ddots & \\
& & & J_{\lambda_{p}}
\end{array}\right], \quad J_{\lambda_{i}}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & & & \\
& \lambda_{i} & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda_{i} & 1 \\
& & & & \lambda_{i}
\end{array}\right]
$$

- each λ_{i} is an eigenvalue of A (the λ_{i} 's may be repeated)
- some columns of S are eigenvectors of A
- example:

$$
A=\underbrace{\left[\begin{array}{llllll}
s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & s_{6}
\end{array}\right]}_{S} \underbrace{\left[\begin{array}{cccccc}
\lambda_{1} & 1 & 0 & 0 & 0 & 0 \\
0 & \lambda_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{3} & 1 \\
0 & 0 & 0 & 0 & 0 & \lambda_{3}
\end{array}\right]}_{J} \underbrace{\left[\begin{array}{c}
\widetilde{s}_{1}^{T} \\
\widetilde{s}_{2}^{T} \\
\widetilde{s}_{3}^{T} \\
\widetilde{s}_{3}^{T} \\
\widetilde{s}_{5}^{T} \\
\widetilde{s}_{6}^{T}
\end{array}\right]}_{S^{-1}}
$$

with $J_{\lambda_{1}} \in \mathbf{C}^{3 \times 3}, J_{\lambda_{2}} \in \mathbf{C}^{1 \times 1}, J_{\lambda_{3}} \in \mathbf{C}^{2 \times 2}$

- spectrum of A is $\sigma(A)=\left\{\lambda_{1}, \lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{3}\right\}$
- s_{1}, s_{4}, s_{5} are right-eigenvectors:

$$
A s_{1}=\lambda_{1} s_{1}, \quad A s_{4}=\lambda_{2} s_{4}, \quad A s_{5}=\lambda_{3} s_{5}
$$

- $\widetilde{s}_{3}^{T}, \widetilde{s}_{4}^{T}, \widetilde{s}_{6}^{T}$ are left-eigenvectors:

$$
\widetilde{s}_{3}^{T} A=\lambda_{1} \widetilde{s}_{3}^{T}, \quad \widetilde{s}_{4}^{T} A=\lambda_{2} \widetilde{s}_{4}^{T}, \quad \widetilde{s}_{6}^{T} A=\lambda_{3} \widetilde{s}_{6}^{T}
$$

Directed graphs

- example:

$$
\mathcal{V}=\{1,2,3,4,5\} \quad \mathcal{E}=\{(1,1),(1,2),(1,4),(2,3),(2,5),(3,1),(4,2),(5,2),(5,3)\}
$$

- we also use the notation: $i \rightarrow j \quad \Leftrightarrow \quad(i, j) \in \mathcal{E}$
- the graph induced by a matrix $A \in \mathbf{C}^{n \times n}$ is $\mathcal{G}(A)=(\mathcal{V}, \mathcal{E})$
- $\mathcal{V}=\{1,2, \ldots, n\}$
- $\mathcal{E}=\left\{(i, j): A_{i j} \neq 0\right\}$
- example:
$A=\left[\begin{array}{ccccc}-0.1 & 0.7 & 0 & 1.3 & 0 \\ 0 & 0 & -0.4 & 0 & 0.2 \\ 1.5 & 0 & 0 & 0 & 0 \\ 0 & 0.1 & 0 & 0 & 0 \\ 0 & 0 & 0.9 & 0 & -0.1\end{array}\right]$

$\mathcal{G}(A)$
- Perron-Frobenius theorem reveals spectral properties of A from $\mathcal{G}(A)$
- a directed graph is connected ${ }^{1}$ if there exists a path between any two nodes

connected graph

disconnected graph

Perron-Frobenius theorem ${ }^{2}$

- if $A \geq 0$ and $\mathcal{G}(A)$ is connected, then:
- $\rho(A)$ is an eigenvalue of A
- there exists $v>0$ such that

$$
A v=\rho(A) v
$$

- there exists $w>0, w^{T} v=1$ such that

$$
w^{T} A=\rho(A) w^{T}
$$

- if there are K eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{K}\right\}$ on the spectral circle, then $\lambda_{k}=\rho(A) e^{i \frac{2 \pi}{K}(k-1)}$ and $J_{\lambda_{k}}$ is 1×1 for all $k=1, \ldots, K$.

[^0]- interpretation: in terms of the Jordan canonical form of A,

$$
A=\underbrace{\left[\begin{array}{llll}
v & s_{2} & \cdots & s_{n}
\end{array}\right]}_{S} \underbrace{\left[\begin{array}{ccccc}
\rho(A) & & & \\
& J_{\lambda_{2}} & & \\
& & \ddots & \\
& & & J_{\lambda_{p}}
\end{array}\right]}_{J} \underbrace{\left[\begin{array}{c}
w^{T} \\
\widetilde{s}_{2}^{T} \\
\vdots \\
\widetilde{s}_{n}^{T}
\end{array}\right]}_{S^{-1}}
$$

with $\lambda_{i} \neq \rho(A)$ for $i=2, \ldots, p$

- example:

$$
A=\left[\begin{array}{ccccc}
0.1 & 0.7 & 0 & 1.3 & 0 \\
0 & 0 & 0.4 & 0 & 0.2 \\
1.5 & 0 & 0 & 0 & 0 \\
0 & 0.1 & 0 & 0 & 0 \\
0 & 0 & 0.9 & 0 & 0.1
\end{array}\right]
$$

- spectrum of A in the complex plane:

- Jordan canonical form: $A=S J S^{-1}$

$$
\begin{aligned}
& S=\left[\begin{array}{lllll}
0.3694 & * & * & * & * \\
0.3754 & * & * & * & * \\
0.5831 & * & * & * & * \\
0.0395 & * & * & * & * \\
0.6173 & * & * & * & *
\end{array}\right] \\
& J=\left[\begin{array}{lllll}
0.9593 & & & & \\
& * & & \\
& & * & & \\
& & & * & \\
& & & & *
\end{array}\right] \\
& S^{-1}=\left[\begin{array}{ccccc}
0.8248 & 0.7263 & 0.4675 & 1.1283 & 0.1708 \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right]
\end{aligned}
$$

- definition: A is a primitive matrix if $A \geq 0, \mathcal{G}(A)$ is connected and $\rho(A)$ is the unique eigenvalue in the spectral circle of A
- if $A \geq 0, \mathcal{G}(A)$ is connected and $A_{i i}>0$ for all i then A is primitive

Metropolis weights

- for an undirected graph \mathcal{G} :

$$
w_{i j}= \begin{cases}\frac{1}{1+\max \left\{d_{i}, d_{j}\right\}} & , \text { if } j \sim i \\ 1-\sum_{j \sim i} w_{i j} & , \text { if } i=j\end{cases}
$$

- properties of the matrix $W=\left(w_{i j}\right)$:
- $W=W^{T}$
- $W 1=1$
- $W \geq 0$
- $\rho(W)=1$
- $\sigma(W)=\left\{1, \lambda_{2}, \ldots, \lambda_{n}\right\}$ with $\left|\lambda_{i}\right|<1$ for $i=2, \ldots, n$
- conclusion: $W \in \mathcal{W}_{\mathcal{G}}$
- back to example in page 5 with a Metropolis matrix W :

To know more

- Optimizing the weight matrix for fast consensus
- L. Xiao and S. Boyd, "Fast linear iterations for distributed averaging," Sys. and Control Lett., 53, 2004
- S. You, "A fast linear consensus protocol on an asymmetric directed graph," American Control Conf., 2014.
- Laplacians
- F. Chung, Spectral graph theory, ch. 1
- M. Fiedler, "Algebraic connectivity of graphs", Czech. Math. Journal, 23 (98) 1973.
- Matrix analysis (Jordan forms, EVD, SVD)
- R. Horn, C. R. Johnson, Matrix Analysis, ch. 1-5.
- Perron-Frobenius theory
- C. Meyer, Matrix Analysis and Applied Linear Algebra, ch. 8.
- R. Horn, C. R. Johnson, Matrix Analysis, ch. 8.

[^0]: ${ }^{2}$ C. Meyer, Matrix Analysis and Applied Linear Algebra, ch. 8, p. 673 and p.676; R. Horn, C. R. Johnson, Matrix Analysis, ch. 8, Theorem 8.4.4, p. 508.

