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Consensus in static undirected networks

✓1

✓2

✓3

✓4

✓5

• n agents; agent i holds θi ∈ R
• communication network is static and undirected
• communication happens in discrete time t = 0, 1, 2, 3, . . .
• goal: compute the average

θ =
θ1 + · · ·+ θn

n
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• we model the network as an undirected graph G = (V, E):
I V = {1, 2, . . . , n} is set of agents
I E is set of communication channels

• agents i and j can communicate if and only if {i, j} ∈ E

• example:

✓1

✓2

✓3

✓4

✓5

V = {1, 2, 3, 4, 5} E = {{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 5}}

• we also use the notation: i ∼ j ⇔ {i, j} ∈ E
3 / 38



✓1

✓2

✓3

✓4

✓5

• naive scheme: agents repeatedly compute local averages

• xi(0) := θi and




x1(t+ 1) = x1(t)+x2(t)+x3(t)+x4(t)
4

x2(t+ 1) = x1(t)+x2(t)+x3(t)+x5(t)
4

x3(t+ 1) = x1(t)+x2(t)+x3(t)
3

x4(t+ 1) = x1(t)+x4(t)
2

x5(t+ 1) = x2(t)+x5(t)
2
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• naive scheme doesn’t work:
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x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
θ

• how can we fix this?
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✓1

✓2

✓3

✓4

✓5

• naive scheme in matrix form: x(0) = (θ1, θ2, θ3, θ4, θ5)︸ ︷︷ ︸
θ




x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)
x5(t+ 1)




︸ ︷︷ ︸
x(t+1)

=




1
4

1
4

1
4

1
4 0

1
4

1
4

1
4 0 1

4
1
3

1
3

1
3 0 0

1
2 0 0 1

2 0
0 1

2 0 0 1
2




︸ ︷︷ ︸
W




x1(t)
x2(t)
x3(t)
x4(t)
x5(t)




︸ ︷︷ ︸
x(t)

• important: in distributed algorithms, Wij = 0 whenever i 6∼ j
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• consider a more general iterative scheme: x(0) = θ and

x(t+ 1) = Wx(t), t = 0, 1, 2, . . .

where

W ∈ WG :=
{
W ∈ Rn×n : Wij = 0 if i 6∼ j,W = WT

}

• can this scheme work for some weight matrix W?

• “works” means agents’ states converge to θ = θ1+···+θn
n :

x(t) →
t→∞

θ1

where 1 := (1, 1, . . . , 1) ∈ Rn
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• equivalent to
x(t) →

t→∞
Jθ

where

J :=
1

n
11T =




1
n · · · 1

n
... · · ·

...
1
n · · · 1

n


 ∈ Rn×n

1

✓ = initial network state
J✓ = desired network state

Rn

• J is the orthogonal projector onto span(1)
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• unrolling the recursion x(t+ 1) = Wx(t) gives

x(t) = W tθ

for all t ≥ 0

• we conclude that
x(t) →

t→∞
Jθ

for all θ ∈ Rn if and only if

W t →
t→∞

J

• analysis boils down to analyzing the powers of W
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• an useful tool for analyzing the powers of a matrix is the EVD

• EVD: for any symmetric W ∈ Rn×n, there exist Q,Λ ∈ Rn×n such
that

W =
[
q1 · · · qn

]
︸ ︷︷ ︸

Q



λ1

. . .

λn




︸ ︷︷ ︸
Λ



qT1
...
qTn




︸ ︷︷ ︸
QT

= λ1q1q
T
1 + · · ·+ λnqnq

T
n

with Q:orthogonal (QTQ = I) and Λ:diagonal (λ1 ≥ · · · ≥ λn)

• (qi, λi) is an eigenpair:

Wqi = λiqi, i = 1, . . . , n
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• EVD implies W t = QΛtQ, where

Λt =




λt1
λt2

. . .

λtn




• we reduced the analysis from powers of matrices to powers of scalars

• conclusion: W t →
t→∞

J if and only if W satisfies

(q1, λ1) =

(
1√
n
1, 1

)
and |λi| < 1, for i = 2, . . . , n
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• in terms of the EVD of W :

W =
[

1√
n
1 Q̃

]

︸ ︷︷ ︸
Q

[
1

Λ̃

]

︸ ︷︷ ︸
Λ

[
1√
n
1T

Q̃T

]

︸ ︷︷ ︸
QT

= J + Q̃Λ̃Q̃T︸ ︷︷ ︸
W̃

where

Q̃ :=
[
q2 · · · qn

]
and Λ̃ :=



λ2

. . .

λn




• note that
∥∥∥W̃

∥∥∥ = max {|λi| : i = 2, . . . , n} < 1

• for such W , we can interpret x(t+ 1) = Wx(t) geometrically
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• for v = (v1, . . . , vn) ∈ Rn, consider the orthogonal decomposition

v = v1 + ṽ

where v := v1+···+vn
n = 1

n1
T v ∈ R and ṽ := (I − J)v ∈ Rn

1

Rn

v1 = Jv

v

ev = (I � J)v

• v1 is the in-consensus component; ṽ is the off-consensus component
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• since W = WT and (1, 1) is an eigenpair of W :
I W1 = 1,1TW = 1T

I JW =WJ = J
I (I − J)W =W (I − J) =W − J = W̃

• on one hand:

x(t+ 1) =
1

n
1Tx(t+ 1)

=
1

n
1TWx(t)

=
1

n
1Tx(t)

= x(t)

• interpretation: algorithm preserves the in-consensus component

x(t)1 = x1, for all t ≥ 0
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• on the other hand:

x̃(t+ 1) = (I − J)x(t+ 1)

= (I − J)Wx(t)

= (I − J)W (I − J)x(t)

= W̃ x̃(t)

• it follows that

‖x̃(t)‖ ≤
∥∥∥W̃

∥∥∥
t

‖x̃‖

• interpretation: algorithm shrinks the off-consensus component to 0
geometrically fast

15 / 38



• key question: can we find in WG a matrix W = QΛQT such that

(q1, λ1) =

(
1√
n
1, 1

)
and |λi| < 1, for i = 2, . . . , n?

• answer: YES if and only if G is connected

• proof:
I (⇒): trivial
I (⇐): we will show two examples of W that work:

I Laplacian weights
I Metropolis weights
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Undirected graphs

• a graph is connected if there exists a path between any two nodes

connected graph disconnected graph
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• the degree di of an agent i is its number of neighbors

• d = (d1, . . . , dn) ∈ Rn is the degree vector

• D = diag (d) ∈ Rn×n is the degree matrix

• example:

4

1

3

2

5

d =




3
3
2
1
1




D =




3
3

2
1

1
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• the (i, j) entry of the adjacency matrix A = (aij) ∈ Rn×n is

aij =

{
1, if i ∼ j
0, otherwise

• example:

4

1

3

2

5

A =




0 1 1 1 0
1 0 1 0 1
1 1 0 0 0
1 0 0 0 0
0 1 0 0 0
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• Elementary properties:

I A is symmetric: A = AT

I d = A1
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• the laplacian is L = D −A ∈ Rn×n

• example:

4

1

3

2

5

L =




3 −1 −1 −1 0
−1 3 −1 0 −1
−1 −1 2 0 0
−1 0 0 1 0
0 −1 0 0 1
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• Properties of the laplacian:

I as a linear operator:

(Lx)i = dixi −
∑
j∼i

xj = di

(
xi −

1

di

∑
j∼i

xj

)

interpretation: quantifies local disagreement between each agent and
its neighbors’ average

I as a quadratic form:

xTLx =
∑
i∼j

(xi − xj)2

interpretation: quantifies global disagreement between agents
I L1 = 0
I L � 0
I letting σ(L) = {µ1, µ2, . . . , µn} with µ1 ≤ µ2 ≤ · · · ≤ µn:

I µ1 = 0
I µ2 > 0 if and only if G is connected

• µ2 is the Fiedler eigenvalue of G
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• key question: can we find in WG a matrix W = QΛQT such that

(q1, λ1) =

(
1√
n
1, 1

)
and |λi| < 1, for i = 2, . . . , n?

• answer: YES if and only if G is connected

• proof: (⇐) the matrix W = I − αL works, if 0 < α < 2
µn

• interpretation 1: the iterative algorithm

x(t+ 1) = Wx(t) = x(t)− αLx(t)

is gradient method applied to f(x) = 1
2x

TLx with stepsize α

• interpretation 2: in each iteration

xi(t+ 1) = xi(t) + αdi


 1

di

∑

j∼i
xj(t)− xi(t)




agent i moves a bit toward its local average
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• back to example in page 5 with W = I − αL and α = 1
µn

:

0 5 10 15 20 25
1

1.5

2

2.5
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3.5

4

4.5

5

t

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
θ

• we fixed the problem
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• which 0 < α < 2
µn

gives the fastest network?

• answer:

α? =
2

µ2 + µn

0 5 10 15 20 25
1

1.5
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x1(t)
x2(t)
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⋆
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⋆
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⋆
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x
⋆
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x
⋆

5(t)
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Jordan canonical form

• for any A ∈ Cn×n, there exist S, J ∈ Cn×n such that

A = SJS−1

with S:non-singular and

J =




Jλ1

Jλ2

. . .

Jλp


 , Jλi =




λi 1
λi 1

. . .
. . .

λi 1
λi




• each λi is an eigenvalue of A (the λi’s may be repeated)

• some columns of S are eigenvectors of A
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• example:

A =
[
s1 s2 s3 s4 s5 s6

]
︸ ︷︷ ︸

S




λ1 1 0 0 0 0
0 λ1 1 0 0 0
0 0 λ1 0 0 0
0 0 0 λ2 0 0
0 0 0 0 λ3 1
0 0 0 0 0 λ3




︸ ︷︷ ︸
J




s̃T1
s̃T2
s̃T3
s̃T4
s̃T5
s̃T6




︸ ︷︷ ︸
S−1

with Jλ1
∈ C3×3, Jλ2

∈ C1×1, Jλ3
∈ C2×2

• spectrum of A is σ(A) = {λ1, λ1, λ1, λ2, λ3, λ3}

• s1, s4, s5 are right-eigenvectors:

As1 = λ1s1, As4 = λ2s4, As5 = λ3s5

• s̃T3 , s̃T4 , s̃T6 are left-eigenvectors:

s̃T3 A = λ1s̃
T
3 , s̃T4 A = λ2s̃

T
4 , s̃T6 A = λ3s̃

T
6
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Directed graphs

• example:

1

2

3

4

5

V = {1, 2, 3, 4, 5} E = {(1, 1), (1, 2), (1, 4), (2, 3), (2, 5), (3, 1), (4, 2), (5, 2), (5, 3)}

• we also use the notation: i→ j ⇔ (i, j) ∈ E
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• the graph induced by a matrix A ∈ Cn×n is G(A) = (V, E)
I V = {1, 2, . . . , n}
I E = {(i, j) : Aij 6= 0}

• example:

1

2

3

4

5

A =

2
66664

�0.1 0.7 0 1.3 0
0 0 �0.4 0 0.2

1.5 0 0 0 0
0 0.1 0 0 0
0 0 0.9 0 �0.1

3
77775

G(A)

• Perron-Frobenius theorem reveals spectral properties of A from G(A)

29 / 38



• a directed graph is connected1 if there exists a path between any
two nodes

connected graph disconnected graph

1Some authors use the term strongly connected.
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Perron-Frobenius theorem2

• if A ≥ 0 and G(A) is connected, then:
I ρ(A) is an eigenvalue of A

I there exists v > 0 such that

Av = ρ(A)v

I there exists w > 0, wT v = 1 such that

wTA = ρ(A)wT

I if there are K eigenvalues {λ1, . . . , λK} on the spectral circle, then

λk = ρ(A)ei
2π
K

(k−1) and Jλk is 1× 1 for all k = 1, . . . ,K.

2C. Meyer, Matrix Analysis and Applied Linear Algebra, ch. 8, p. 673 and p.676; R.
Horn, C. R. Johnson, Matrix Analysis, ch. 8, Theorem 8.4.4, p. 508.
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• interpretation: in terms of the Jordan canonical form of A,

A =
[
v s2 · · · sn

]
︸ ︷︷ ︸

S




ρ(A)
Jλ2

. . .

Jλp




︸ ︷︷ ︸
J




wT

s̃T2
...
s̃Tn




︸ ︷︷ ︸
S−1

with λi 6= ρ(A) for i = 2, . . . , p
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• example:

A =




0.1 0.7 0 1.3 0
0 0 0.4 0 0.2

1.5 0 0 0 0
0 0.1 0 0 0
0 0 0.9 0 0.1




• spectrum of A in the complex plane:

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
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• Jordan canonical form: A = SJS−1

S =




0.3694 ∗ ∗ ∗ ∗
0.3754 ∗ ∗ ∗ ∗
0.5831 ∗ ∗ ∗ ∗
0.0395 ∗ ∗ ∗ ∗
0.6173 ∗ ∗ ∗ ∗




J =




0.9593
∗
∗
∗
∗




S−1 =




0.8248 0.7263 0.4675 1.1283 0.1708
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
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• definition: A is a primitive matrix if A ≥ 0, G(A) is connected and
ρ(A) is the unique eigenvalue in the spectral circle of A

• if A ≥ 0, G(A) is connected and Aii > 0 for all i then A is primitive
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Metropolis weights

• for an undirected graph G:

wij =

{ 1
1+max{di,dj} , if j ∼ i
1−∑j∼i wij , if i = j

• properties of the matrix W = (wij):
I W =WT

I W1 = 1
I W ≥ 0
I ρ(W ) = 1
I σ(W ) = {1, λ2, . . . , λn} with |λi| < 1 for i = 2, . . . , n

• conclusion: W ∈ WG
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• back to example in page 5 with a Metropolis matrix W :

0 5 10 15 20 25
1
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To know more

• Optimizing the weight matrix for fast consensus
I L. Xiao and S. Boyd, “Fast linear iterations for distributed

averaging,” Sys. and Control Lett., 53, 2004
I S. You, “A fast linear consensus protocol on an asymmetric directed

graph,” American Control Conf., 2014.

• Laplacians
I F. Chung, Spectral graph theory, ch. 1
I M. Fiedler, “Algebraic connectivity of graphs”, Czech. Math.

Journal, 23 (98) 1973.

• Matrix analysis (Jordan forms, EVD, SVD)
I R. Horn, C. R. Johnson, Matrix Analysis, ch. 1–5.

• Perron-Frobenius theory
I C. Meyer, Matrix Analysis and Applied Linear Algebra, ch. 8.
I R. Horn, C. R. Johnson, Matrix Analysis, ch. 8.
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