
Network Science
IST-CMU PhD course
Fall 2016
Instructor: jxavier@isr.ist.utl.pt
TA: João Martins, joaoa@andrew.cmu.edu

Important: the homework is due the February 16. Send a scanned pdf file with your answers (or
typed in LaTeX, if you prefer) to the TA’s email.

Homework 5

1. Consensus over digital channels: numerical simulation. Consider a network of n agents in
which each agent i encodes its opinion about some issue as a bit (binary digit) θi ∈ {0, 1}. For
example, θi can be the output of a decision algorithm that agent i ran to decide if an intruder
is present (θi = 1) or not (θi = 0). The agents want to compute their average opinion

θ =
1

n

n∑
i=1

θi,

or, in a compact notation, θ = 1T θ/n, where θ = (θ1, . . . , θn).

Assume the agents are linked by a connected, undirected communication network. Any stan-
dard consensus algorithm can produce the desired θ at all agents. For example, the algorithm
given by x(0) = θ and

x(t+ 1) = x(t)− αLx(t), t ≥ 0, . (1)

can make x(t) → θ1 as t → ∞. In (1), L is the n × n laplacian matrix of the network, and
α > 0 is an appropriately chosen stepsize.

Model (1) assumes that the state xi(t) ∈ R, sent by each agent i to its neighbors, passes with-
out distortion through the channels linking them. However, in practice most communication
channels are digital which, roughly speaking, means that they can pass only a finite number of
bits (per channel use); they cannot directly pass real numbers such as xi(t) ∈ R (per channel
use). The state xi(t) ∈ R has first to be quantized, that is, approximated by a finite number
of bits. In this problem, we will consider highly limited digital channels: at each time slot
t = 1, 2, . . ., each channel can pass only one bit.

To handle such channels, we will consider the following distributed algorithm: x(0) = θ and

x(t+ 1) = x(t)− α(t+ 1)Ly(t+ 1), t ≥ 0, (2)

where y(t) = (y1(t), . . . , yn(t)) is a binary vector, that is, each yi(t) is a bit, yi(t) ∈ {0, 1}.
In (2), the bit yi(t + 1) ∈ {0, 1} is the information that agent i sends to its neighbors at
time t (compare with (1) where the state xi(t) ∈ R is the information that agent i sends to
its neighbors at time t). The bit yi(t+ 1) ∈ {0, 1} depends probabilistically on the state xi(t)
as follows:

• if 0 ≤ xi(t) < dmaxα(t+ 1), then yi(t+ 1) = 0;
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• if dmaxα(t+ 1) ≤ xi(t) ≤ 1−dmaxα(t+ 1), then yi(t+ 1) = 1 with probability xi(t) (and,
of course, yi(t) = 0 with probability 1− xi(t));
• if 1− dmaxα(t+ 1) < xi(t) ≤ 1, then yi(t+ 1) = 1.

Here, dmax is the maximum of all nodes’ degrees, and α(t) is the stepsize sequence also
appearing in (2) (to be discussed latter). Thus, if the state xi(t) is sufficiently close to 0,
agent i sends the bit yi(t + 1) = 0 to its neighbors. If the state xi(t) is sufficiently close to
1, agent i sends the bit yi(t + 1) = 1 to its neighbors. Finally, if the state xi(t) is neither
too close to 0 nor to 1, agent i creates a fresh random bit yi(t+ 1) ∈ {0, 1} with mean value
xi(t)—-specifically, E (yi(t+ 1) |xi(t)) = xi(t)—and sends it to its neighbors. The random
bit is generated independently from all other previous ones.

Implement in Matlab algorithm (2) for the example in figure 1.
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Figure 1: A set of five agents linked by undirected communication channels. Agent i holds θi. We consider
θ1 = 1, θ2 = 1, θ3 = 0, θ4 = 0, θ5 = 1. So, θ = 0.6.

Use the stepsize sequence

α(t) =
1

2dmaxt0.6
, t ≥ 1,

and produce a plot of one run of the algorithm. You should obtain something similar to
figure 2.

Note: in Matlab, you can generate a random bit y ∈ {0, 1} with mean x ∈ [0, 1] with the
command y = (rand <= x). Also, for the graph in figure 1, we have dmax = 3.

2. Consensus over digital channels: theoretical analysis (or, yes, still another nice application of
the Robbins-Siegmund’s supermartingale convergence lemma). In this problem, you will prove
that algorithm (2) works, that is, x(t) → θ1 (almost surely) as t → ∞ for any undirected,
connected network, provided the stepsize sequence satisfies 0 < α(t) ≤ 1/(2dmax) for all t ≥ 1,∑

t≥1 α(t) =∞, and
∑

t≥1 α(t)2 <∞.

(a) Start by showing that the algorithm (2) is well-defined, that is, show that

0 ≤ xi(t) ≤ 1
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Figure 2: A run of the algorithm (2) for the network in figure 1.

for all t ≥ 0 and i = 1, . . . , n, that is, the agents’ states are always confined to the
interval [0, 1] (if this was not the case, the algorithm (2) would be ill-defined: how could
you generate a random bit y ∈ {0, 1} with mean x < 0 or x > 1?).

(b) Do the usual orthogonal split of the network state: x(t) = x(t)1 + Ux̂(t), where x(t) :=
1Tx(t)/n ∈ R, x̂(t) := UTx(t) ∈ Rn−1, and

L =
[
U 1√

n
1
] [Λ

0

][
UT

1√
n
1T

]
is an eigenvalue decomposition of the laplacian matrix. Note that, because the graph is
assumed connected, all diagonal entries of the diagonal matrix

Λ =


λn−1

λn−2
. . .

λ1


are positive. Show that x(t) = θ for all t ≥ 0.

(c) Since x(t) = θ for all t ≥ 0, we need only to show that x̂(t)→ 0 (almost surely) as t→∞
to obtain our goal: x(t)→ θ1.
Show that (2) implies

x̂(t+ 1) = x̂(t)− α(t+ 1)Λŷ(t+ 1) (3)

where ŷ(t) := UT y(t). Conclude that

x̂i(t+ 1) = x̂i(t)− α(t+ 1)λiŷi(t+ 1), (4)

for i = 1, . . . , n− 1, where x̂(t) = (x̂1(t), . . . , x̂n−1(t)) and ŷ(t) = (ŷ1(t), . . . , ŷn−1(t)).
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(d) Let F(t) := {x(0), y(1), x(1), y(2), . . . , x(t− 1), y(t), x(t)} and note that F(t) does not
contain y(t+ 1). Recalling from problem 1 how yi(t+ 1) is generated from xi(t), we see
that

E (yi(t+ 1) | F(t)) =


0 , if 0 ≤ xi(t) < dmaxα(t+ 1)
xi(t) , if dmaxα(t+ 1) ≤ xi(t) ≤ 1− dmaxα(t+ 1)
1 , if 1− dmaxα(t+ 1) < xi(t) ≤ 1.

(5)

We can express (5) more compactly as E (yi(t+ 1) | F(t)) = φt (xi(t)) where φt : [0, 1]→
R is defined as

φt(x) =


0 , if 0 ≤ x < dmaxα(t+ 1)
x , if dmaxα(t+ 1) ≤ x ≤ 1− dmaxα(t+ 1)
1 , if 1− dmaxα(t+ 1) < x ≤ 1.

Similarly, in vector form, we have E (y(t+ 1) | F(t)) = Φt (x(t)) where Φt : Rn → R is
defined as

Φt(x1, . . . , xn) =


φt(x1)
φt(x2)

...
φt(xn)


Show that (4) implies

E
(
x̂i(t+ 1)2 | F(t)

)
= x̂i(t)

2−2α(t+1)λix̂i(t)u
T
i Φt (x(t))+λ2iα(t+1)2E

(
ŷi(t+ 1)2 | F(t)

)
,

(6)
where uTi is the ith row of matrix UT , i.e.,

UT =


uT1
uT2
...

uTn−1

 ∈ R(n−1)×n.

(e) Show that (6) implies

E
(
x̂i(t+ 1)2 | F(t)

)
≤ x̂i(t)2 − 2α(t+ 1)λix̂i(t)u

T
i Φt (x(t)) + nλ2iα(t+ 1)2. (7)

(f) Using Φt(x(t)) = x(t) + (Φt(x(t))− x(t)), show that (7) can be rewritten as

E
(
x̂i(t+ 1)2 | F(t)

)
≤

x̂i(t)
2 − 2α(t+ 1)λix̂i(t)

2 − 2α(t+ 1)λiu
T
i (Φt(x(t))− x(t)) + nλ2iα(t+ 1)2. (8)

(g) Show that |φt(x)− x| ≤ dmaxα(t+ 1) for all t ≥ 0 and x ∈ [0, 1], and conclude that

‖Φt(x)− x‖ ≤
√
ndmaxα(t+ 1)

for all t ≥ 0 and x ∈ [0, 1]n.
(h) Show that

E
(
x̂i(t+ 1)2 | F(t)

)
≤ x̂i(t)2 − 2α(t+ 1)λix̂i(t)

2 + 2α(t+ 1)2λi
√
ndmax + nλ2iα(t+ 1)2

and conclude that x̂i(t)→ 0.
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