Network Science IST-CMU PhD course Fall 2016 Instructor: jxavier@isr.ist.utl.pt TA: João Martins, joaoa@andrew.cmu.edu

Important: the homework is due the February 16. Send a scanned pdf file with your answers (or typed in LaTeX, if you prefer) to the TA's email.

Homework 5

1. Consensus over digital channels: numerical simulation. Consider a network of n agents in which each agent i encodes its opinion about some issue as a bit (binary digit) $\theta_i \in \{0, 1\}$. For example, θ_i can be the output of a decision algorithm that agent i ran to decide if an intruder is present ($\theta_i = 1$) or not ($\theta_i = 0$). The agents want to compute their average opinion

$$\overline{\theta} = \frac{1}{n} \sum_{i=1}^{n} \theta_i$$

or, in a compact notation, $\overline{\theta} = \mathbf{1}^T \theta / n$, where $\theta = (\theta_1, \dots, \theta_n)$.

Assume the agents are linked by a connected, undirected communication network. Any standard consensus algorithm can produce the desired $\overline{\theta}$ at all agents. For example, the algorithm given by $x(0) = \theta$ and

$$x(t+1) = x(t) - \alpha L x(t), \quad t \ge 0,.$$
 (1)

can make $x(t) \to \overline{\theta} \mathbf{1}$ as $t \to \infty$. In (1), L is the $n \times n$ laplacian matrix of the network, and $\alpha > 0$ is an appropriately chosen stepsize.

Model (1) assumes that the state $x_i(t) \in \mathbf{R}$, sent by each agent *i* to its neighbors, passes without distortion through the channels linking them. However, in practice most communication channels are digital which, roughly speaking, means that they can pass only a finite number of bits (per channel use); they cannot directly pass real numbers such as $x_i(t) \in \mathbf{R}$ (per channel use). The state $x_i(t) \in \mathbf{R}$ has first to be quantized, that is, approximated by a finite number of bits. In this problem, we will consider highly limited digital channels: at each time slot $t = 1, 2, \ldots$, each channel can pass only one bit.

To handle such channels, we will consider the following distributed algorithm: $x(0) = \theta$ and

$$x(t+1) = x(t) - \alpha(t+1)Ly(t+1), \quad t \ge 0,$$
(2)

where $y(t) = (y_1(t), \ldots, y_n(t))$ is a binary vector, that is, each $y_i(t)$ is a bit, $y_i(t) \in \{0, 1\}$. In (2), the bit $y_i(t+1) \in \{0, 1\}$ is the information that agent *i* sends to its neighbors at time *t* (compare with (1) where the state $x_i(t) \in \mathbf{R}$ is the information that agent *i* sends to its neighbors at time *t*). The bit $y_i(t+1) \in \{0, 1\}$ depends probabilistically on the state $x_i(t)$ as follows:

• if $0 \le x_i(t) < d_{\max}\alpha(t+1)$, then $y_i(t+1) = 0$;

- if $d_{\max}\alpha(t+1) \le x_i(t) \le 1 d_{\max}\alpha(t+1)$, then $y_i(t+1) = 1$ with probability $x_i(t)$ (and, of course, $y_i(t) = 0$ with probability $1 x_i(t)$);
- if $1 d_{\max}\alpha(t+1) < x_i(t) \le 1$, then $y_i(t+1) = 1$.

Here, d_{\max} is the maximum of all nodes' degrees, and $\alpha(t)$ is the stepsize sequence also appearing in (2) (to be discussed latter). Thus, if the state $x_i(t)$ is sufficiently close to 0, agent *i* sends the bit $y_i(t+1) = 0$ to its neighbors. If the state $x_i(t)$ is sufficiently close to 1, agent *i* sends the bit $y_i(t+1) = 1$ to its neighbors. Finally, if the state $x_i(t)$ is neither too close to 0 nor to 1, agent *i* creates a fresh random bit $y_i(t+1) \in \{0,1\}$ with mean value $x_i(t)$ —-specifically, $\mathbf{E}(y_i(t+1) | x_i(t)) = x_i(t)$ —and sends it to its neighbors. The random bit is generated independently from all other previous ones.

Implement in Matlab algorithm (2) for the example in figure 1.

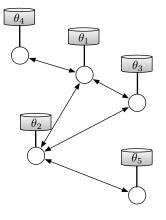


Figure 1: A set of five agents linked by undirected communication channels. Agent *i* holds θ_i . We consider $\theta_1 = 1, \theta_2 = 1, \theta_3 = 0, \theta_4 = 0, \theta_5 = 1$. So, $\overline{\theta} = 0.6$.

Use the stepsize sequence

$$\alpha(t) = \frac{1}{2d_{\max}t^{0.6}}, \quad t \ge 1$$

and produce a plot of one run of the algorithm. You should obtain something similar to figure 2.

Note: in Matlab, you can generate a random bit $y \in \{0, 1\}$ with mean $x \in [0, 1]$ with the command $y = (rand \leq x)$. Also, for the graph in figure 1, we have $d_{max} = 3$.

- 2. Consensus over digital channels: theoretical analysis (or, yes, still another nice application of the Robbins-Siegmund's supermartingale convergence lemma). In this problem, you will prove that algorithm (2) works, that is, $x(t) \to \overline{\theta} \mathbf{1}$ (almost surely) as $t \to \infty$ for any undirected, connected network, provided the stepsize sequence satisfies $0 < \alpha(t) \le 1/(2d_{\max})$ for all $t \ge 1$, $\sum_{t>1} \alpha(t) = \infty$, and $\sum_{t>1} \alpha(t)^2 < \infty$.
 - (a) Start by showing that the algorithm (2) is well-defined, that is, show that

$$0 \leq x_i(t) \leq 1$$

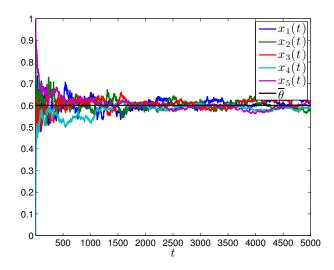


Figure 2: A run of the algorithm (2) for the network in figure 1.

for all $t \ge 0$ and i = 1, ..., n, that is, the agents' states are always confined to the interval [0, 1] (if this was not the case, the algorithm (2) would be ill-defined: how could you generate a random bit $y \in \{0, 1\}$ with mean x < 0 or x > 1?).

(b) Do the usual orthogonal split of the network state: $x(t) = \overline{x}(t)\mathbf{1} + U\widehat{x}(t)$, where $\overline{x}(t) := \mathbf{1}^T x(t)/n \in \mathbf{R}$, $\widehat{x}(t) := U^T x(t) \in \mathbf{R}^{n-1}$, and

$$L = \begin{bmatrix} U & \frac{1}{\sqrt{n}} \mathbf{1} \end{bmatrix} \begin{bmatrix} \Lambda & \\ & 0 \end{bmatrix} \begin{bmatrix} U^T \\ \frac{1}{\sqrt{n}} \mathbf{1}^T \end{bmatrix}$$

is an eigenvalue decomposition of the laplacian matrix. Note that, because the graph is assumed connected, all diagonal entries of the diagonal matrix

$$\Lambda = \begin{bmatrix} \lambda_{n-1} & & \\ & \lambda_{n-2} & \\ & & \ddots & \\ & & & \lambda_1 \end{bmatrix}$$

are positive. Show that $\overline{x}(t) = \overline{\theta}$ for all $t \ge 0$.

(c) Since $\overline{x}(t) = \overline{\theta}$ for all $t \ge 0$, we need only to show that $\widehat{x}(t) \to 0$ (almost surely) as $t \to \infty$ to obtain our goal: $x(t) \to \overline{\theta} \mathbf{1}$.

Show that (2) implies

$$\widehat{x}(t+1) = \widehat{x}(t) - \alpha(t+1)\Lambda\widehat{y}(t+1)$$
(3)

where $\hat{y}(t) := U^T y(t)$. Conclude that

$$\widehat{x}_i(t+1) = \widehat{x}_i(t) - \alpha(t+1)\lambda_i\widehat{y}_i(t+1), \qquad (4)$$

for i = 1, ..., n - 1, where $\hat{x}(t) = (\hat{x}_1(t), ..., \hat{x}_{n-1}(t))$ and $\hat{y}(t) = (\hat{y}_1(t), ..., \hat{y}_{n-1}(t))$.

(d) Let $\mathcal{F}(t) := \{x(0), y(1), x(1), y(2), \dots, x(t-1), y(t), x(t)\}$ and note that $\mathcal{F}(t)$ does not contain y(t+1). Recalling from problem 1 how $y_i(t+1)$ is generated from $x_i(t)$, we see that

$$\mathbf{E}(y_i(t+1) | \mathcal{F}(t)) = \begin{cases} 0 & , \text{ if } 0 \le x_i(t) < d_{\max}\alpha(t+1) \\ x_i(t) & , \text{ if } d_{\max}\alpha(t+1) \le x_i(t) \le 1 - d_{\max}\alpha(t+1) \\ 1 & , \text{ if } 1 - d_{\max}\alpha(t+1) < x_i(t) \le 1. \end{cases}$$
(5)

We can express (5) more compactly as $\mathbf{E}(y_i(t+1) | \mathcal{F}(t)) = \phi_t(x_i(t))$ where $\phi_t : [0,1] \to \mathbf{R}$ is defined as

$$\phi_t(x) = \begin{cases} 0 & \text{, if } 0 \le x < d_{\max}\alpha(t+1) \\ x & \text{, if } d_{\max}\alpha(t+1) \le x \le 1 - d_{\max}\alpha(t+1) \\ 1 & \text{, if } 1 - d_{\max}\alpha(t+1) < x \le 1. \end{cases}$$

Similarly, in vector form, we have $\mathbf{E}(y(t+1) | \mathcal{F}(t)) = \Phi_t(x(t))$ where $\Phi_t : \mathbf{R}^n \to \mathbf{R}$ is defined as

$$\Phi_t(x_1,\ldots,x_n) = \begin{bmatrix} \phi_t(x_1) \\ \phi_t(x_2) \\ \vdots \\ \phi_t(x_n) \end{bmatrix}$$

Show that (4) implies

$$\mathbf{E}\left(\widehat{x}_{i}(t+1)^{2} | \mathcal{F}(t)\right) = \widehat{x}_{i}(t)^{2} - 2\alpha(t+1)\lambda_{i}\widehat{x}_{i}(t)u_{i}^{T}\Phi_{t}\left(x(t)\right) + \lambda_{i}^{2}\alpha(t+1)^{2}\mathbf{E}\left(\widehat{y}_{i}(t+1)^{2} | \mathcal{F}(t)\right), \tag{6}$$
where u_{i}^{T} is the *i*th row of matrix U^{T} , i.e.,

$$U^{T} = \begin{bmatrix} u_{1}^{T} \\ u_{2}^{T} \\ \vdots \\ u_{n-1}^{T} \end{bmatrix} \in \mathbf{R}^{(n-1) \times n}$$

(e) Show that (6) implies

$$\mathbf{E}\left(\widehat{x}_{i}(t+1)^{2} \mid \mathcal{F}(t)\right) \leq \widehat{x}_{i}(t)^{2} - 2\alpha(t+1)\lambda_{i}\widehat{x}_{i}(t)u_{i}^{T}\Phi_{t}\left(x(t)\right) + n\lambda_{i}^{2}\alpha(t+1)^{2}.$$
 (7)

(f) Using $\Phi_t(x(t)) = x(t) + (\Phi_t(x(t)) - x(t))$, show that (7) can be rewritten as

$$\mathbf{E}\left(\widehat{x}_{i}(t+1)^{2} | \mathcal{F}(t)\right) \leq \widehat{x}_{i}(t)^{2} - 2\alpha(t+1)\lambda_{i}\widehat{x}_{i}(t)^{2} - 2\alpha(t+1)\lambda_{i}u_{i}^{T}\left(\Phi_{t}(x(t)) - x(t)\right) + n\lambda_{i}^{2}\alpha(t+1)^{2}.$$
 (8)

(g) Show that $|\phi_t(x) - x| \leq d_{\max}\alpha(t+1)$ for all $t \geq 0$ and $x \in [0,1]$, and conclude that

$$\|\Phi_t(x) - x\| \le \sqrt{n}d_{\max}\alpha(t+1)$$

for all $t \ge 0$ and $x \in [0, 1]^n$.

(h) Show that

$$\mathbf{E}\left(\widehat{x}_{i}(t+1)^{2} \mid \mathcal{F}(t)\right) \leq \widehat{x}_{i}(t)^{2} - 2\alpha(t+1)\lambda_{i}\widehat{x}_{i}(t)^{2} + 2\alpha(t+1)^{2}\lambda_{i}\sqrt{n}d_{\max} + n\lambda_{i}^{2}\alpha(t+1)^{2}$$

and conclude that $\widehat{x}_{i}(t) \to 0$.