Network Science

IST-CMU PhD course

Fall 2016

Instructor: jxavier@isr.ist.utl.pt

TA: Joao Martins, joaoa@andrew.cmu.edu

Important: the homework is due the February 16. Send a scanned pdf file with your answers (or
typed in LaTeX, if you prefer) to the TA’s email.

Homework 5

1. Consensus over digital channels: numerical simulation. Consider a network of n agents in
which each agent i encodes its opinion about some issue as a bit (binary digit) 6; € {0,1}. For
example, #; can be the output of a decision algorithm that agent ¢ ran to decide if an intruder
is present (6; = 1) or not (6; = 0). The agents want to compute their average opinion
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or, in a compact notation, § = 170 /n, where 6 = (61,...,6,).

Assume the agents are linked by a connected, undirected communication network. Any stan-
dard consensus algorithm can produce the desired 6 at all agents. For example, the algorithm
given by x(0) = 0 and

z(t+1) =2x(t) — aLz(t), t>0,. (1)

can make x(t) — 01 as t — co. In (1), L is the n x n laplacian matrix of the network, and
a > (0 is an appropriately chosen stepsize.

Model (1) assumes that the state x;(t) € R, sent by each agent i to its neighbors, passes with-
out distortion through the channels linking them. However, in practice most communication
channels are digital which, roughly speaking, means that they can pass only a finite number of
bits (per channel use); they cannot directly pass real numbers such as z;(t) € R (per channel
use). The state z;(t) € R has first to be quantized, that is, approximated by a finite number
of bits. In this problem, we will consider highly limited digital channels: at each time slot
t=1,2,..., each channel can pass only one bit.

To handle such channels, we will consider the following distributed algorithm: z(0) = 6 and
z(t+1)=2z(t) —a(t+1)Ly(t+1), t>0, (2)

where y(t) = (yi(t),...,yn(t)) is a binary vector, that is, each y;(t) is a bit, y;(¢t) € {0,1}.
In (2), the bit y;(t + 1) € {0,1} is the information that agent ¢ sends to its neighbors at
time ¢ (compare with (1) where the state x;(t) € R is the information that agent ¢ sends to
its neighbors at time t). The bit y;(¢ + 1) € {0,1} depends probabilistically on the state x;(t)
as follows:

o if 0 <z(t) < dmaxa(t + 1), then y;(t +1) = 0;



o if dpaxa(t+1) <xi(t) < 1—dpaxa(t+1), then y;(t+1) = 1 with probability x;(¢) (and,
of course, y;(t) = 0 with probability 1 — z;(t));
o if 1 —dmaxa(t+1) <z(t) <1, then y;(t +1) =1.

Here, dpax is the maximum of all nodes’ degrees, and «(t) is the stepsize sequence also
appearing in (2) (to be discussed latter). Thus, if the state x;(¢) is sufficiently close to 0,
agent ¢ sends the bit y;(t + 1) = 0 to its neighbors. If the state z;(t) is sufficiently close to
1, agent i sends the bit y;(¢ + 1) = 1 to its neighbors. Finally, if the state x;(t) is neither
too close to 0 nor to 1, agent i creates a fresh random bit y;(¢t + 1) € {0,1} with mean value
x;(t)—-specifically, E (y;(t + 1) | z;(t)) = z;(t)—and sends it to its neighbors. The random
bit is generated independently from all other previous ones.

Implement in Matlab algorithm (2) for the example in figure 1.

Figure 1: A set of five agents linked by undirected communication channels. Agent 4 holds ;. We consider
91:1, 92:1, 03:07 04:0, 05:1 80,0:06

Use the stepsize sequence

1
t)=—— . t>1
a( ) 2dmaxt0'67 — )
and produce a plot of one run of the algorithm. You should obtain something similar to

figure 2.

Note: in Matlab, you can generate a random bit y € {0,1} with mean x € [0,1] with the
command y = (rand <= x). Also, for the graph in figure 1, we have dyax = 3.

2. Consensus over digital channels: theoretical analysis (or, yes, still another nice application of
the Robbins-Siegmund’s supermartingale convergence lemma). In this problem, you will prove
that algorithm (2) works, that is, 2(t) — 61 (almost surely) as ¢ — oo for any undirected,
connected network, provided the stepsize sequence satisfies 0 < a(t) < 1/(2dpax) for all t > 1,

Ds1a(t) =00, and 30,5 a(t)? < 0.
(a) Start by showing that the algorithm (2) is well-defined, that is, show that

ngi(t) <1
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Figure 2: A run of the algorithm (2) for the network in figure 1.

for all t > 0 and ¢ = 1,...,n, that is, the agents’ states are always confined to the
interval [0, 1] (if this was not the case, the algorithm (2) would be ill-defined: how could
you generate a random bit y € {0,1} with mean = < 0 or > 17).

Do the usual orthogonal split of the network state: x(t) = Z(t)1 + UZ(t), where Z(t) :=
1Tz(t)/n € R, 2(t) := UTx(t) € R" !, and

L=[v 51 [A o] Vg;

is an eigenvalue decomposition of the laplacian matrix. Note that, because the graph is
assumed connected, all diagonal entries of the diagonal matrix
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are positive. Show that Z(t) = @ for all t > 0.

Since Z(t) = 6 for all ¢ > 0, we need only to show that Z(t) — 0 (almost surely) as ¢ — oo
to obtain our goal: z(t) — 61.

Show that (2) implies
z(t+1)=2(t) —alt+ 1Ayt +1) (3)

where 7(t) := UTy(t). Conclude that
Ti(t +1) = Zi(t) — a(t + DAyt + 1), (4)

fori=1,...,n—1, where Z(¢t) = (Z1(t),...,Zn-1(t)) and y(t) = (G1(t),. .., Yn-1(1)).



(d) Let F(t) :== {z(0),y(1),z(1),y(2),...,z(t —1),y(t),z(t)} and note that F(¢) does not
contain y(t + 1). Recalling from problem 1 how y;(t 4+ 1) is generated from x;(t), we see
that

0 , i 0 < 24(t) < dmaxa(t + 1)
E({t+1)|F@®) =< x(t) , if dpaxa(t+1) < 2i(t) <1 — dmaxa(t + 1) (5)
1 , i 1 —dmaxa(t+ 1) < x;(t) < 1.
We can express (5) more compactly as E (y;(t + 1) | F(t)) = ¢+ (zi(t)) where ¢ : [0,1] —

R is defined as

() =4 x , ifdpaxa(t+1) <z <1—dpaxa(t+1)

0 ,if0<z<dpaxa(t+1)
1, ifl —dpaxa(t+1) <z <1

Similarly, in vector form, we have E (y(t + 1) | F(t)) = ®¢ (z(t)) where ®; : R™ — R is
defined as
bi(z1)

di(x2)

Oy(z1,...,2pn) = .
¢t(xn)
Show that (4) implies
E (Z;(t+ 1% | F(t)) = 2:(t)*—2a(t+ )N (H)uf ¢ (z(t)+A 7 a(t+1)*E (5:(t + 1) | F () ,

(6)
where u is the ith row of matrix UL
ulT
T
UT — 2 c R(n—l)xn
T
un—l

(e) Show that (6) implies
E (Zi(t+ 1% | F(t)) < zi(t)* — 2a(t + )Nz (t)u] @4 (z(2) + nAat + 1)% (7)
(f) Using ®(z(t)) = ( )+ (®4(x(t)) — x(t)), show that (7) can be rewritten as
E (@;(t+1)?|F1) <
zi(t)% - 2a(t + DNZi(t)? = 20t + Dul (Dy(2(t)) — z(t)) + nX2a(t + 1)% (8)
(2) Show that |¢s(z) — | < dmaxe(t + 1) for all t > 0 and z € [0, 1], and conclude that
|®¢(x) — 2| < Vndmaxa(t + 1)

for all t > 0 and z € [0,1]™.
(h) Show that

E (Zi(t+1)*| F(t)) < 2i(6)? — 2a(t + 1)ATi(6)* + 2a(t + 1)2N\iv/ndmax + nXia(t + 1)

and conclude that z;(¢) — 0.



