Network Science

IST-CMU PhD course

Fall 2016

Instructor: jxavier@isr.ist.utl.pt
TA: João Martins, joaoa@andrew.cmu.edu
Important: the homework is due the February 16. Send a scanned pdf file with your answers (or typed in LaTeX, if you prefer) to the TA's email.

Homework 5

1. Consensus over digital channels: numerical simulation. Consider a network of n agents in which each agent i encodes its opinion about some issue as a bit (binary digit) $\theta_{i} \in\{0,1\}$. For example, θ_{i} can be the output of a decision algorithm that agent i ran to decide if an intruder is present $\left(\theta_{i}=1\right)$ or not $\left(\theta_{i}=0\right)$. The agents want to compute their average opinion

$$
\bar{\theta}=\frac{1}{n} \sum_{i=1}^{n} \theta_{i},
$$

or, in a compact notation, $\bar{\theta}=\mathbf{1}^{T} \theta / n$, where $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$.
Assume the agents are linked by a connected, undirected communication network. Any standard consensus algorithm can produce the desired $\bar{\theta}$ at all agents. For example, the algorithm given by $x(0)=\theta$ and

$$
\begin{equation*}
x(t+1)=x(t)-\alpha L x(t), \quad t \geq 0, \tag{1}
\end{equation*}
$$

can make $x(t) \rightarrow \bar{\theta} \mathbf{1}$ as $t \rightarrow \infty$. In (1), L is the $n \times n$ laplacian matrix of the network, and $\alpha>0$ is an appropriately chosen stepsize.
Model (1) assumes that the state $x_{i}(t) \in \mathbf{R}$, sent by each agent i to its neighbors, passes without distortion through the channels linking them. However, in practice most communication channels are digital which, roughly speaking, means that they can pass only a finite number of bits (per channel use); they cannot directly pass real numbers such as $x_{i}(t) \in \mathbf{R}$ (per channel use). The state $x_{i}(t) \in \mathbf{R}$ has first to be quantized, that is, approximated by a finite number of bits. In this problem, we will consider highly limited digital channels: at each time slot $t=1,2, \ldots$, each channel can pass only one bit.

To handle such channels, we will consider the following distributed algorithm: $x(0)=\theta$ and

$$
\begin{equation*}
x(t+1)=x(t)-\alpha(t+1) L y(t+1), \quad t \geq 0 \tag{2}
\end{equation*}
$$

where $y(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)$ is a binary vector, that is, each $y_{i}(t)$ is a bit, $y_{i}(t) \in\{0,1\}$. In (2), the bit $y_{i}(t+1) \in\{0,1\}$ is the information that agent i sends to its neighbors at time t (compare with (1) where the state $x_{i}(t) \in \mathbf{R}$ is the information that agent i sends to its neighbors at time t). The bit $y_{i}(t+1) \in\{0,1\}$ depends probabilistically on the state $x_{i}(t)$ as follows:

- if $0 \leq x_{i}(t)<d_{\text {max }} \alpha(t+1)$, then $y_{i}(t+1)=0 ;$
- if $d_{\max } \alpha(t+1) \leq x_{i}(t) \leq 1-d_{\max } \alpha(t+1)$, then $y_{i}(t+1)=1$ with probability $x_{i}(t)$ (and, of course, $y_{i}(t)=0$ with probability $1-x_{i}(t)$);
- if $1-d_{\max } \alpha(t+1)<x_{i}(t) \leq 1$, then $y_{i}(t+1)=1$.

Here, $d_{\text {max }}$ is the maximum of all nodes' degrees, and $\alpha(t)$ is the stepsize sequence also appearing in (2) (to be discussed latter). Thus, if the state $x_{i}(t)$ is sufficiently close to 0 , agent i sends the bit $y_{i}(t+1)=0$ to its neighbors. If the state $x_{i}(t)$ is sufficiently close to 1 , agent i sends the bit $y_{i}(t+1)=1$ to its neighbors. Finally, if the state $x_{i}(t)$ is neither too close to 0 nor to 1 , agent i creates a fresh random bit $y_{i}(t+1) \in\{0,1\}$ with mean value $x_{i}(t)$-specifically, $\mathbf{E}\left(y_{i}(t+1) \mid x_{i}(t)\right)=x_{i}(t)$-and sends it to its neighbors. The random bit is generated independently from all other previous ones.

Implement in Matlab algorithm (2) for the example in figure 1.

Figure 1: A set of five agents linked by undirected communication channels. Agent i holds θ_{i}. We consider $\theta_{1}=1, \theta_{2}=1, \theta_{3}=0, \theta_{4}=0, \theta_{5}=1$. So, $\bar{\theta}=0.6$.

Use the stepsize sequence

$$
\alpha(t)=\frac{1}{2 d_{\max } t^{0.6}}, \quad t \geq 1,
$$

and produce a plot of one run of the algorithm. You should obtain something similar to figure 2.
Note: in Matlab, you can generate a random bit $y \in\{0,1\}$ with mean $x \in[0,1]$ with the command $\mathrm{y}=\left(\right.$ rand $<=\mathrm{x}$). Also, for the graph in figure 1, we have $d_{\max }=3$.
2. Consensus over digital channels: theoretical analysis (or, yes, still another nice application of the Robbins-Siegmund's supermartingale convergence lemma). In this problem, you will prove that algorithm (2) works, that is, $x(t) \rightarrow \bar{\theta} \mathbf{1}$ (almost surely) as $t \rightarrow \infty$ for any undirected, connected network, provided the stepsize sequence satisfies $0<\alpha(t) \leq 1 /\left(2 d_{\max }\right)$ for all $t \geq 1$, $\sum_{t \geq 1} \alpha(t)=\infty$, and $\sum_{t \geq 1} \alpha(t)^{2}<\infty$.
(a) Start by showing that the algorithm (2) is well-defined, that is, show that

$$
0 \leq x_{i}(t) \leq 1
$$

Figure 2: A run of the algorithm (2) for the network in figure 1.
for all $t \geq 0$ and $i=1, \ldots, n$, that is, the agents' states are always confined to the interval $[0,1]$ (if this was not the case, the algorithm (2) would be ill-defined: how could you generate a random bit $y \in\{0,1\}$ with mean $x<0$ or $x>1$?).
(b) Do the usual orthogonal split of the network state: $x(t)=\bar{x}(t) \mathbf{1}+U \widehat{x}(t)$, where $\bar{x}(t):=$ $\mathbf{1}^{T} x(t) / n \in \mathbf{R}, \widehat{x}(t):=U^{T} x(t) \in \mathbf{R}^{n-1}$, and

$$
L=\left[\begin{array}{ll}
U & \frac{1}{\sqrt{n}} \mathbf{1}
\end{array}\right]\left[\begin{array}{ll}
\Lambda & \\
& 0
\end{array}\right]\left[\begin{array}{c}
U^{T} \\
\frac{1}{\sqrt{n}} \mathbf{1}^{T}
\end{array}\right]
$$

is an eigenvalue decomposition of the laplacian matrix. Note that, because the graph is assumed connected, all diagonal entries of the diagonal matrix

$$
\Lambda=\left[\begin{array}{cccc}
\lambda_{n-1} & & & \\
& \lambda_{n-2} & & \\
& & \ddots & \\
& & & \lambda_{1}
\end{array}\right]
$$

are positive. Show that $\bar{x}(t)=\bar{\theta}$ for all $t \geq 0$.
(c) Since $\bar{x}(t)=\bar{\theta}$ for all $t \geq 0$, we need only to show that $\widehat{x}(t) \rightarrow 0$ (almost surely) as $t \rightarrow \infty$ to obtain our goal: $x(t) \rightarrow \bar{\theta} \mathbf{1}$.
Show that (2) implies

$$
\begin{equation*}
\widehat{x}(t+1)=\widehat{x}(t)-\alpha(t+1) \Lambda \widehat{y}(t+1) \tag{3}
\end{equation*}
$$

where $\widehat{y}(t):=U^{T} y(t)$. Conclude that

$$
\begin{equation*}
\widehat{x}_{i}(t+1)=\widehat{x}_{i}(t)-\alpha(t+1) \lambda_{i} \widehat{y}_{i}(t+1) \tag{4}
\end{equation*}
$$

for $i=1, \ldots, n-1$, where $\widehat{x}(t)=\left(\widehat{x}_{1}(t), \ldots, \widehat{x}_{n-1}(t)\right)$ and $\widehat{y}(t)=\left(\widehat{y}_{1}(t), \ldots, \widehat{y}_{n-1}(t)\right)$.
(d) Let $\mathcal{F}(t):=\{x(0), y(1), x(1), y(2), \ldots, x(t-1), y(t), x(t)\}$ and note that $\mathcal{F}(t)$ does not contain $y(t+1)$. Recalling from problem 1 how $y_{i}(t+1)$ is generated from $x_{i}(t)$, we see that

$$
\mathbf{E}\left(y_{i}(t+1) \mid \mathcal{F}(t)\right)= \begin{cases}0 & , \text { if } 0 \leq x_{i}(t)<d_{\max } \alpha(t+1) \tag{5}\\ x_{i}(t) & , \text { if } d_{\max } \alpha(t+1) \leq x_{i}(t) \leq 1-d_{\max } \alpha(t+1) \\ 1 & , \text { if } 1-d_{\max } \alpha(t+1)<x_{i}(t) \leq 1\end{cases}
$$

We can express (5) more compactly as $\mathbf{E}\left(y_{i}(t+1) \mid \mathcal{F}(t)\right)=\phi_{t}\left(x_{i}(t)\right)$ where $\phi_{t}:[0,1] \rightarrow$ \mathbf{R} is defined as

$$
\phi_{t}(x)= \begin{cases}0 & , \text { if } 0 \leq x<d_{\max } \alpha(t+1) \\ x & , \text { if } d_{\max } \alpha(t+1) \leq x \leq 1-d_{\max } \alpha(t+1) \\ 1 & , \text { if } 1-d_{\max } \alpha(t+1)<x \leq 1\end{cases}
$$

Similarly, in vector form, we have $\mathbf{E}(y(t+1) \mid \mathcal{F}(t))=\Phi_{t}(x(t))$ where $\Phi_{t}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is defined as

$$
\Phi_{t}\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
\phi_{t}\left(x_{1}\right) \\
\phi_{t}\left(x_{2}\right) \\
\vdots \\
\phi_{t}\left(x_{n}\right)
\end{array}\right]
$$

Show that (4) implies
$\mathbf{E}\left(\widehat{x}_{i}(t+1)^{2} \mid \mathcal{F}(t)\right)=\widehat{x}_{i}(t)^{2}-2 \alpha(t+1) \lambda_{i} \widehat{x}_{i}(t) u_{i}^{T} \Phi_{t}(x(t))+\lambda_{i}^{2} \alpha(t+1)^{2} \mathbf{E}\left(\widehat{y}_{i}(t+1)^{2} \mid \mathcal{F}(t)\right)$,
where u_{i}^{T} is the i th row of matrix U^{T}, i.e.,

$$
U^{T}=\left[\begin{array}{c}
u_{1}^{T} \\
u_{2}^{T} \\
\vdots \\
u_{n-1}^{T}
\end{array}\right] \in \mathbf{R}^{(n-1) \times n} .
$$

(e) Show that (6) implies

$$
\begin{equation*}
\mathbf{E}\left(\widehat{x}_{i}(t+1)^{2} \mid \mathcal{F}(t)\right) \leq \widehat{x}_{i}(t)^{2}-2 \alpha(t+1) \lambda_{i} \widehat{x}_{i}(t) u_{i}^{T} \Phi_{t}(x(t))+n \lambda_{i}^{2} \alpha(t+1)^{2} . \tag{7}
\end{equation*}
$$

(f) Using $\Phi_{t}(x(t))=x(t)+\left(\Phi_{t}(x(t))-x(t)\right)$, show that (7) can be rewritten as

$$
\begin{align*}
& \mathbf{E}\left(\widehat{x}_{i}(t+1)^{2} \mid \mathcal{F}(t)\right) \leq \\
& \quad \widehat{x}_{i}(t)^{2}-2 \alpha(t+1) \lambda_{i} \widehat{x}_{i}(t)^{2}-2 \alpha(t+1) \lambda_{i} u_{i}^{T}\left(\Phi_{t}(x(t))-x(t)\right)+n \lambda_{i}^{2} \alpha(t+1)^{2} . \tag{8}
\end{align*}
$$

(g) Show that $\left|\phi_{t}(x)-x\right| \leq d_{\max } \alpha(t+1)$ for all $t \geq 0$ and $x \in[0,1]$, and conclude that

$$
\left\|\Phi_{t}(x)-x\right\| \leq \sqrt{n} d_{\max } \alpha(t+1)
$$

for all $t \geq 0$ and $x \in[0,1]^{n}$.
(h) Show that

$$
\mathbf{E}\left(\widehat{x}_{i}(t+1)^{2} \mid \mathcal{F}(t)\right) \leq \widehat{x}_{i}(t)^{2}-2 \alpha(t+1) \lambda_{i} \widehat{x}_{i}(t)^{2}+2 \alpha(t+1)^{2} \lambda_{i} \sqrt{n} d_{\max }+n \lambda_{i}^{2} \alpha(t+1)^{2}
$$

and conclude that $\widehat{x}_{i}(t) \rightarrow 0$.

