
Network Science
IST-CMU PhD course
Fall 2016
Instructor: jxavier@isr.ist.utl.pt
TA: João Martins, joaoa@andrew.cmu.edu

Important: the homework is due the December 12. Send a scanned pdf file with your answers (or
typed in LaTeX, if you prefer) to the TA’s email.

Homework 4

1. Distributed detection. A set of n agents observes a data stream y(1), y(2), y(3), . . ., where
y(t) = (y1(t), y2(t), . . . , yn(t)) is the network observation at time t; yi(t) is the private ob-
servation of agent i at time t. The data stream (y(t))t≥1 is an independent and identically
distributed sequence (i.i.d.) of random vectors generated by one of two stochastic sources:

H0 : y(t) ∼ N
(
0, σ2I

)
H1 : y(t) ∼ N

(
µ, σ2I

)
where µ = (µ1, . . . , µn) ∈ Rn − {0} and σ > 0. In other words, all the network observations
are either generated from a gaussian distribution with zero mean (hypothesis H0) or from a
gaussian distribution with mean µ 6= 0 (hypothesis H1). Note that, regardless of the active
hypothesis, the n× n covariance matrix of the observations is σ2I.

Assume that the two hypotheses are equally probable. The optimal central detector, that sees
the network observations until time t, decides as

1

nt

t∑
s=1

log
P1 (y(s))

P0 (y(s))︸ ︷︷ ︸
`(t)

H1

≷
H0

0 (1)

where P0 and P1 correspond to the gaussian probabilities density functions (pdf) of hypotheses
H0 and H1:

P0(y) =
1

(2π)n/2 σn
e−
‖y‖2

2σ2 , P1(y) =
1

(2π)n/2 σn
e−
‖y−µ‖2

2σ2 .

Let Pe(t) be the probability of error of the centralized detector, at time t. We know that Pe(t)
decays exponentially fast to zero. More precisely, we have

lim
t
− logPe(t)

t
= C

where C is the Chernoff distance between the two pdfs P0 and P1:

C =
1

8

‖µ‖2

σ2
.

The decision statistic `(t) in (1) evolves as

`(t+ 1) =
t

t+ 1
`(t) +

1

n(t+ 1)
log

P1 (y(t+ 1))

P0 (y(t+ 1))
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and motivates the distributed “tracker”

L(t+ 1) =
t

t+ 1
WL(t) +

1

t+ 1
l(t+ 1) (2)

where l(t) = (l1(t), . . . , ln(t)),

li(t) = log
P1;i (yi(t))

P0;i (yi(t))

is the log-likelihood of the data observed at agent i and time t, and P0;i, P1;i are the marginals
(at agent i) of the network pdfs P0 and P1:

P0;i(yi) =
1√

2πσ2
e−

y2i
2σ2 , P1;i(yi) =

1√
2πσ2

e−
(yi−µi)

2

2σ2 .

The entry Li(t) of the vector L(t) = (L1(t), . . . , Ln(t)) represents the guess of agent i, at
time t, of the central statistic `(t). Thus, agent i, at time t, decides as

Li(t)
H1

≷
H0

0.

Assume that the weight matrix W in (2) is symmetric and leads to consensus:

W t → J =
1

n
11T , as t→∞.

In this problem, you will show that the asymptotic performance of the distributed detector
matches the asymptotic performance of the centralized detector. That is, you will show that
the probability of error of agent i at time t, denoted Pe;i(t), decays at the same rate of the
probability of error of the centralized detector:

lim
t
− logPe;i(t)

t
= C (3)

for any agent i = 1, . . . , n. Note that, in class, we have considered gaussian distributions
with common mean across the agents: under H0 the common mean was −A/2; under H1

the common mean was A/2. Here, we allow different means under H1, that is, we are not
assuming that µ = (µ1, . . . , µn) is of the form µ = c1 for some c ∈ R − {0}. We can have
µi 6= µj for some i and j. The proof that we saw in class doesn’t work for this extension.

(a) Show that

L(t) =
1

t
W t−1l(1) +

1

t
W t−2l(2) + · · ·+ 1

t
Wl(t− 1) +

1

t
l(t) (4)

for all t.

(b) The probability of error of agent i at time t is given by

Pe;i(t) =
1

2
P0 (Li(t) > 0) +

1

2
P1 (Li(t) ≤ 0)
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where P0 and P1 are the probabilities under hypothesis H0 and H1. You are going to
show that

lim inf
t
− logP0 (Li(t) > 0)

t
≥ C. (5)

The proof of

lim inf
t
− logP1 (Li(t) ≤ 0)

t
≥ C (6)

is similar and will not be done. Note that (5) and (6) together imply (3) because, due
to the general theory of detection, we also know that

lim sup
t
− logP0 (Li(t) > 0)

t
≤ C, lim sup

t
− logP1 (Li(t) ≤ 0)

t
≤ C.

So, from now on, suppose that H0 is the active hypothesis, that is, all y(t) are drawn from
the gaussian distribution N

(
0, σ2I

)
. Show that l(t) = (l1(t), . . . , ln(t)) is distributed as

N
(
− 1

2σ2u,
1
σ2D(u)

)
where u = (u1, . . . , un), ui := µ2i , and D(u) is the diagonal matrix

D(u) =


u1

u2
. . .

un

 .
(c) Show that L(t) is distributed as N (µ(t),Σ(t)) where

µ(t) = − 1

2σ2t

t−1∑
s=0

W su, Σ(t) =
1

σ2t2

t−1∑
s=0

W sD(u)W s.

(d) Note that, for any α > 0,

P0 (Li(t) > 0) = P0

(
eαtLi(t) > 1

)
≤ E0

(
eαtLi(t)

)
where we used Markov’s inequality in the last step. Thus,

logP0 (Li(t) > 0) ≤ logE0

(
eαtLi(t)

)
.

Here, the symbol E0 stands for the expectation operator under hypothesis H0, that is,
we assume the active hypothesis is H0.
Show that

logP0 (Li(t) > 0) ≤ αteTi µ(t) +
1

2
α2t2eTi Σ(t)ei (7)

where ei ∈ Rn is the ith column of the n × n identity: ei = (0, . . . , 0, 1, 0, . . . , 0), with
entry 1 in the ith coordinate.
Hint: note that Li(t) = eTi L(t) and use the fact that, for a scalar gaussian random
variable X ∼ N

(
µX , σ

2
X

)
, there holds

logE
(
eX
)

= µX +
1

2
σ2X .
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(e) Minimize the right-hand side of (7) with respect to α > 0 to show that

logP0 (Li(t) > 0) ≤ −
(
eTi µ(t)

)2
2eTi Σ(t)ei

.

(f) Show that

lim inf
t
− logP0 (Li(t) > 0)

t
≥ C.

2. Consensus with noisy communication channels (or yet another nice application of the Robbins-
Siegmund’s supermartingale convergence lemma). Consider the classical consensus iterations

x(t+ 1) = Wx(t), (8)

initialized with x(0) = θ. Under the proper conditions on the weight matrix W (say, W
consists of Metropolis weights), we have x(t)→ θ1, where θ = 1T θ/n.

In practice, iterations (8) are implemented by transmitting the agents’ states over physical
communication channels (represented by the edges of the underlying communication graph).
Model (8) assumes the channels are noiseless: for example, at time t, agent j transmits his
state xj(t) over a channel to a neighbor agent i; agent i receives the state xj(t) without noise
and proceeds to mix it with the states he received from the remaining neighbors. What if the
channels add noise? Then, the state xj(t) is received at agent i as x̂ij(t) = xj(t) + vij(t+ 1),
where vij(t+ 1) is the noise added by the channel from agent j to agent i.

So, when the communication channels add noise, the algorithm that is actually executed is no
longer (8) but

x(t+ 1) = Wx(t) + v(t+ 1) (9)

where v(t) = (v1(t), . . . , vn(t)),

vi(t) =
n∑
j=1

wijvij(t).

It turns out that the recursions (9) do not lead to consensus. To illustrate, consider the
network in figure 1. Figure 2 shows how the network states evolve. We see that the states
wander about; they do not converge to θ = 0.

Consider now the recursion

x(t+ 1) = x(t) + α(t+ 1) (y(t)− x(t)) + β(t+ 1) (θ − x(t)) (10)

where
y(t) := Wx(t) + v(t+ 1) (11)

models, as in (9), the result of mixing states communicated over noisy channels. Note that (10)
can be implemented in a distributed manner. In (10),

α(t) =
1

ta
, β(t) =

1

t
,

are given step sizes, with
0.5 < a < 1. (12)
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Figure 1: A set of five agents linked by undirected communication channels. Agent i holds θi. We consider
θ1 = −5, θ2 = −3, θ3 = 0, θ4 = 3, θ5 = 5. So, θ = 0.
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Figure 2: Trajectories of the recursions (9) with i.i.d. gaussian channel noise vij(t) ∼ N (0, 0.1) and a
Metropolis weight matrix W .
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Figure 3: Trajectories of the recursions (10) with i.i.d. gaussian channel noise vij(t) ∼ N (0, 0.1) and a
Metropolis weight matrix W .

(Spoiler alert: in the exam, we will discuss the motivation behind (10).)

In this problem, you will show that (10) is immune to the channels’ noise. To illustrate,
figure 3 shows the network states, evolving as (10); we see that the all states converge to θ = 0
(given enough time). Note that, due to the noise term v(t), the sequence of networks states
(x(t))t≥0 is random.

From now on, we consider vij(t)
i.i.d.∼ N (0, σ2).

Let e(t) = x(t) − θ1 be the error at time t. You will show that e(t) → 0 by showing that
e(t) → 0 and ê(t) → 0, where e(t) = 1T e(t)/n and ê(t) = UT e(t). Recall that U ∈ Rn×(n−1)

is the matrix involved in the eigenvalue decomposition of the weight matrix W :

W =
[

1√
n
1 U

] [1
Λ

][ 1√
n
1T

UT

]
,

with ‖Λ‖ < 1.

(a) We start by plugging (11) into (10):

x(t+ 1) = x(t) + α(t+ 1) (Wx(t) + v(t+ 1)− x(t)) + β(t+ 1) (θ − x(t)) . (13)

Show that (13) implies

e(t+ 1) = (1− β(t+ 1)) e(t) + α(t+ 1)v(t+ 1).

(b) Let F(t) = {x(0), . . . , x(t), v(0), . . . , v(t)}. Show that

E
(
e(t+ 1)2 | F(t)

)
= (1− β(t+ 1))2 e(t)2 + α(t+ 1)2σ2v (14)

where σ2v is the variance of v(t). (Note that the variance of v(t) is constant over time
because v(1), v(2), v(3), . . . are identically distributed.)
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(c) Show that (14) implies

E
(
e(t+ 1)2 | F(t)

)
≤ e(t)2 − β(t+ 1)e(t)2 + α(t+ 1)2σ2v . (15)

(d) Show that the Robbins-Siegmund’s lemma is applicable to (15) and conclude that: (i)
the sequence

(
e(t)2

)
t≥0 converges, and (ii)

∑
t≥0 β(t+ 1)e(t)2 <∞.

(e) Show that (i) and (ii) above imply e(t)→ 0.
(f) We now analyze the error component ê(t). Show that (13) implies

ê(t+ 1) = (I − Γ(t+ 1)) ê(t) + α(t+ 1)v̂(t+ 1) + β(t+ 1)θ̂ (16)

where

Γ(t+ 1) :=

γ1(t+ 1)
. . .

γn−1(t+ 1)


and γi(t) = (1− λi)α(t) + β(t).

(g) Looking at the coordinate i of equation (16), we have

êi(t+ 1) = (1− γi(t+ 1))êi(t) + α(t+ 1)v̂i(t+ 1) + β(t+ 1)θ̂i.

Show that

E
(
êi(t+ 1)2 | F(t)

)
=

(1− γi(t+ 1))2 êi(t)
2 + α(t+ 1)2σ2i + β(t+ 1)2θ̂2i + 2(1− γi(t+ 1))β(t+ 1)êi(t)θ̂i

(17)

where σ2i is the variance of v̂i(t).
(h) Show that (17) implies

E
(
êi(t+ 1)2 | F(t)

)
≤

(1− γi(t+ 1)) êi(t)
2 + α(t+ 1)2σ2i + β(t+ 1)2θ̂2i + 2β(t+ 1)|êi(t)||θ̂i|.

(18)

for t sufficiently large. That is, show that there exists a T such that t ≥ T implies (18).
(i) Choose q in the interval

(
a
2 , 0.5

)
(the interval is non-empty due to (12)) and let p = 1−q.

Note that p > 0.5 and

β(t) =
1

tp
1

tq
.

Show that (18) implies

E
(
êi(t+ 1)2 | F(t)

)
≤

(1− γi(t+ 1)) êi(t)
2 + α(t+ 1)2σ2i + β(t+ 1)2θ̂2i +

1

(t+ 1)2q
êi(t)

2 +
1

(t+ 1)2p
θ̂2i ,

(19)

for t ≥ T .
(j) Show that (19) implies êi(t)→ 0.
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