
Network Science
IST-CMU PhD course
Fall 2016
Instructor: jxavier@isr.ist.utl.pt
TA: João Martins, joaoa@andrew.cmu.edu

Important: the homework is due the November 26. Send a scanned pdf file with your answers (or
typed in LaTeX, if you prefer) to the TA’s email.

Homework 3

1. Brief analysis of ADMM. Consider n agents linked by a static, undirected and connected
communication graph G = (V, E) and wishing to solve the optimization problem

minimize
x∈Rd

∑
v∈V fv(x) (1)

where fv : Rd → R ∪ {+∞} is a convex function, only known at agent v.

In class, we saw that the Alternate Direction Method of Multipliers (ADMM) leads to the
distributed algorithm:

xv(t+ 1) = arg min
xv

fv (xv) + λv(t)Txv +
ρ

2

∑
u∼v

∥∥∥∥xv − xv(t) + xu(t)

2

∥∥∥∥2 (2)

λv(t+ 1) = λv(t) + ρ
∑
u∼v

xv(t+ 1)− xu(t+ 1), (3)

for t ≥ 0. The variables xv(t) and λv(t) are stored at agent v and are initialized as λv(0) = 0
and arbitrary xv(0). Recall that the notation u ∼ v means that u is a neighbor of v in the
communication graph G.
It is known that, under mild assumptions, the algorithm (2)–(3) converges to a solution of
the problem (1): all iterates xv(t) converge to a point x? that is a solution of (1). That proof
is a bit involved. In this problem, you will prove a weaker statement: you will prove that
if algorithm (2)–(3) converges, then it converges to the solution of (1). You can consider
the scalar case d = 1 and assume that the convex functions fv are finite-valued everywhere
(fv : R→ R) and continuously differentiable.

(a) Assume the algorithm (2)–(3) converges, that is, xv(t)→ x?v and λv(t)→ λ?v for some x?v
and λ?v, for all v ∈ V. Show that the limits x?v, v ∈ V, are all equal:

x?v = x?

for some x?.
Hint: start by taking the limit t→∞ in (3) and use basic properties of the laplacian.

(b) Show that x? is a solution of (1). Since all functions are convex and differentiable
everywhere this boils down to show that∑

v∈V
ḟv (x?) = 0,
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Figure 1: Undirected communication graph G(V, E) with nodes V = {1, 2, 3, 4, 5} and edges E =
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 5}}
.

where ḟv is the derivative of fv.
Hint: since each fv is differentiable, note that equation (2) implies that xv(t+1) satisfies

ḟv (xv(t+ 1)) + λv(t) + ρ
∑
u∼v

(
xv(t+ 1)− xu(t) + xv(t)

2

)
= 0

2. Distributed algorithm via ADMM. In class, we used the ADMM to build a distributed opti-
mization algorithm for functions of the form (1). In this problem, you will use ADMM to
derive a distributed algorithm for functions of the form

minimize
{xv}v∈V

∑
v∈V fv (xv) +

∑
a∈A ga

(
xS(a), xT (a)

)
. (4)

Here, A denotes a set of arcs of the undirected communication graph G = (V, E) once we
arbitrarily assign a direction to each edge in E . For example, consider the undirected com-
munication graph G = (V, E) in figure 1. By arbitrarily assigning a direction to each edge, we
transform each edge into an arc and create a set of arcs A as in figure 2. Note that the under-
lying communication graph G is still undirected (agents can communicate in both directions
over each edge). The set of arcs does not represent physical channels; it is just a useful device
to express the cost function in (4). For each arc a ∈ A, S(a) is its source and T (a) its sink;
for example, in figure (2), we have S(1, 3) = 1, T (1, 3) = 3, S(2, 1) = 2, T (2, 1) = 1, and so
on. In (1), all functions are assumed to be convex.

The structure (1) differs from the structure (4) in several aspects. In (1), all agents share the
same variable x; in (4), each agent v has its own variable xv. This means that, in (1), agents
collaborate to agree on a solution of (1), say, x?; in particular, the solution x? will eventually
be known by all agents. In (4), agents collaborate to build a solution of (4), say, {x?v}v∈V .
But it is not required for agent v to know the optimal x?u for u 6= v: agent v only cares about
knowing its optimal assignement x?v. So, solving (4) in a distributed way means that agents
should build a solution of (4) exchanging messages over the communication graph G and each
agent v should eventually know an optimal x?v.
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Figure 2: Graph from figure 1 after we transformed each edge into an arc. The arc set is A =
{(1, 3), (1, 4), (2, 1), (3, 2), (2, 5)}.
.

We now motivate the structure (4). Consider a set of n robots linked by an undirected
communication graph G = (V, E). Robot v wants to collect data (say, video images or chemical
concentrations of some pollutants) from a source located at position pv ∈ R2. The quality of
the information collected by each robot depends on its distance from the source—the closer,
the better. More precisely, let xv ∈ R2 be the position of robot v. Assume that the quality of
the data (say, signal-to-noise ratio) measured by robot v degrades as

1

2
(xv − pv)T Σv (xv − pv) , (5)

where Σv is a positive definite matrix that allows us to encode preferred spatial directions for
collecting information from source v. We also want each robot to maintain its communication
channels with neighbors in the graph G. Assume that the channel {u, v} ∈ E exists only if the
robots u and v are within each other’s wireless range: if ‖xu − xv‖ ≤ min{ru, rv} where rv is
the wireless range of robot v. The problem of deciding optimal positions xv for all the robots
translates into the optimization problem

minimize
{xv}v∈V

∑
v∈V

1

2
(xv − pv)T Σv (xv − pv)︸ ︷︷ ︸

fv(xv)

+
∑

a∈A ιB(0,Ra)

(
xS(a) − xT (a)

)︸ ︷︷ ︸
ga(xS(a),xT (a))

(6)

where Ra = min{rS(a), rT (a)}, and ιB(0,R) is the indicator function of the set B(0, R) ={
x ∈ R2 : ‖x‖ ≤ R

}
:

ιB(0,R)(x) =

{
0 , if ‖x‖ ≤ R
+∞ , otherwise.

In (6), the first term attracts each robot to its source, and the second term enforces a maximum
distance between robots that are linked by communication channels. Problem (6) is an instance
of (4).
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To apply the ADMM, we reformulate (4) as:

minimize
{xv}v∈V ,{ya}a∈A,{za}a∈A

∑
v∈V fv (xv) +

∑
a∈A ga (ya, za)

subject to xS(a) = ya, a ∈ A
xT (a) = za, a ∈ A

(7)

and associate the lagrange multipliers {sa}a∈A and {ta}a∈A to the two set of constraints: the
augmented lagrangian function is

L ({xv}v∈V , {ya}a∈A, {za}a∈A; {sa}a∈A, {ta}a∈A) =∑
v∈V

fv (xv) +
∑
a∈A

ga (ya, za)

+
∑
a∈A

sTa
(
xS(a) − ya

)
+
ρ

2

∥∥xS(a) − ya∥∥2
+
∑
a∈A

tTa
(
xT (a) − za

)
+
ρ

2

∥∥xT (a) − za
∥∥2

where ρ > 0.

Applying the ADMM to (7) leads to

{xv(t+ 1)}v∈V = arg min
{xv}v∈V

L ({xv}v∈V , {ya(t)}a∈A, {za(t)}a∈A; {sa(t)}a∈A, {ta(t)}a∈A)

(8)
{ya(t+ 1), za(t+ 1)}a∈A = arg min

{ya,za}a∈A
L ({xv(t+ 1)}v∈V , {ya}a∈A, {za}a∈A; {sa(t)}a∈A, {ta(t)}a∈A)

(9)
sa(t+ 1) = sa(t) + ρ

(
xS(a)(t+ 1)− ya(t+ 1)

)
, a ∈ A, (10)

ta(t+ 1) = ta(t) + ρ
(
xT (a)(t+ 1)− za(t+ 1)

)
, a ∈ A. (11)

You can assume that the optimization problems in (8) and (9) have unique solutions; so, the
updates (8) and (9) are well-defined.

(a) Show that the update (8) boils down to

xv(t+ 1) = arg min
xv

fv (xv) +

 ∑
a∈S(v)

sa(t) +
∑

a∈T (v)

ta(t)

T

xv

+
ρ

2

∑
a∈S(v)

‖xv − ya(t)‖2 +
ρ

2

∑
a∈T (v)

‖xv − za(t)‖2 (12)

for all v ∈ V, where S(v) = {a ∈ A : S(a) = v} is the set of arcs that leave node v and
T (v) = {a ∈ A : T (a) = v} is the set of arcs that arrive at node v.

(b) Show that the update (9) boils down to

(ya(t+ 1), za(t+ 1)) = arg min
(ya,za)

ga (ya, za) +
ρ

2

∥∥∥∥ya − (xS(a)(t+ 1) +
sa(t)

ρ

)∥∥∥∥2
+
ρ

2

∥∥∥∥za − (xT (a)(t+ 1) +
ta(t)

ρ

)∥∥∥∥2 (13)
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for all a ∈ A.
(c) Let agent v store the variables xv(t) and sa(t), ta(t), ya(t), za(t) for a ∈ S(v) ∪ T (v).

Show that (12) can be carried out at agent v and (13) can be carried out (simultane-
ously) by agents S(a) and T (a), if some communication steps are inserted between the
computations: what should be communicated between neighbors at each iteration and
when (relative to the updates (8) to (9))?
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