Network Science IST-CMU PhD course Fall 2014 Instructor: jxavier@isr.ist.utl.pt TA: João Martins, joaoa@andrew.cmu.edu

Important: the homework is due the October 28. Send a scanned pdf file with your answers (or typed in LaTeX, if you prefer) to the TA's email.

Homework 2

1. Basic properties of induced norms. This problem and the next one establish a set of useful results for problem 3.

Let $P \in \mathbb{C}^{n \times n}$ be a hermitian (i.e., $P^H = P$) positive definite matrix. For a matrix A with complex-valued entries, the symbol A^H denotes the conjugate transpose of A. For example, if

$$A = \begin{bmatrix} 1+2i & 4-i & 5+2i \\ 2+2i & 7i & 3-i \end{bmatrix}$$

then

$$A^{H} = \begin{bmatrix} 1 - 2i & 2 - 2i \\ 4 + i & -7i \\ 5 - 2i & 3 + i \end{bmatrix}.$$

The eigenvalue decomposition of P can be written as $P = Q\Lambda Q^H$ where $Q \in \mathbb{C}^{n \times n}$ is an orthonormal matrix $(Q^H Q = QQ^H = I)$ and

$$\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & & \lambda_n \end{bmatrix}$$

is a diagonal matrix containing the *n* (real) eigenvalues of $P: \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0$. Note that there holds

$$m \left\| z \right\|^2 \le z^H P z \le M \left\| z \right\|^2$$

for all $z \in \mathbf{C}^n$ where $||z|| = \sqrt{z^H z}$ is the usual euclidean norm.

(a) Define $P^{1/2} := Q \Lambda^{1/2} Q^H$ with

$$\Lambda^{1/2} := \begin{bmatrix} \sqrt{\lambda_1} & & & \\ & \sqrt{\lambda_2} & & \\ & & \ddots & \\ & & & \sqrt{\lambda_n} \end{bmatrix}.$$

Show that $P^{1/2}$ is hermitian positive definite and that $P = P^{1/2}P^{1/2}$.

(b) Show that $\|\cdot\|_P : \mathbf{C}^n \to \mathbb{R}$,

$$\|z\|_P = \sqrt{z^H P z},\tag{1}$$

is a norm—that is, show that (i) $||z||_P \ge 0$ for all $z \in \mathbb{C}^n$ with equality if and only if z = 0; (ii) $||cz||_P = |c| ||z||_P$ for all $c \in \mathbb{C}$ and $z \in \mathbb{C}^n$; and (iii) $||z + w||_P \le ||z||_P + ||w||_P$ for all $z, w \in \mathbb{C}^n$. Hint: relate $||\cdot||_P$ with $||\cdot||$ and use the fact that the latter function is a norm.

(c) Show that

$$\sqrt{\lambda_n} \, \|z\| \le \|z\|_P \le \sqrt{\lambda_1} \, \|z\|$$

for all $z \in \mathbf{C}^n$.

(d) Consider the function $||| \cdot |||_P : \mathbf{C}^{n \times n} \to \mathbb{R}$,

$$|||A|||_P = \sup \{ ||Az||_P : ||z||_P = 1 \},$$
(2)

known as the induced norm of $\|\cdot\|_P$. It can be shown that the supremum in (2) is attained, i.e., for any given A there a exists z with $\|z\|_P = 1$ and $\||A|||_P = \|Az\|_P$ (you don't have to prove this¹). Show that (2) is equivalent to

$$|||A|||_P = \sup_{z \neq 0} \frac{||Az||_P}{||z||_P}$$

and conclude that $||Az||_P \leq |||A|||_P ||z||_P$ for all $A \in \mathbb{C}^{n \times n}$ and $z \in \mathbb{C}^n$.

- (e) Show that $||| \cdot |||_P$ is a matrix norm—that is, show that (i) $|||A|||_P \ge 0$ for all $A \in \mathbb{C}^{n \times n}$ with equality if and only if A = 0; (ii) $|||cA|||_P = |c| |||A|||_P$ for all $c \in \mathbb{C}$ and $A \in \mathbb{C}^{n \times n}$; (iii) $||||A + B|||_P \le |||A|||_P + |||B|||_P$ for all $A, B \in \mathbb{C}^{n \times n}$; and (iv) $|||AB|||_P \le |||A|||_P |||B|||_P$ for all $A, B \in \mathbb{C}^{n \times n}$.
- (f) Let $||| \cdot |||_2$: $\mathbf{C}^{n \times n} \to \mathbb{R}$ denote the matrix norm induced by the euclidean vector norm,

$$|||A|||_2 = \sup_{z \neq 0} \frac{||Az||}{||z||},$$

also known as the spectral norm (note that $|||A|||_2 = \sigma_{\max}(A)$). Show that

$$|||A|||_P \le \frac{\sqrt{\lambda_1}}{\sqrt{\lambda_n}}|||A|||_2$$

for all $A \in \mathbf{C}^{n \times n}$.

(g) Let $|| \cdot ||_F : \mathbf{C}^{n \times n} \to \mathbb{R}$ denote the Frobenius norm

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\operatorname{tr}(A^H A)}.$$

¹It is a trivial consequence of the fact that $z \mapsto ||Az||_P$ is a continuous function and $\{z : ||z||_P = 1\}$ is a compact set.

Note that, from the singular value decomposition, we get $||A||_F = \sqrt{\sum_{i=1}^n (\sigma_i(A))^2}$ where $\sigma_i(A)$ denote the *i*th largest singular value of A. Show that

$$|||A|||_P \le \frac{\sqrt{\lambda_1}}{\sqrt{\lambda_n}} ||A||_F \tag{3}$$

for all $A \in \mathbf{C}^{n \times n}$.

- (h) Suppose that sequence of matrices $A(t) \in \mathbb{C}^{n \times n}$ converges to the zero matrix as $t \to \infty$: $A(t) \to 0$ (equivalently, $A_{ij}(t) \to 0$ for all i, j where $A_{ij}(t)$ is the (i, j)th entry of A(t)). Show that $|||A(t)|||_P \to 0$. Hint: use (3).
- (i) Show that $||| \cdot |||_P$ is a continuous function: if $A(t) \to A$ (equivalently, $A_{ij}(t) \to A_{ij}$ for all i, j) then $|||A(t)|||_P \to |||A|||_P$. Hint: show that $||||A|||_P |||A(t)|||_P| \le |||A A(t)|||_P$ and use part (h).
- 2. Convergent matrices. Let the matrix $A \in \mathbb{C}^{n \times n}$ have sub-unit spectral radius, $\rho(A) < 1$ (such matrices are also called convergent) and let $C \in \mathbb{C}^{n \times n}$ be a hermitian positive definite matrix. The goal of this problem is to show that there exists an hermitian positive definite matrix $P \in \mathbb{C}^{n \times n}$ such that

$$P - A^H P A = C. (4)$$

(As a quick sanity check, you should confirm right now that (4) holds for n = 1.)

(a) It is known that for any matrix $X \in \mathbf{C}^{n \times n}$ there holds

$$\rho(X) = \lim_{t \to \infty} \left(|||X^t||| \right)^{1/t}$$

where $||| \cdot |||$ denotes any matrix norm ², cf. [1, corollary 5.6.14, pp. 299]. Let $||| \cdot |||$ be a matrix norm in $\mathbb{C}^{n \times n}$. Show that there exists a $0 \le r < 1$ and $T \ge 1$ such that $t \ge T$ implies $|||A^t||| \le r^t$ and $|||(A^H)^t||| \le r^t$.

(b) Let $P(0) \in \mathbb{C}^{n \times n}$ be an arbitrary hermitian positive definite matrix and let $P(t+1) = C + A^H P(t) A$ for $t \ge 0$. Show that

$$P(t) = (A^{H})^{t} P(0)A^{t} + \sum_{s=0}^{t-1} (A^{H})^{s} CA^{s},$$

for all $t \geq 1$.

- (c) Show that the sequence $(P(t))_{t\geq 0}$ is bounded. Hint: choose a matrix norm $|||\cdot|||$ in $\mathbb{C}^{n\times n}$ and show that there exists $R \geq 0$ such that $|||P(t)||| \leq R$ for all $t \geq 0$ using parts (a) and (b).
- (d) Define the residue sequence $\Delta(t) = (P(t) A^H P(t)A) C$, for $t \ge 0$. Show that

$$\Delta(t+1) = A^H \Delta(t) A$$

and conclude that $\Delta(t) \to 0$.

²Recall that a norm in $\mathbf{C}^{n \times n}$ is a matrix norm if it satisfies the four properties in problem 1 (e).

- (e) Since the sequence of matrices $(P(t))_{t\geq 0}$ is bounded in $\mathbb{C}^{n\times n}$ we can find a limit point, that is, there exists $P \in \mathbb{C}^{n\times n}$ and a sub-sequence t(k) such that $P(t(k)) \to P$ as $k \to \infty$. Show that P satisfies (4) and is hermitian positive definite.
- (f) Let $||\cdot||_P$ be the norm on \mathbb{C}^n defined in (1). Show that there exists $0 \leq r < 1$ such that

$$\|Az\|_P \le r \|z\|_P$$

for all $z \in \mathbf{C}^n$.

- (g) Let $||| \cdot |||_P$ be the matrix norm on $\mathbb{C}^{n \times n}$ defined in (2). Show that $|||A|||_P < 1$.
- **3.** Rates of convergence for consensus algorithms. The goal of this problem is to show that the consensus algorithms we saw in class converge exponentially fast.
 - (a) We begin with undirected graphs. Agent *i* holds θ_i . Agents initialize $x_i(0) = \theta_i$ and run the distributed algorithm

$$x(t+1) = Wx(t)$$

where W is a symmetric matrix with $W\mathbf{1} = \mathbf{1}$ and $\rho(W - J) < 1$, $J := \frac{1}{n}\mathbf{1}\mathbf{1}^T$ (also, $W_{ij} = 0$ whenever agents *i* and *j* cannot communicate). We know that

$$x(t) \to \overline{\theta} \mathbf{1}$$

where $\overline{\theta} = \frac{1}{n} \sum_{i=1}^{n} \theta_i$. Show that the convergence is exponentially fast, i.e., show that there exist $0 \le r < 1$ and $A \ge 0$ such that

$$\left|x_{i}(t) - \overline{\theta}\right| \leq Ar^{t}$$

for all $t \ge 0$ and $i = 1, \ldots, n$.

(b) Now, we consider the push-sum algorithm for directed graphs. Agents initialize $x_i(0) = \theta_i$, $y_i(0) = 1$ and run the distributed algorithm

$$\begin{cases} x(t+1) &= Wx(t) \\ y(t+1) &= Wy(t) \end{cases}$$

where W is a primitive matrix with positive diagonal entries and $\mathbf{1}^T W = \mathbf{1}^T$ (also, $W_{ij} = 0$ whenever agent j cannot send information to agent i). We know that

$$z_i(t) := \frac{x_i(t)}{y_i(t)} \to \overline{\theta}$$

for all i = 1, ..., n. You will show that the convergence is exponentially fast, i.e., that there exist a $0 \le r < 1$ and a constant A such that

$$\left|z_i(t) - \overline{\theta}\right| \le Ar^t$$

for all $t \ge 0$ and $i = 1, \ldots, n$.

From the assumptions on W and the Perron-Frobenius theorem it follows that the Jordan decomposition of W is

$$W = \underbrace{\begin{bmatrix} v & U \end{bmatrix}}_{S} \begin{bmatrix} 1 & 0 \\ 0 & T \end{bmatrix} \underbrace{\begin{bmatrix} 1^{T} \\ V^{H} \end{bmatrix}}_{S^{-1}}$$
(5)

for certain $U \in \mathbf{C}^{n \times (n-1)}$, $V \in \mathbf{C}^{n \times (n-1)}$ and $T \in \mathbf{C}^{(n-1) \times (n-1)}$ with $\rho(T) < 1$. Also, the vector v in (5) satisfies v > 0, Wv = v and $1^T v = 1$. Thus,

$$W^t = v\mathbf{1}^T + UT^t V^H,$$

for $t \geq 0$.

Show that, for given $u, v \in \mathbf{C}^{n-1}$, there exist $0 \leq \hat{r} < 1$ and a constant $\hat{A} \geq 0$ such that

$$|u^H T^t v| \le \widehat{A} \ \widehat{r}^t \tag{6}$$

for all $t \ge 0$. Hint: note that $\rho(T) < 1$. Use results from problems 1 and 2 and recall the Cauchy-Schwartz inequality: $|z^H w| \le ||z|| ||w||$ for $z, w \in \mathbb{C}^n$.

(c) Show that

$$x_i(t) = v_i \mathbf{1}^T \theta + e_i^T U T^t V^H \theta \tag{7}$$

where v_i is the *i*th entry of v, e_i is the *i*th column of the $n \times n$ identity matrix and $\theta = (\theta_1, \ldots, \theta_n)$.

(d) Show that

$$y_i(t) = v_i n + e_i^T U T^t V^H \mathbf{1}.$$
(8)

(e) Note that $y(0) = \mathbf{1} > 0$ and, due to the properties of W, $y(t) = W^t \mathbf{1} > 0$ for all t. On the other hand, equation (8) implies each $y_i(t)$ converges to $v_i n$). We conclude that there exists a m > 0 such that $y(t) \ge m\mathbf{1}$ for all $t \ge 0$. Show that

$$\left|\frac{x_i(t)}{y_i(t)} - \overline{\theta}\right| \le \frac{\left|x_i(t) - \overline{\theta} \, y_i(t)\right|}{m}.$$

(f) Show that there exist $0 \le r < 1$ and $A \ge 0$ such that

$$\left|\frac{x_i(t)}{y_i(t)} - \overline{\theta}\right| \le Ar^t$$

for all $t \ge 0$ and $i = 1, \ldots, n$.

References

[1] R. Horn and C. Johnson. *Matrix Analysis*. Cambridge University Press, 1985.