Network Science

IST-CMU PhD course
Fall 2014
Instructor: jxavier@isr.ist.utl.pt
TA: João Martins, joaoa@andrew.cmu.edu
Important: the homework is due the October 28. Send a scanned pdf file with your answers (or typed in LaTeX, if you prefer) to the TA's email.

Homework 2

1. Basic properties of induced norms. This problem and the next one establish a set of useful results for problem 3.
Let $P \in \mathbf{C}^{n \times n}$ be a hermitian (i.e., $P^{H}=P$) positive definite matrix. For a matrix A with complex-valued entries, the symbol A^{H} denotes the conjugate transpose of A. For example, if

$$
A=\left[\begin{array}{ccc}
1+2 i & 4-i & 5+2 i \\
2+2 i & 7 i & 3-i
\end{array}\right]
$$

then

$$
A^{H}=\left[\begin{array}{cc}
1-2 i & 2-2 i \\
4+i & -7 i \\
5-2 i & 3+i
\end{array}\right]
$$

The eigenvalue decomposition of P can be written as $P=Q \Lambda Q^{H}$ where $Q \in \mathbf{C}^{n \times n}$ is an orthonormal matrix ($Q^{H} Q=Q Q^{H}=I$) and

$$
\Lambda=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]
$$

is a diagonal matrix containing the n (real) eigenvalues of $P: \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$. Note that there holds

$$
m\|z\|^{2} \leq z^{H} P z \leq M\|z\|^{2}
$$

for all $z \in \mathbf{C}^{n}$ where $\|z\|=\sqrt{z^{H} z}$ is the usual euclidean norm.
(a) Define $P^{1 / 2}:=Q \Lambda^{1 / 2} Q^{H}$ with

$$
\Lambda^{1 / 2}:=\left[\begin{array}{cccc}
\sqrt{\lambda_{1}} & & & \\
& \sqrt{\lambda_{2}} & & \\
& & \ddots & \\
& & & \sqrt{\lambda_{n}}
\end{array}\right]
$$

Show that $P^{1 / 2}$ is hermitian positive definite and that $P=P^{1 / 2} P^{1 / 2}$.
(b) Show that $\|\cdot\|_{P}: \mathbf{C}^{n} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\|z\|_{P}=\sqrt{z^{H} P z} \tag{1}
\end{equation*}
$$

is a norm-that is, show that (i) $\|z\|_{P} \geq 0$ for all $z \in \mathbf{C}^{n}$ with equality if and only if $z=0$; (ii) $\|c z\|_{P}=|c|\|z\|_{P}$ for all $c \in \mathbf{C}$ and $z \in \mathbf{C}^{n}$; and (iii) $\|z+w\|_{P} \leq\|z\|_{P}+\|w\|_{P}$ for all $z, w \in \mathbf{C}^{n}$. Hint: relate $\|\cdot\|_{P}$ with $\|\cdot\|$ and use the fact that the latter function is a norm.
(c) Show that

$$
\sqrt{\lambda_{n}}\|z\| \leq\|z\|_{P} \leq \sqrt{\lambda_{1}}\|z\|
$$

for all $z \in \mathbf{C}^{n}$.
(d) Consider the function $\|\|\cdot\|\|_{P}: \mathbf{C}^{n \times n} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\left|\|A \mid\| \|_{P}=\sup \left\{\|A z\|_{P}:\|z\|_{P}=1\right\}\right. \tag{2}
\end{equation*}
$$

known as the induced norm of $\|\cdot\|_{P}$. It can be shown that the supremum in (2) is attained, i.e., for any given A there a exists z with $\|z\|_{P}=1$ and $\mid\|A\|\left\|_{P}=\right\| A z \|_{P}$ (you don't have to prove this ${ }^{1}$. Show that (2) is equivalent to

$$
\|\mid\| A\left\|\|_{P}=\sup _{z \neq 0} \frac{\|A z\|_{P}}{\|z\|_{P}}\right.
$$

and conclude that $\|A z\|_{P} \leq\| \| A\| \|_{P}\|z\|_{P}$ for all $A \in \mathbf{C}^{n \times n}$ and $z \in \mathbf{C}^{n}$.
(e) Show that $\|\|\cdot\|\|_{P}$ is a matrix norm - that is, show that (i) $\left\|\|A\|_{P} \geq 0\right.$ for all $A \in$ $\mathbf{C}^{n \times n}$ with equality if and only if $A=0$; (ii) $\left|\left\|c A\left|\left\|_{P}=|c|\right\| A\left\|\|_{P}\right.\right.\right.\right.$ for all $c \in \mathbf{C}$ and $A \in \mathbf{C}^{n \times n}$; (iii) $\|\|A+B\|\|_{P} \leq\|A\|_{P}+\|B\|_{P}$ for all $A, B \in \mathbf{C}^{n \times n}$; and (iv) $\left\|\left||A B|\left\|_{P} \leq\right\|\right||A|\right\|_{P} \mid\|B\| \|_{P}$ for all $A, B \in \mathbf{C}^{n \times n}$.
(f) Let $\|\|\cdot\|\|_{2}: \mathbf{C}^{n \times n} \rightarrow \mathbb{R}$ denote the matrix norm induced by the euclidean vector norm,

$$
\|\mid A\| \|_{2}=\sup _{z \neq 0} \frac{\|A z\|}{\|z\|}
$$

also known as the spectral norm (note that $\left|\|A \mid\|_{2}=\sigma_{\max }(A)\right.$). Show that

$$
\left\|A \left|\left\|_{P} \leq \frac{\sqrt{\lambda_{1}}}{\sqrt{\lambda_{n}}}\left|\|A \mid\|_{2}\right.\right.\right.\right.
$$

for all $A \in \mathbf{C}^{n \times n}$.
(g) Let $\|\cdot\|_{F}: \mathbf{C}^{n \times n} \rightarrow \mathbb{R}$ denote the Frobenius norm

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}=\sqrt{\operatorname{tr}\left(A^{H} A\right)} .
$$

[^0]Note that, from the singular value decomposition, we get $\|A\|_{F}=\sqrt{\sum_{i=1}^{n}\left(\sigma_{i}(A)\right)^{2}}$ where $\sigma_{i}(A)$ denote the i th largest singular value of A. Show that

$$
\begin{equation*}
\|\mid A\|\left\|_{P} \leq \frac{\sqrt{\lambda_{1}}}{\sqrt{\lambda_{n}}}\right\| A \|_{F} \tag{3}
\end{equation*}
$$

for all $A \in \mathbf{C}^{n \times n}$.
(h) Suppose that sequence of matrices $A(t) \in \mathbf{C}^{n \times n}$ converges to the zero matrix as $t \rightarrow \infty$: $A(t) \rightarrow 0$ (equivalently, $A_{i j}(t) \rightarrow 0$ for all i, j where $A_{i j}(t)$ is the (i, j) th entry of $\left.A(t)\right)$. Show that $\left\|\|A(t)\|_{P} \rightarrow 0\right.$. Hint: use (3).
(i) Show that $\|\|\cdot\|\|_{P}$ is a continuous function: if $A(t) \rightarrow A$ (equivalently, $A_{i j}(t) \rightarrow A_{i j}$ for all $i, j)$ then $\||A(t)|\|\left\|_{P} \rightarrow\left|\|A \mid\|_{P}\right.\right.$. Hint: show that $\left.|\right\|\|A\|\left\|_{P}-\right\| A(t)\left|\left\|_{P}\left|\leq\|| | A-A(t)\| \|_{P}\right.\right.\right.$ and use part (h).
2. Convergent matrices. Let the matrix $A \in \mathbf{C}^{n \times n}$ have sub-unit spectral radius, $\rho(A)<1$ (such matrices are also called convergent) and let $C \in \mathbf{C}^{n \times n}$ be a hermitian positive definite matrix. The goal of this problem is to show that there exists an hermitian positive definite matrix $P \in \mathbf{C}^{n \times n}$ such that

$$
\begin{equation*}
P-A^{H} P A=C . \tag{4}
\end{equation*}
$$

(As a quick sanity check, you should confirm right now that (4) holds for $n=1$.)
(a) It is known that for any matrix $X \in \mathbf{C}^{n \times n}$ there holds

$$
\rho(X)=\lim _{t \rightarrow \infty}\left(\left|\left\|X^{t} \mid\right\|\right)^{1 / t}\right.
$$

where ||| $\cdot\left|\left|\mid\right.\right.$ denotes any matrix norm ${ }^{2}$, cf. [1, corollary 5.6.14, pp. 299].
Let $\left\|\|\cdot\| \mid\right.$ be a matrix norm in $\mathbf{C}^{n \times n}$. Show that there exists a $0 \leq r<1$ and $T \geq 1$ such that $t \geq T$ implies $\mid\left\|A^{t}\right\| \| \leq r^{t}$ and $\left\|\left\|\left(A^{H}\right)^{t}\right\| \mid \leq r^{t}\right.$.
(b) Let $P(0) \in \mathbf{C}^{n \times n}$ be an arbitrary hermitian positive definite matrix and let $P(t+1)=$ $C+A^{H} P(t) A$ for $t \geq 0$. Show that

$$
P(t)=\left(A^{H}\right)^{t} P(0) A^{t}+\sum_{s=0}^{t-1}\left(A^{H}\right)^{s} C A^{s}
$$

for all $t \geq 1$.
(c) Show that the sequence $(P(t))_{t \geq 0}$ is bounded. Hint: choose a matrix norm $\|\|\cdot\|\|$ in $\mathbf{C}^{n \times n}$ and show that there exists $R \geq 0$ such that $\|P(t)\| \| \leq R$ for all $t \geq 0$ using parts (a) and (b).
(d) Define the residue sequence $\Delta(t)=\left(P(t)-A^{H} P(t) A\right)-C$, for $t \geq 0$. Show that

$$
\Delta(t+1)=A^{H} \Delta(t) A
$$

and conclude that $\Delta(t) \rightarrow 0$.

[^1](e) Since the sequence of matrices $(P(t))_{t \geq 0}$ is bounded in $\mathbf{C}^{n \times n}$ we can find a limit point, that is, there exists $P \in \mathbf{C}^{n \times n}$ and a sub-sequence $t(k)$ such that $P(t(k)) \rightarrow P$ as $k \rightarrow \infty$. Show that P satisfies (4) and is hermitian positive definite.
(f) Let $\|\cdot\|_{P}$ be the norm on \mathbf{C}^{n} defined in (1). Show that there exists $0 \leq r<1$ such that
$$
\|A z\|_{P} \leq r\|z\|_{P}
$$
for all $z \in \mathbf{C}^{n}$.
(g) Let $\|\|\cdot\|\|_{P}$ be the matrix norm on $\mathbf{C}^{n \times n}$ defined in (2). Show that $\|\|A\|\|_{P}<1$.
3. Rates of convergence for consensus algorithms. The goal of this problem is to show that the consensus algorithms we saw in class converge exponentially fast.
(a) We begin with undirected graphs. Agent i holds θ_{i}. Agents initialize $x_{i}(0)=\theta_{i}$ and run the distributed algorithm
$$
x(t+1)=W x(t)
$$
where W is a symmetric matrix with $W \mathbf{1}=\mathbf{1}$ and $\rho(W-J)<1, J:=\frac{1}{n} \mathbf{1 1}^{T}$ (also, $W_{i j}=0$ whenever agents i and j cannot communicate). We know that
$$
x(t) \rightarrow \bar{\theta} \mathbf{1}
$$
where $\bar{\theta}=\frac{1}{n} \sum_{i=1}^{n} \theta_{i}$. Show that the convergence is exponentially fast, i.e., show that there exist $0 \leq r<1$ and $A \geq 0$ such that
$$
\left|x_{i}(t)-\bar{\theta}\right| \leq A r^{t}
$$
for all $t \geq 0$ and $i=1, \ldots, n$.
(b) Now, we consider the push-sum algorithm for directed graphs. Agents initialize $x_{i}(0)=$ $\theta_{i}, y_{i}(0)=1$ and run the distributed algorithm
\[

\left\{$$
\begin{array}{l}
x(t+1)=W x(t) \\
y(t+1)=W y(t)
\end{array}
$$\right.
\]

where W is a primitive matrix with positive diagonal entries and $\mathbf{1}^{T} W=\mathbf{1}^{T}$ (also, $W_{i j}=0$ whenever agent j cannot send information to agent i). We know that

$$
z_{i}(t):=\frac{x_{i}(t)}{y_{i}(t)} \rightarrow \bar{\theta}
$$

for all $i=1, \ldots, n$. You will show that the convergence is exponentially fast, i.e., that there exist a $0 \leq r<1$ and a constant A such that

$$
\left|z_{i}(t)-\bar{\theta}\right| \leq A r^{t}
$$

for all $t \geq 0$ and $i=1, \ldots, n$.
From the assumptions on W and the Perron-Frobenius theorem it follows that the Jordan decomposition of W is

$$
W=\underbrace{\left[\begin{array}{ll}
v & U
\end{array}\right]}_{S}\left[\begin{array}{cc}
1 & 0 \tag{5}\\
0 & T
\end{array}\right] \underbrace{\left[\begin{array}{c}
\mathbf{1}^{T} \\
V^{H}
\end{array}\right]}_{S^{-1}}
$$

for certain $U \in \mathbf{C}^{n \times(n-1)}, V \in \mathbf{C}^{n \times(n-1)}$ and $T \in \mathbf{C}^{(n-1) \times(n-1)}$ with $\rho(T)<1$. Also, the vector v in (5) satisfies $v>0, W v=v$ and $1^{T} v=1$. Thus,

$$
W^{t}=v \mathbf{1}^{T}+U T^{t} V^{H}
$$

for $t \geq 0$.
Show that, for given $u, v \in \mathbf{C}^{n-1}$, there exist $0 \leq \widehat{r}<1$ and a constant $\widehat{A} \geq 0$ such that

$$
\begin{equation*}
\left|u^{H} T^{t} v\right| \leq \widehat{A} \widehat{r}^{t} \tag{6}
\end{equation*}
$$

for all $t \geq 0$. Hint: note that $\rho(T)<1$. Use results from problems 1 and 2 and recall the Cauchy-Schwartz inequality: $\left|z^{H} w\right| \leq\|z\|\|w\|$ for $z, w \in \mathbf{C}^{n}$.
(c) Show that

$$
\begin{equation*}
x_{i}(t)=v_{i} \mathbf{1}^{T} \theta+e_{i}^{T} U T^{t} V^{H} \theta \tag{7}
\end{equation*}
$$

where v_{i} is the i th entry of v, e_{i} is the i th column of the $n \times n$ identity matrix and $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$.
(d) Show that

$$
\begin{equation*}
y_{i}(t)=v_{i} n+e_{i}^{T} U T^{t} V^{H} \mathbf{1} \tag{8}
\end{equation*}
$$

(e) Note that $y(0)=\mathbf{1}>0$ and, due to the properties of $W, y(t)=W^{t} \mathbf{1}>0$ for all t. On the other hand, equation (8) implies each $y_{i}(t)$ converges to $\left.v_{i} n\right)$. We conclude that there exists a $m>0$ such that $y(t) \geq m \mathbf{1}$ for all $t \geq 0$.
Show that

$$
\left|\frac{x_{i}(t)}{y_{i}(t)}-\bar{\theta}\right| \leq \frac{\left|x_{i}(t)-\bar{\theta} y_{i}(t)\right|}{m} .
$$

(f) Show that there exist $0 \leq r<1$ and $A \geq 0$ such that

$$
\left|\frac{x_{i}(t)}{y_{i}(t)}-\bar{\theta}\right| \leq A r^{t}
$$

for all $t \geq 0$ and $i=1, \ldots, n$.

References

[1] R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[^0]: ${ }^{1}$ It is a trivial consequence of the fact that $z \mapsto\|A z\|_{P}$ is a continuous function and $\left\{z:\|z\|_{P}=1\right\}$ is a compact set.

[^1]: ${ }^{2}$ Recall that a norm in $\mathbf{C}^{n \times n}$ is a matrix norm if it satisfies the four properties in problem 1 (e).

