
Network Science
IST-CMU PhD course
Fall 2016
Instructor: João Xavier, jxavier@isr.ist.utl.pt
TA: João Martins, joaoa@andrew.cmu.edu

Important: the homework is due the October 12. Send a scanned pdf file with your answers (or
typed in LaTeX, if you prefer) to the TA’s email.

Homework 1

1. Applications of consensus. Consensus algorithms compute, in a distributed manner, the arith-
metic mean of a dataset {θi ∈ R : i = 1, . . . , n} where θi is the data point held by agent i.
Each agent initializes xi(0) = θi and the consensus’ iterates xi(t), t = 1, 2, . . ., converge to
θ = (θ1 + · · ·+ θn) /n as t→∞, for all i.

We can compute other quantities from the dataset by properly initializing and processing the
consensus’ iterates. For example, suppose that the θi’s are positive and we want to determine
the geometric mean g = (θ1θ2 · · · θn)1/n. If agent i initializes xi(0) = log θi then the local
estimates gi(t) := exp (xi(t)) converge to g as t→∞, for all i.

(a) Assume that the agents measure a parameter of interest θ in additive noise: xi = θ + vi
where vi denotes zero-mean gaussian noise with variance σ2i . The observation noise vi
is independent across agents. The maximum-likelihood estimate of θ, given the network
measurements x1, x2, . . . , xn, is

θ̂ML =

1
σ2
1
x1 + · · ·+ 1

σ2
n
xn

1
σ2
1
+ · · ·+ 1

σ2
n

.

Each agent i only knows its measurement xi and its noise power σ2i .
Show how to use a consensus algorithm—or several in parallel, if needed—to obtain θ̂ML
at each agent. State clearly how each consensus is initialized and what processing is done
to form local estimates θi(t) that converge to θ̂ML as t→∞, for all i.

(b) Assume now that the parameter of interest is θ ∈ Rp and the observation model is
xi = Hiθ + vi where Hi ∈ Rmi×p and vi ∈ Rmi denotes zero-mean gaussian noise with
covariance σ2I. The observation noise vi is independent across agents. The maximum-
likelihood estimate of θ, given the network measurements x1, x2, . . . , xn, is

θ̂ML =
(
HT

1 H1 + · · ·+HT
nHn

)−1 (
HT

1 x1 + · · ·+HT
n xn

)
.

Each agent i only knows its measurement xi and its measurement matrix Hi.
Show how to use a consensus algorithm—or several in parallel, if needed—to obtain θ̂ML
at each agent. State clearly how each consensus is initialized and what processing is done
to form local estimates θi(t) that converge to θ̂ML as t→∞, for all i.
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2. Primative matrix. Let G = (V, E) be a connected undirected graph. Let W = I − αL where
L is the laplacian of G and 0 < α < 1/µn, where 0 ≤ µ1 ≤ · · · ≤ µn are the eigenvalues of L.
Show that W is a primitive matrix.

3. Dynamic consensus. Each agent i measures a time-varying parameter θi(t) for t = 1, 2, . . .,
and the n agents want to track the time-varying average

θ(t) :=
1

n

n∑
i=1

θi(t).

Assume that all parameter increments are bounded:

| θi(t+ 1)− θi(t)︸ ︷︷ ︸
=:δi(t+1)

| ≤ B (1)

for all i and t.

Let the undirected graph G = (V, E) represent the communication system, where nodes cor-
respond to agents and edges correspond to channels. Let W ∈ Rn×n be a given symmetric
matrix that conforms to the graph (Wij = 0 whenever i 6∼ j) and secures consensus: W1 = 1
and ρ (W − J) < 1 with J = (1/n)11T . The agents run the distributed algorithm

x(t+ 1) =Wx(t) + δ(t+ 1) (2)

where x(t) = (x1(t), . . . , xn(t)) is the network state vector, xi(t) is the estimate of θ(t) at
agent i and time t) and δ(t) = (δ1(t), . . . , δn(t)) collects the agents’ increments, cf. (1). In
the update (2), the agents fuse their previous estimate with neighbors and add their observed
increment.

The goal of this problem is to show that the estimation errors

ei(t) = xi(t)− θ(t) (3)

remain bounded for all t. Note that, if the agents don’t cooperate—each agent takes its
measurement θi(t) as the estimate θ(t)—the error can grow unbounded.

(a) Show that J and I − J are symmetric and idempotent1.
(b) Show that both J and I−J commute withW : JW =WJ = J and (I−J)W =W (I−J).
(c) For x ∈ Rn, consider the orthogonal decomposition

x = x1+ x̃, (4)

where x = 1Tx/n. Note that x1 = Jx and x̃ = (I − J)x.
Let y =Wx be the result of acting with W on x and decompose y as in (4): y = y1+ ỹ.
Show that

y = x and ỹ = W̃ x̃,

where W̃ = (I − J)W (I − J). (This means that the action of W on x preserves the
component x1 and changes the component x̃ to W̃ x̃.)

1A matrix X is idempotent if X2 = X.
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(d) Show that ρ (W − J) = ρ
(
W̃
)
, where ρ(A) = max {|λ| : λ ∈ σ(A)} is the spectral

radius of matrix A.

(e) Let e(t) = x(t)− Jθ(t) and note that the ith entry of e(t) corresponds to (3). Show that
the recursion e(t+ 1) =We(t) + (I − J)δ(t+ 1) holds.

(f) Show that ‖e(t+ 1)1‖ = ‖e(t)1‖ and ‖ẽ(t+ 1)‖ ≤ ρ
(
W̃
)
‖ẽ(t)‖+

√
nB.

(g) Conclude that

‖e(t)‖ ≤

√√√√√‖e(0)1‖2 +
‖ẽ(0)‖+ √

nB

1− ρ
(
W̃
)
2

for all t ≥ 1.

4. Ongoing observations. Agents take repeated measurements of a static parameter: yi(t) =
θ+ vi(t), where yi(t) is the observation at agent i and time t = 1, 2, . . .; θ is the parameter of
interest; and vi(t) denotes zero-mean bounded noise (|vi(t)| ≤ B for all t and i). The noise is
assumed independent across agents and time. A reasonable estimate of θ at time t, given all
the network measurements from time 1 to time t, is

θ̂(t) =
1

nt

t∑
s=1

n∑
i=1

yi(s). (5)

The agents want to track θ̂(t).

As in problem 2, assume that G = (V, E) represents the communication system and W is
a symmetric matrix that conforms to the graph and secures consensus. The agents run the
distributed algorithm

x(t+ 1) =W

(
t

t+ 1
x(t) +

1

t+ 1
y(t+ 1)

)
(6)

where x(t) = (x1(t), . . . , xn(t)) is the network state vector (xi(t) is the estimate of θ̂(t) at
agent i and time t) and y(t) = (y1(t), . . . , yn(t)) collects the network measurements at time t.
The algorithm is initialized as x(0) = y(0).

The goal of this problem is to show that the errors

ei(t) = xi(t)− θ̂(t) (7)

converge to zero as t→∞. This means that, asymptotically, the estimate at each agent is as
good as the estimate of a central node that sees all network measurements, instantaneously—
collaboration empowers everyone (as in real life).

(a) Let a(t) = (1/t)
∑t

s=1 y(s) denote the running average of the network measurements.
Show that

a(t+ 1) =
t

t+ 1
a(t) +

1

t+ 1
y(t+ 1)

for t ≥ 1.
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(b) Recall the properties and notation introduced in parts (a)–(e) of problem 3. Let

e(t) = x(t)− a(t)1

for t ≥ 1 (note that a(t)1 = Ja(t) as defined in part (c) of problem 2). Show that the
ith entry of ei(t) corresponds to (7). (Thus, the goal of this problem is to show that the
error e(t) converges to zero as t → ∞. We will prove that both components e(t)1 and
ẽ(t) converge to zero.)

(c) Show that

e(t+ 1) =
t

t+ 1
We(t) +

1

t+ 1
(W − J) y(t+ 1)

for t ≥ 1.

(d) Show that

e(t+ 1) =
t

t+ 1
e(t)

for t ≥ 1 and conclude that e(t) converges to zero as t→∞.

(e) Show that

ẽ(t+ 1) =
t

t+ 1
W̃ ẽ(t) +

1

t+ 1
W̃y(t+ 1) (8)

for t ≥ 1.

(f) Consider a recursion

z(t+ 1) = α(t)z(t) + β(t+ 1), t = 0, 1, . . . ,

where the sequence α(t) ∈ R converges to α with |α| < 1 and the sequence β(t) ∈ R
converges to zero. The sequence z(t) can be interpreted as the output of a first-order time-
varying filter that is fed by a decaying input β(t); the time-variant filter is asymptotically
stable (the magnitude of the gains α(t) get sub-unit).
Show that z(t) converges to zero. Hint: start by analyzing the case of fixed gains α(t) ≡ α
and a bounded input |β(t)| ≤ ε.

(g) Use part (f) and equation (8) to conclude that ẽ(t) converges to zero.
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