Convex problems

Nonlinear optimization
Instituto Superior Técnico and Carnegie Mellon University PhD course João Xavier
TA: Hung Tuan

- special classes of convex problems
- linear programming (LP)
- quadratic programming (QP)
- second-order cone programming (SOCP)
- semi-definite programming (SDP)
- the classes are nested: $\mathrm{LP} \subset \mathrm{QP} \subset \mathrm{SOCP} \subset \mathrm{SDP}$
- there exist efficient algorithms for each class (and available for free)
- their complexity increases along the chain: a SDP takes much more time to solve than a "comparable" LP

Quadratic programming (QP)

- minimization of a convex quadratic over finitely many affine constraints
- in \mathbf{R}^{n}, a QP is a problem of the form

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & x^{T} A x+b^{T} x+c \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m \\
& c_{j}^{T} x=d_{j}, \quad j=1, \ldots, p
\end{array}
$$

with $A \succeq 0$

- LP $\subset Q P$ by taking $A=0$

Example: portfolio management

- you have T euros to invest across n assets
- r_{i} is the random rate of return of the asset $i=1, \ldots, n$
- x_{i} is the amount you invest in asset $i=1, \ldots, n$
- you receive the random amount

$$
r^{T} x=r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n}
$$

- the average and covariance of the random vector r are known:

$$
\mu=\mathbf{E}(r) \quad \Sigma=\mathbf{c o v}(r)=\mathbf{E}\left((r-\mu)(r-\mu)^{T}\right)
$$

(this implies: $\mathbf{E}\left(r^{T} x\right)=\mu^{T} x$ and $\operatorname{var}\left(r^{T} x\right)=x^{T} \Sigma x$)

- how much should you invest in each asset?
- risk-averse formulation:

$$
\begin{array}{cl}
\underset{x}{\operatorname{maximize}} & \mu^{T} x-\beta x^{T} \Sigma x \\
\text { subject to } & 1^{T} x=T \\
& x \geq 0
\end{array}
$$

- the constant $\beta>0$ sets the tradeoff between the expected gain and risk of the portfolio $x=\left(x_{1}, \ldots, x_{n}\right)$
- a QP because $\Sigma \succeq 0$

Example: fire-station location

- original formulation:

$$
\underset{x}{\operatorname{minimize}} \max \left\{\left\|x-p_{1}\right\|, \ldots,\left\|x-p_{K}\right\|\right\}
$$

- not a QP
- reformulate as

$$
\underset{x}{\operatorname{minimize}} \max \left\{\left\|x-p_{1}\right\|^{2}, \ldots,\left\|x-p_{K}\right\|^{2}\right\}
$$

or

$$
\underset{x}{\operatorname{minimize}}\|x\|^{2}+\max \left\{-2 p_{1}^{T} x+\left\|p_{1}\right\|^{2}, \ldots,-2 p_{K}^{T} x+\left\|p_{K}\right\|^{2}\right\}
$$

- introduce an epigraph variable

$$
\begin{array}{ll}
\underset{x, t}{\operatorname{minimize}} & \|x\|^{2}+t \\
\text { subject to } & -2 p_{k}^{T} x+\left\|p_{k}\right\|^{2} \leq t, \quad k=1, \ldots, K .
\end{array}
$$

- a QP

Second-order cone programming (SOCP)

- in \mathbf{R}^{n}, a SOCP is a problem of the form

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\| \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m
\end{array}
$$

- key-fact: for $w \in \mathbf{R}^{n}$ and $y, z \in \mathbf{R}$, there holds

$$
\left\{\begin{array}{l}
\|w\|^{2} \leq y z \\
y \geq 0 \\
z \geq 0
\end{array} \Leftrightarrow\left\|\left[\begin{array}{c}
2 w \\
y-z
\end{array}\right]\right\| \leq y+z\right.
$$

- $Q P \subset S O C P:$

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & x^{T} A x+b^{T} x+c \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m \\
& c_{j}^{T} x=d_{j}, \quad j=1, \ldots, p
\end{array}
$$

with $A \succeq 0$, can be reformulated as

$$
\begin{array}{ll}
\underset{x, s}{\operatorname{minimize}} & s+b^{T} x+c \\
\text { subject to } & \left\|\left[\begin{array}{c}
A^{1 / 2} x \\
s-1
\end{array}\right]\right\| \leq s+1 \\
& a_{T}^{T} x \leq b_{i}, \quad i=1, \ldots, m \\
& c_{j}^{T} x=d_{j}, \quad j=1, \ldots, p
\end{array}
$$

Example: input design

- a team of two vehicles move in the plane with dynamics

$$
x_{i}(t)=A_{i} x_{i}(t-1)+B_{i} u_{i}(t), \quad t=1, \ldots, T
$$

- $x_{i}(t)=\left(p_{i}(t), v_{i}(t)\right) \in \mathbf{R}^{4}$ is state of vehicle i at time t ($p_{i}(t)=$ position, $v_{i}(t)=$ velocity $)$
- $u_{i}(t) \in \mathbf{R}^{n}$ is control that we apply to vehicle i at time t
- matrices $A_{i} \in \mathbf{R}^{4 \times 4}, B_{i} \in \mathbf{R}^{4 \times n}$ and initial states $x_{i}(0)$ are given
- we want to move the vehicles to given desired positions $q_{i} \in \mathbf{R}^{2}$ at time T and stop them there
- preferably, vehicles should stay within r distance units of each other at all times (otherwise, their wireless link starts deteriorating)
- goal: design a minimum-energy input sequence $u_{i}(t), t=1, \ldots T$
- formulation:

$$
\begin{array}{ll}
\underset{p_{i}(t), v_{i}(t), u_{i}(t)}{\operatorname{mimize}} & \sum_{t=1}^{T}\left\|u_{1}(t)\right\|^{2}+\left\|u_{2}(t)\right\|^{2}+\rho\left(\left(\left\|p_{1}(t)-p_{2}(t)\right\|-r\right)_{+}\right)^{2} \\
\text { subject to } & {\left[\begin{array}{l}
p_{i}(t) \\
v_{i}(t)
\end{array}\right]=A_{i}\left[\begin{array}{c}
p_{i}(t-1) \\
v_{i}(t-1)
\end{array}\right]+B_{i} u_{i}(t)} \\
& p_{i}(T)=q_{i} \\
& v_{i}(T)=0
\end{array}
$$

The constraints run for $t=1, \ldots, T$ and $i=1,2$

- $\rho>0$ is given trade-off parameter
- not a SOCP formulation: constraints are OK, but objective is not linear
- since $\left((\cdot)_{+}\right)^{2}$ is nondecreasing, we may reformulate as

$$
\begin{array}{ll}
\underset{p_{i}(t), v_{i}(t), u_{i}(t), s(t)}{\operatorname{minimize}} & \sum_{t=1}^{T}\left\|u_{1}(t)\right\|^{2}+\left\|u_{2}(t)\right\|^{2}+\rho\left(s(t)_{+}\right)^{2} \\
\text { subject to } & \left\|p_{1}(t)-p_{2}(t)\right\|-r \leq s(t) \\
& {\left[\begin{array}{l}
p_{i}(t) \\
v_{i}(t)
\end{array}\right]=A_{i}\left[\begin{array}{c}
p_{i}(t-1) \\
v_{i}(t-1)
\end{array}\right]+B_{i} u_{i}(t)} \\
& p_{i}(T)=q_{i} \\
& v_{i}(T)=0
\end{array}
$$

- introduce epigraph variables

$$
\begin{array}{ll}
\underset{p_{i}(t), v_{i}(t), u_{i}(t), s(t), \alpha(t), \beta(t)}{\operatorname{minimize}} & \sum_{t=1}^{T} \alpha(t)+\rho \beta(t) \\
\text { subject to } & \left\|u_{1}(t)\right\|^{2}+\left\|u_{2}(t)\right\|^{2} \leq \alpha(t) \\
& \left(s(t)_{+}\right)^{2} \leq \beta(t) \\
& \left\|p_{1}(t)-p_{2}(t)\right\|-r \leq s(t) \\
& {\left[\begin{array}{l}
p_{i}(t) \\
v_{i}(t)
\end{array}\right]=A_{i}\left[\begin{array}{l}
p_{i}(t-1) \\
v_{i}(t-1)
\end{array}\right]+B_{i} u_{i}(t)} \\
& p_{i}(T)=q_{i} \\
& v_{i}(T)=0
\end{array}
$$

- objective is linear now, but constraints are not SOCP
- Fact: for $x, y \in \mathbf{R}$, there holds

$$
\left(x_{+}\right)^{2} \leq y \quad \Leftrightarrow \quad \exists_{z \in \mathbf{R}}: x_{+} \leq z \text { and } z^{2} \leq y
$$

$$
\begin{array}{ll}
\underset{p_{i}(t), v_{i}(t), u_{i}(t), s(t), \alpha(t), \beta(t), z(t)}{\operatorname{minimize}} & \sum_{t=1}^{T} \alpha(t)+\rho \beta(t) \\
\text { subject to } & \left\|u_{1}(t)\right\|^{2}+\left\|u_{2}(t)\right\|^{2} \leq \alpha(t) \\
& s(t)_{+} \leq z(t) \\
& z(t)^{2} \leq \beta(t) \\
& \left\|p_{1}(t)-p_{2}(t)\right\|-r \leq s(t) \\
& {\left[\begin{array}{l}
p_{i}(t) \\
v_{i}(t)
\end{array}\right]=A_{i}\left[\begin{array}{l}
p_{i}(t-1) \\
v_{i}(t-1)
\end{array}\right]+B_{i} u_{i}(t)} \\
& p_{i}(T)=q_{i} \\
& v_{i}(T)=0
\end{array}
$$

- a SOCP formulation:

$$
\begin{array}{ll}
\underset{p_{i}(t), v_{i}(t), u_{i}(t), s(t), \alpha(t), \beta(t), z(t)}{\operatorname{minimize}} & \sum_{t=1}^{T} \alpha(t)+\rho \beta(t) \\
\text { subject to } & \left\|\left[\begin{array}{c}
2 u_{1}(t) \\
2 u_{2}(t) \\
\alpha(t)-1
\end{array}\right]\right\| \leq \alpha(t)+1 \\
& 0 \leq z(t), s(t) \leq z(t) \\
& \left\|\left[\begin{array}{c}
2 z(t) \\
\beta(t)-1
\end{array}\right]\right\| \leq \beta(t)+1 \\
& \left\|p_{1}(t)-p_{2}(t)\right\| \leq s(t)+r \\
& {\left[\begin{array}{c}
p_{i}(t) \\
v_{i}(t)
\end{array}\right]=A_{i}\left[\begin{array}{c}
p_{i}(t-1) \\
v_{i}(t-1)
\end{array}\right]+B_{i} u_{i}(t)} \\
& p_{i}(T)=q_{i} \\
& v_{i}(T)=0
\end{array}
$$

