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special classes of convex problems
> linear programming (LP)
> quadratic programming (QP)
> second-order cone programming (SOCP)
> semi-definite programming (SDP)

the classes are nested: LP ¢ QP ¢ SOCP c SDP
there exist efficient algorithms for each class (and available for free)

their complexity increases along the chain: a SDP takes much more
time to solve than a “comparable” LP



Quadratic programming (QP)

minimization of a convex quadratic over finitely many affine
constraints

in R™, a QP is a problem of the form

minimize zT Az +bTz +¢
xT
subject to afzx <b;, i=1,....,m

chx:dj, ji=1,....p

with A >0

LP C QP by taking A =0



Example: portfolio management

you have T' euros to invest across n assets
r; is the random rate of return of the asset i =1,...,n
x; is the amount you invest in asset i = 1,...,n

you receive the random amount

T
rTTr=7r1T1+1roxs 4+ -+ 1Ty

the average and covariance of the random vector r are known:
p=E(r) T=cov(r)=E((r—p(r—mun")
(this implies: E(rT2) = uT2 and var(rT2) = 27 %x)

how much should you invest in each asset?



e risk-averse formulation:

maximize pTx — Bz’ ¥x
x
subjectto 172 =T
x>0

e the constant 8 > 0 sets the tradeoff between the expected gain and
risk of the portfolio x = (z1,...,2,)

e a QP because ¥ =0



Example: fire-station location

e original formulation:
minixmize max {||x —p1l|,..., ||z — px]}

e not a QP

e reformulate as

N 2 2
minimize max{||:v—p1|| oo |z = prl| }

or

minimmize ||gv|\2 + max {72p1Tx + ||p1||2 oo, —2pEa + ||pK||2}



e introduce an epigraph variable
minimize  [jz]|* + ¢
x,t
subject to  —2plx + |pi|® < t,

e a QP

k=1,...



Second-order cone programming (SOCP)

e in R™, a SOCP is a problem of the form
minimize 'z

xr
subject to  ||Aix +b;|| < cfx+di, i=1,...,m.

e key-fact: for w € R™ and y, z € R, there holds

2
Jw]|” <yz

SR
z>0 y

<0es



e QP C SOCP:

minimize zT Az +bTz +¢
xT

subject to alfxz <b;, i=1,...

T
J

with A > 0, can be reformulated as

minimize s+ bz + ¢

1/2
subject to [1;1 ﬂ <s+1

afz <b;, i=1,...
CJTx:dj, j=1,...

cir=d;, j=1,...



Example: input design
a team of two vehicles move in the plane with dynamics

,%‘i(t) ZAi.’L‘i(t—l)-i-Biui(t), t=1,...,T

z;(t) = (pi(t),vi(t)) € R* is state of vehicle i at time ¢
(pi(t)=position, v;(t)=velocity)

u;(t) € R™ is control that we apply to vehicle ¢ at time ¢
matrices A4; € R*4, B; € R**™ and initial states x;(0) are given

we want to move the vehicles to given desired positions ¢; € R? at
time 7" and stop them there

preferably, vehicles should stay within 7 distance units of each other
at all times (otherwise, their wireless link starts deteriorating)



e goal: design a minimum-energy input sequence w;(t), t=1,...7T

e formulation:

. T 2 2
t t t) —pa(t)| —
po(hinimize 2 i1 lua I + lu2(®)1* + o (22 (8) = 22 (O = 7))

subject to Bzg;] — A, { E m + Byu;(t)
pi(T) =
wi(T) =

The constraints run for t =1,...,T andi=1,2

e p > 0 is given trade-off parameter

e not a SOCP formulation: constraints are OK, but objective is not
linear



. 2 . .
e since ((-)+)” is nondecreasing, we may reformulate as

L T 2 2 2
minimize o lug(t + ||ua(t + p(s(t
minimize S (O + )]+ p (s(2)+)

subject to Ipa(t) — pa(t)l| — 7 < s(2)
()] _ 4 |pit—1) .
|:Ui(t) - Az 'Ui( 1) + Bzuz (t)
Di T) = i



e introduce epigraph variables

minimize
pi(t),vi (t),ui(t),s(t),a(t),B(t)
subject to

S alt) + pB(t)
lur ()1 + luz (@) < at)
(s(t)1)* < B(1)

)= 2] + o
pi(T) =ai
v (T)=0

e objective is linear now, but constraints are not SOCP



e Fact: for x,y € R, there holds

(x+)2§y & EIZGR::EJrgzandzzgy

(0,008 ) ) 01,501 20 i alt) + pB(t)

subject to ||u1(t)||2 i HUQ(t)”Q < a(t)
s(t)+ < z(t)
2(t)? < B(t)
Ip1(t) = p2()]| — 7 < s(t)



e a SOCP formulation:
minimize

Pi (t) Vi (t) s Ui (t)7s(t)7a(t) 76(t) )z(t)

subject to

S alt) + pB(t)
27.L1(t) i
2ua(t) ||| <aft)+1
E




