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Definition of convex function in a vector space

Definition. A function f : V — R U {400} in a vector space V is
convex if f # +o0 and

(A =)z +ay) < (1 -a)f(x) +af(y)

for all z,y € S and a € [0,1]. (0(+00) := 0)

Definition. The domain of f is

domf={zeV : f(z) < +oo}.

If fis convex, its domain is a convex set



Convexity is a 1D property

Proposition. f is convex if and only ¢ : R — R U {400},

o(t) = f(p+td),

is convex for any p and d in V.




How do we recognize convex functions?

List of simple ones
_|_
Apply convexity-preserving operations



Simple convex functions

e affine
e norms

e indicators



Affine function in R

flz)=sx+r
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Affine function in R?

fz) = sTa+r
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Affine function

Definition. An affine function f : V — R is a map of the form
fo) =1v)+r

for some linear function ! : V — R and some r € R.

Examples:
e f:R" >R, f(z)=sTz+r (s€cR",r €R)
o f:R™™ SR, f(X)=1tr(STX) +r (S € R™™,r € R)
e f:S" R, f(X)=tr(SX)+7r (SeS",reR)

Theorem. An affine function is convex.



Example: network flow

Formulation that minimizes cost:

minimize C1X1 + Coxo + Cc3x3 + C4x4 + C5X5
21,T2,L3,T4,T5

subject to 1=21+ 22
T1+ T3 =24
To =23 + T5
T4+ x5 =1
Z1,%2,%3,%4,%5 > 0



Norm in R
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Norm in R2

4 f(@) = [l=ll,




Theorem. A norm is a convex function.

Examples:
o f:R" =R, f(z) =z,
o f:R" =R, f(z) = |z
o [:8"=R, f(X)=[X|



Indicators
Definition. The indicator of a set S C V is the function

{0, iferesS

is + V.= RU{+oo}, is(x) = 400, otherwise.

+00 +00

r—
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Theorem. The indicator of a convex set is a convex function.



Indicators allow to pass constraints to the objective:

is equivalent to

is equivalent to

is equivalent to

minimize  f(x)
x
subjectto z€ A
r€eB

minimize  f(z) + ip(x)
subjectto z € A

minizmize f@)+ia(x) +ip(x)

minilr_nize f(x) +ianp(x)



Convexity through differentiability

Theorem (1st order criterion). Let S be an open convex subset of R
and f : S — R be a differentiable function. Then,

fisconvex &  f(z)> f(y)+ V)T (x —y) forall z,y € S.

4 f(x)

fW) + Vi) (= —y)

Py

Mostly useful in the = direction:
o offers affine lower bounds to convex functions

e produces interesting inequalities



Convexity through differentiability

Theorem (2nd order criterion). Let S be an open convex subset of R”
and f : S — R be a twice-differentiable function. Then,

fisconvex & V2f(y)=0forallyecs.

e Mostly useful in the <= direction: proves f is convex
e Commonly, the 2nd order Taylor expansion

Fl) + V1) (0~ ) + 50— 2 V) — )

is not an upper bound on f(z)



Examples

o f: Ryt =R, fla)=
o f: Ry =R, f(z) =—log(x)
e f: Ry — R, f(x) =xlog(x) with 0log(0) :=0

e f:R" =R, f(x) =2T Az +bTx + ¢, with A symmetric, is
convex iff A =0

e f: R" >R, f(ﬂl‘l, x):log(ezl+...

+em)
o [ R"xRyy =R, flz,y) =22



Theorem. For any A € S| and B € S" there exists § € R"*" such
that
A=88T and B=SAST

where A € R"*" is diagonal, with the eigenvalues of A~1/2BA~1/2,

Further examples of convex functions:
o f:81, o R, f(X)=tr(X!)
o f:87, =R, f(X)=—logdet(X)



Operations that preserve convexity

e conic combination
e composition with affine map

e pointwise supremum



Conic combination preserves convexity

Theorem. Let f; : V — R U {+0o0} be convex functions and «; > 0 for
i=1,...,n. If ;_, dom f; # 0, then

f=aifi+--+anfn

is convex.

Example: basis pursuit with denoising

minimize ||Axz — b||§ + oz,
x

f(z)

for given A€ R™*" be R™,and p >0



Composition with affine map preserves convexity

Theorem. Let A : V — W be an affine map, f : W - R — {400} be
convex, and A(V)Ndom f # (. Then

foA:V =5 RU{+o0}

is convex.

Example: logistic regression
o (z,yr) € R" x{0,1}, k=1,..., K, is the labeled training set
e label is generated randomly from feature vector

(T +r)
P(Y:y|X:Z',S,T') = W

e what should be the classifier parameters (s,7) € R™ x R?

maximize Zszl logP (Y = yi | X = g, s,7)
s,r



Pointwise supremum preserves convexity

Theorem. Let f; : V- RU{+0o0}, i € Z, be a family a convex
functions and suppose that f = sup;cz fi #Z +0o. Then,
f V= RU{+o0} is convex.

Example: fire-station placement
® p1,...,pK are the locations of villages
e what should be the position x of the fire-station?
miniwmize max {||lz —p1]|, -, ||z —pxl}

f(@)




Example: maximum eigenvalue function
Amax @ 9" = R X = Anax(X)

e does not have a closed-form expression

e variational characterization from linear algebra
Amax(X) = sup{¢" Xq : [l¢l| =1}
offers the representation
Amax = sup {f¢(X) : ¢ € Q}

with f, : S" 5 R, f,(X)=¢"Xgand Q={ge R" : ||q| =1}
e f, is a convex function (linear function of X)

e we conclude A\« is a convex function



