Convex functions

Nonlinear optimization
Instituto Superior Técnico and Carnegie Mellon University PhD course
João Xavier
TA: Hung Tuan

Convex functions

Nonconvex functions

Definition of convex function in a vector space

Definition. A function $f: V \rightarrow \mathbf{R} \cup\{+\infty\}$ in a vector space V is convex if $f \not \equiv+\infty$ and

$$
f((1-\alpha) x+\alpha y) \leq(1-\alpha) f(x)+\alpha f(y)
$$

for all $x, y \in S$ and $\alpha \in[0,1] .(0(+\infty):=0)$

Definition. The domain of f is

$$
\operatorname{dom} f=\{x \in V: f(x)<+\infty\} .
$$

If f is convex, its domain is a convex set

Convexity is a 1D property

Proposition. f is convex if and only $\phi: \mathbf{R} \rightarrow \mathbf{R} \cup\{+\infty\}$,

$$
\phi(t)=f(p+t d),
$$

is convex for any p and d in V.

How do we recognize convex functions?

List of simple ones
$+$
Apply convexity-preserving operations

Simple convex functions

- affine
- norms
- indicators

Affine function in \mathbf{R}

Affine function in \mathbf{R}^{2}

Affine function

Definition. An affine function $f: V \rightarrow \mathbf{R}$ is a map of the form

$$
f(v)=l(v)+r
$$

for some linear function $l: V \rightarrow \mathbf{R}$ and some $r \in \mathbf{R}$.

Examples:

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, f(x)=s^{T} x+r\left(s \in \mathbf{R}^{n}, r \in \mathbf{R}\right)$
- $f: \mathbf{R}^{n \times m} \rightarrow \mathbf{R}, f(X)=\operatorname{tr}\left(S^{T} X\right)+r\left(S \in \mathbf{R}^{n \times m}, r \in \mathbf{R}\right)$
- $f: \mathbf{S}^{n} \rightarrow \mathbf{R}, f(X)=\operatorname{tr}(S X)+r\left(S \in \mathbf{S}^{n}, r \in \mathbf{R}\right)$

Theorem. An affine function is convex.

Example: network flow

Formulation that minimizes cost:

$$
\begin{array}{ll}
\underset{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}}{\operatorname{minimize}} & c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}+c_{5} x_{5} \\
\text { subject to } & 1=x_{1}+x_{2} \\
& x_{1}+x_{3}=x_{4} \\
& x_{2}=x_{3}+x_{5} \\
& x_{4}+x_{5}=1 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array}
$$

Norm in \mathbf{R}

Norm in \mathbf{R}^{2}

Theorem. A norm is a convex function.

Examples:

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, f(x)=\|x\|_{2}$
- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, f(x)=\|x\|_{\infty}$
- $f: \mathbf{S}^{n} \rightarrow \mathbf{R}, f(X)=\|X\|_{\mathrm{F}}$

Indicators

Definition. The indicator of a set $S \subset V$ is the function

$$
i_{S}: V \rightarrow \mathbf{R} \cup\{+\infty\}, \quad i_{S}(x)= \begin{cases}0, & \text { if } x \in S \\ +\infty, & \text { otherwise }\end{cases}
$$

Theorem. The indicator of a convex set is a convex function.

Indicators allow to pass constraints to the objective:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in A \\
& x \in B
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x)+i_{B}(x) \\
\text { subject to } & x \in A
\end{array}
$$

is equivalent to

$$
\underset{x}{\operatorname{minimize}} \quad f(x)+i_{A}(x)+i_{B}(x)
$$

is equivalent to

$$
\underset{x}{\operatorname{minimize}} \quad f(x)+i_{A \cap B}(x)
$$

Convexity through differentiability

Theorem (1st order criterion). Let S be an open convex subset of \mathbf{R}^{n} and $f: S \rightarrow \mathbf{R}$ be a differentiable function. Then,

$$
f \text { is convex } \quad \Leftrightarrow \quad f(x) \geq f(y)+\nabla f(y)^{T}(x-y) \text { for all } x, y \in S
$$

Mostly useful in the \Rightarrow direction:

- offers affine lower bounds to convex functions
- produces interesting inequalities

Convexity through differentiability

Theorem (2nd order criterion). Let S be an open convex subset of \mathbf{R}^{n} and $f: S \rightarrow \mathbf{R}$ be a twice-differentiable function. Then,

$$
f \text { is convex } \quad \Leftrightarrow \quad \nabla^{2} f(y) \succeq 0 \text { for all } y \in S
$$

- Mostly useful in the \Leftarrow direction: proves f is convex
- Commonly, the 2nd order Taylor expansion

$$
f(y)+\nabla f(y)^{T}(x-y)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(y)(y-x)
$$

is not an upper bound on $f(x)$

Examples

- $f: \mathbf{R}_{++} \rightarrow \mathbf{R}, f(x)=\frac{1}{x}$
- $f: \mathbf{R}_{++} \rightarrow \mathbf{R}, f(x)=-\log (x)$
- $f: \mathbf{R}_{+} \rightarrow \mathbf{R}, f(x)=x \log (x)$ with $0 \log (0):=0$
- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, f(x)=x^{T} A x+b^{T} x+c$, with A symmetric, is convex iff $A \succeq 0$
- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, f\left(x_{1}, \ldots, x_{n}\right)=\log \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)$
- $f: \mathbf{R}^{n} \times \mathbf{R}_{++} \rightarrow \mathbf{R}, f(x, y)=\frac{x^{T} x}{y}$

Theorem. For any $A \in \mathbf{S}_{++}^{n}$ and $B \in \mathbf{S}^{n}$ there exists $S \in \mathbf{R}^{n \times n}$ such that

$$
A=S S^{T} \quad \text { and } \quad B=S \Lambda S^{T}
$$

where $\Lambda \in \mathbf{R}^{n \times n}$ is diagonal, with the eigenvalues of $A^{-1 / 2} B A^{-1 / 2}$.

Further examples of convex functions:

- $f: \mathbf{S}_{++}^{n} \rightarrow \mathbf{R}, f(X)=\operatorname{tr}\left(X^{-1}\right)$
- $f: \mathbf{S}_{++}^{n} \rightarrow \mathbf{R}, f(X)=-\log \operatorname{det}(X)$

Operations that preserve convexity

- conic combination
- composition with affine map
- pointwise supremum

Conic combination preserves convexity

Theorem. Let $f_{i}: V \rightarrow \mathbf{R} \cup\{+\infty\}$ be convex functions and $\alpha_{i} \geq 0$ for $i=1, \ldots, n$. If $\bigcap_{i=1}^{n} \operatorname{dom} f_{i} \neq \emptyset$, then

$$
f=\alpha_{1} f_{1}+\cdots+\alpha_{n} f_{n}
$$

is convex.

Example: basis pursuit with denoising

for given $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$, and $\rho>0$

Composition with affine map preserves convexity

Theorem. Let $A: V \rightarrow W$ be an affine map, $f: W \rightarrow \mathbf{R} \rightarrow\{+\infty\}$ be convex, and $A(V) \cap \operatorname{dom} f \neq \emptyset$. Then

$$
f \circ A: V \rightarrow \mathbf{R} \cup\{+\infty\}
$$

is convex.

Example: logistic regression

- $\left(x_{k}, y_{k}\right) \in \mathbf{R}^{n} \times\{0,1\}, k=1, \ldots, K$, is the labeled training set
- label is generated randomly from feature vector

$$
\mathbf{P}(Y=y \mid X=x, s, r)=\frac{e^{y\left(s^{T} x+r\right)}}{1+e^{s^{T} x+r}}
$$

- what should be the classifier parameters $(s, r) \in \mathbf{R}^{n} \times \mathbf{R}$?

$$
\underset{s, r}{\operatorname{maximize}} \sum_{k=1}^{K} \log \mathbf{P}\left(Y=y_{k} \mid X=x_{k}, s, r\right)
$$

Pointwise supremum preserves convexity

Theorem. Let $f_{i}: V \rightarrow \mathbf{R} \cup\{+\infty\}, i \in \mathcal{I}$, be a family a convex functions and suppose that $f=\sup _{i \in \mathcal{I}} f_{i} \not \equiv+\infty$. Then, $f: V \rightarrow \mathbf{R} \cup\{+\infty\}$ is convex.

Example: fire-station placement

- p_{1}, \ldots, p_{K} are the locations of villages
- what should be the position x of the fire-station?

$$
\underset{x}{\operatorname{minimize}} \underbrace{\max \left\{\left\|x-p_{1}\right\|, \cdots,\left\|x-p_{K}\right\|\right\}}_{f(x)}
$$

Example: maximum eigenvalue function

$$
\lambda_{\max }: \mathbf{S}^{n} \rightarrow \mathbf{R} \quad X \mapsto \lambda_{\max }(X)
$$

- does not have a closed-form expression
- variational characterization from linear algebra

$$
\lambda_{\max }(X)=\sup \left\{q^{T} X q:\|q\|=1\right\}
$$

offers the representation

$$
\lambda_{\max }=\sup \left\{f_{q}(X): q \in \mathcal{Q}\right\}
$$

with $f_{q}: \mathbf{S}^{n} \rightarrow \mathbf{R}, f_{q}(X)=q^{T} X q$ and $\mathcal{Q}=\left\{q \in \mathbf{R}^{n}:\|q\|=1\right\}$

- f_{q} is a convex function (linear function of X)
- we conclude $\lambda_{\max }$ is a convex function

