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Convex functions



Nonconvex functions



Definition of convex function in a vector space

Definition. A function f : V → R ∪ {+∞} in a vector space V is
convex if f 6≡ +∞ and

f ((1− α)x+ αy) ≤ (1− α)f(x) + αf(y)

for all x, y ∈ S and α ∈ [0, 1]. (0(+∞) := 0)

Definition. The domain of f is

dom f = {x ∈ V : f(x) < +∞}.

If f is convex, its domain is a convex set



Convexity is a 1D property

Proposition. f is convex if and only φ : R→ R ∪ {+∞},

φ(t) = f (p+ td) ,

is convex for any p and d in V .
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How do we recognize convex functions?

List of simple ones
+

Apply convexity-preserving operations



Simple convex functions

• affine

• norms

• indicators



Affine function in R
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f(x) = sx + r
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Affine function in R2

f(x) = sT x + r
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Affine function

Definition. An affine function f : V → R is a map of the form

f(v) = l(v) + r

for some linear function l : V → R and some r ∈ R.

Examples:

• f : Rn → R, f(x) = sTx+ r (s ∈ Rn, r ∈ R)

• f : Rn×m → R, f(X) = tr
(
STX

)
+ r (S ∈ Rn×m, r ∈ R)

• f : Sn → R, f(X) = tr (SX) + r (S ∈ Sn, r ∈ R)

Theorem. An affine function is convex.



Example: network flow
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Formulation that minimizes cost:

minimize
x1,x2,x3,x4,x5

c1x1 + c2x2 + c3x3 + c4x4 + c5x5

subject to 1 = x1 + x2
x1 + x3 = x4
x2 = x3 + x5
x4 + x5 = 1
x1, x2, x3, x4, x5 ≥ 0



Norm in R

x

f(x) = |x|



Norm in R2
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f(x) = kxk2



Theorem. A norm is a convex function.

Examples:

• f : Rn → R, f(x) = ‖x‖2
• f : Rn → R, f(x) = ‖x‖∞
• f : Sn → R, f(X) = ‖X‖F



Indicators

Definition. The indicator of a set S ⊂ V is the function

iS : V → R ∪ {+∞}, iS(x) =

{
0, if x ∈ S
+∞, otherwise.

+1 +1

S

Theorem. The indicator of a convex set is a convex function.



Indicators allow to pass constraints to the objective:

minimize
x

f(x)

subject to x ∈ A
x ∈ B

is equivalent to

minimize
x

f(x) + iB(x)

subject to x ∈ A
is equivalent to

minimize
x

f(x) + iA(x) + iB(x)

is equivalent to

minimize
x

f(x) + iA∩B(x)



Convexity through differentiability

Theorem (1st order criterion). Let S be an open convex subset of Rn

and f : S → R be a differentiable function. Then,

f is convex ⇔ f(x) ≥ f(y) +∇f(y)T (x− y) for all x, y ∈ S.

f(x)

f(y) + rf(y)T (x � y)

y
x

Mostly useful in the ⇒ direction:

• offers affine lower bounds to convex functions

• produces interesting inequalities



Convexity through differentiability
Theorem (2nd order criterion). Let S be an open convex subset of Rn

and f : S → R be a twice-differentiable function. Then,

f is convex ⇔ ∇2f(y) � 0 for all y ∈ S.

f(x)

y
x

• Mostly useful in the ⇐ direction: proves f is convex

• Commonly, the 2nd order Taylor expansion

f(y) +∇f(y)T (x− y) +
1

2
(y − x)T∇2f(y)(y − x)

is not an upper bound on f(x)



Examples

• f : R++ → R, f(x) = 1
x

• f : R++ → R, f(x) = − log(x)

• f : R+ → R, f(x) = x log(x) with 0 log(0) := 0

• f : Rn → R, f(x) = xTAx+ bTx+ c, with A symmetric, is
convex iff A � 0

• f : Rn → R, f(x1, . . . , xn) = log (ex1 + · · ·+ exn)

• f : Rn ×R++ → R, f(x, y) = xT x
y



Theorem. For any A ∈ Sn
++ and B ∈ Sn there exists S ∈ Rn×n such

that
A = SST and B = SΛST

where Λ ∈ Rn×n is diagonal, with the eigenvalues of A−1/2BA−1/2.

Further examples of convex functions:

• f : Sn
++ → R, f(X) = tr

(
X−1

)
• f : Sn

++ → R, f(X) = − log det(X)



Operations that preserve convexity

• conic combination

• composition with affine map

• pointwise supremum



Conic combination preserves convexity

Theorem. Let fi : V → R ∪ {+∞} be convex functions and αi ≥ 0 for
i = 1, . . . , n. If

⋂n
i=1 dom fi 6= ∅, then

f = α1f1 + · · ·+ αnfn

is convex.

Example: basis pursuit with denoising

minimize
x

‖Ax− b‖22 + ρ ‖x‖1︸ ︷︷ ︸
f(x)

for given A ∈ Rm×n, b ∈ Rm, and ρ > 0



Composition with affine map preserves convexity

Theorem. Let A : V →W be an affine map, f : W → R→ {+∞} be
convex, and A(V ) ∩ dom f 6= ∅. Then

f ◦A : V → R ∪ {+∞}

is convex.

Example: logistic regression

• (xk, yk) ∈ Rn × {0, 1}, k = 1, . . . ,K, is the labeled training set

• label is generated randomly from feature vector

P(Y = y |X = x, s, r) =
ey(s

T x+r)

1 + esT x+r

• what should be the classifier parameters (s, r) ∈ Rn ×R?

maximize
s,r

∑K
k=1 logP (Y = yk |X = xk, s, r)



Pointwise supremum preserves convexity

Theorem. Let fi : V → R ∪ {+∞}, i ∈ I, be a family a convex
functions and suppose that f = supi∈I fi 6≡ +∞. Then,
f : V → R ∪ {+∞} is convex.

Example: fire-station placement

• p1, . . . , pK are the locations of villages

• what should be the position x of the fire-station?

minimize
x

max {‖x− p1‖ , · · · , ‖x− pK‖}︸ ︷︷ ︸
f(x)



Example: maximum eigenvalue function

λmax : Sn → R X 7→ λmax(X)

• does not have a closed-form expression

• variational characterization from linear algebra

λmax(X) = sup{qTXq : ‖q‖ = 1}

offers the representation

λmax = sup {fq(X) : q ∈ Q}

with fq : Sn → R, fq(X) = qTXq and Q = {q ∈ Rn : ‖q‖ = 1}
• fq is a convex function (linear function of X)

• we conclude λmax is a convex function


