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Convex sets



Nonconvex sets



Definition of convex set in a vector space

Important vector spaces

• Rn: set of n-dimensional column vectors

• Rn×m: set of n×m matrices

• Sn: set of n× n symmetric matrices

Definition. A set S in a vector space V is convex if

(1− α)x+ αy ∈ S

for all x, y ∈ S and α ∈ [0, 1].



How do we recognize convex sets?

List of simple ones
+

Apply convexity-preserving operations



Simple convex sets

• hyperplanes

• closed half-spaces

• norm balls

• cones



Hyperplane in R2

s
Hs,r

Hs,r = {x ∈ R2 | sTx = r}



Hyperplane in R3

Hs,r
s

Hs,r = {x ∈ R3 | sTx = r}



Example: network flow

• you want to sent one unit of fluid from s to t

• cost per unit flow in arc i is ci

• how much fluid should be sent through arc i: xi =?
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Formulation that minimizes cost:

minimize
x1,x2,x3,x4,x5

c1x1 + c2x2 + c3x3 + c4x4 + c5x5

subject to 1 = x1 + x2

x1 + x3 = x4

x2 = x3 + x5

x4 + x5 = 1
x1, x2, x3, x4, x5 ≥ 0



Hyperplane in a vector space

Default inner-products in important vector spaces

• Rn: 〈x, y〉 = xT y

• Rn×m: 〈X,Y 〉 = tr
(
XTY

)

• Sn: 〈X,Y 〉 = tr (XY )

Definition. A hyperplane in a vector space V with inner product 〈·, ·〉 is
a set of the form

Hs,r = {x ∈ V | 〈s, x〉 = r}
for some s ∈ V − {0} and r ∈ R.



Closed half-space in R2

s

H�
s,r

H−s,r = {x ∈ R2 | sTx ≤ r}



Example: warehouse management

• you can buy two products with costs c1 and c2

• you can sell them at prices p1 and p2

• demands for the products are d1 and d2

• volumes of products are v1 and v2

• maximum capacity of your warehouse is volume v

• how much should you order from each product: x1 =? and x2 =?

Formulation that minimizes your net cost:

minimize
x1∈R,x2∈R

c1x1 + c2x2 − (p1 min{x1, d1}+ p2 min{x2, d2})
subject to v1x1 + v2x2 ≤ v

x1 ≥ 0
x2 ≥ 0



Closed half-space in a vector space

Definition. A closed-half space in a vector space V with inner product
〈·, ·〉 is a set of the form

H−s,r = {x ∈ V | 〈s, x〉 ≤ r}

for some s ∈ V − {0} and r ∈ R.



Norm ball in R3

c

R

B(c, R)

B(c,R) = {x ∈ R3 | ‖x− c‖2 ≤ R}



Example: signal design

x(t)

y(t)

s

t

• node s transmits x(1), x(2), x(3), . . . , x(T ) to flag an event

• node t receives y(1), y(2), y(3), . . . , y(T )

• multipath channel:

y(t) = h0x(t) + h1x(t− 1) + h2x(t− 2) + h3x(t− 3)



• assume system at rest:
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︸ ︷︷ ︸
H
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...
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︸ ︷︷ ︸
x

• power constraint: x(1)2 + x(2)2 + · · ·+ x(T )2 ≤ p

• which input x gives the largest output y?



• formulation:
maximize

x∈RT
‖Hx‖2

subject to ‖x‖2 ≤
√
p

• a curiosity: the problem above is not convex but it is easily solved,
via SVD



Norm ball in a vector space

Default norms in important vector spaces

• euclidean norm in Rn: ‖x‖2 =
√
x2

1 + · · ·+ x2
n

• frobenius norm in Rn×m: ‖X‖F =
√∑

i,j X
2
ij

• frobenius norm in Sn: ‖X‖F =
√∑

i,j X
2
ij

Definition. A norm ball in a vector space V with norm ‖·‖ is a set of the
form

B(c,R) = {x ∈ V : ‖x− c‖ ≤ R}
for some c ∈ V and R ≥ 0.



`1 norm in Rn

For x = (x1, . . . , xn) ∈ Rn: ‖x‖1 = |x1|+ · · ·+ |xn|

B1(c, R)

R

c

B1(c,R) = {x ∈ Rn : ‖x− c‖1 ≤ R}



`∞ norm in Rn

For x = (x1, . . . , xn) ∈ Rn: ‖x‖∞ = max{|x1|, . . . , |xn|}

B1(c, R)

R

c

B∞(c,R) = {x ∈ Rn : ‖x− c‖∞ ≤ R}



Convex cone in R2

K



Convex cone in a vector space
Definition. A set K in a vector space V is a convex cone if K is a
convex set and

R+K = {αx : α ≥ 0, x ∈ K} ⊂ K

K

x

↵x



Nonnegative orthant in Rn

R2
+

Rn
+ = {x ∈ Rn : xi ≥ 0, for i = 1, . . . , n}



Lorentz cone or second-order cone in Rn+1

L3

Ln+1 = {(x, xn+1) ∈ Rn ×R : ‖x‖2 ≤ xn+1}



Positive semidefinite cone in Sn

Rn⇥n

Sn
Sn

+

Sn
+ = {X ∈ Sn |X � 0}

(X � 0 means that all eigenvalues of X are nonnegative)



Eigenvalue decomposition

Theorem. Any X ∈ Sn can be factored as

X = QΛQT

where

• Q =
[
q1 · · · qn

]
∈ Rn×n is orthogonal: QTQ = QQT = I

• Λ ∈ Rn×n is diagonal:

Λ =



λ1

. . .

λn


 .

Note: each (λi, qi) is an eigenpair of X,

Xqi = λiqi, i = 1, . . . , n.



Example: finance

• given an invalid correlation matrix Σ̂

• find the closest correlation matrix with unit diagonal

Formulation:
minimize

Σ∈Sn

∥∥∥Σ− Σ̂
∥∥∥
F

subject to Σii = 1, i = 1, . . . , n,
Σ � 0



Operations that preserve convexity

• intersection

• push-forward by affine map

• pull-back by affine map



Intersection preserves convexity

3\

i=1

Si

S1

S2

S3

Theorem. If {Si : i ∈ I} is a family of convex sets in a vector space V ,
then their intersection

⋂
i∈I Si is a convex set.

Important: the index set I may be uncountable.



Example: polyhedron

P =
{
x ∈ R2 : aTi x ≤ b, i = 1, . . . , 7

}

a1
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Compact notation:

P =
{
x ∈ R2 : Ax ≤ b

}
A =




aT1
aT2
...
aT7


 b =




b1
b2
...
b7






Affine map

Definition. An affine map A : V →W is a map of the form

A(v) = L(v) + w

for some linear map L : V →W and some w ∈W .

Examples:

• A : Rm → Rn, A(x) = Ax+ b (A ∈ Rn×m, b ∈ Rm)
(all affine maps Rn → Rm are of this form)

• A : Rn → Sm, A(x) = A0 + x1A1 + · · ·+ xnAn (Ai ∈ Sm)
(all affine maps Rn → Sm are of this form)

• A : Sn → Sm, A(X) = ATXA+B (A ∈ Rn×m, B ∈ Sm)
(just an example; not all affine maps Sn → Sm are of this form)



Push-forward by affine map preserves convexity

A

A(S)

S

V W

Theorem. If S ⊂ V is a convex set and A : V →W an affine map, then

A(S) = {A(v) : v ∈ S}

is a convex set.



Example: possible positions of robot after disturbance

• robot is at position p ∈ R2

• disturbance u ∈ R2 hits the robot

• robot moves to new position p+Bu (B depends on robot mechanic
parameters)

• disturbance is unknown but is limited in magnitude: ‖u‖2 ≤ 1

• is the set S of all possible new positions a convex set?

A(u) = p + Bu

B2(0, 1) = {u : kuk2  1}

S = A (B2(0, 1))

p



Pull-back by affine map preserves convexity

A

A�1(S)
S

V W

Theorem. If S ⊂W is a convex set and A : V →W an affine map,
then

A−1(S) = {v ∈ V : A(v) ∈ S}
is a convex set.



A does not have to be invertible:

• A : R2 → R, A(x1, x2) = x1 and S = [1, 4]

• A−1(S) = {(x1, x2) ∈ R2 : 1 ≤ x1 ≤ 4}

A�1(S)

V = R2

W = R

A

S



Example: unsafe robot positions

• D is a polyhedral danger zone that the robot must not enter

• an unsafe position may enter D after a disturbance

• is the set S of all unsafe positions a convex set?

D

unsafe positions



A trivial but useful fact
If S = {x ∈ V : (x, y) ∈ T for some y ∈W} then

S = π1 (T )

where π1 : V ×W → V the projection map π1(x, y) = x

S

T

⇡1

(x, y)

x

V

V ⇥ W



S =
{
p ∈ R2 : p+Bu ∈ D, for some u ∈ B2(0, 1)

}

= π1 (
{

(p, u) ∈ R2 ×R2 : p+Bu ∈ D,u ∈ B2(0, 1)
}

︸ ︷︷ ︸
T

)

where π1 : R2 ×R2 → R2 the projection map π1(p, u) = p

S

T

⇡1

(p, u)

p



• write T = {(p, u) : p+Bu ∈ D}︸ ︷︷ ︸
T1

∩{(p, u) : u ∈ B2(0, 1)}︸ ︷︷ ︸
T2

• T1 is convex because it is an affine pull-back of convex set D:

T1 = B−1(D)

where B : R2 ×R2 → R2, B(p, u) = p+Bu

• T2 is convex because it is an affine pull-back of convex set B2(0, 1):

T2 = π2
−1(B2(0, 1))

where π2 : R2 ×R2 → R2 the projection map π2(p, u) = u

• T is convex because it is intersection of two convex sets

T = T1 ∩ T2

• S is convex because it is affine push-foward of convex set T :

S = π1 (T )


