Convex sets

Nonlinear optimization
Instituto Superior Técnico and Carnegie Mellon University PhD course João Xavier
TA: Hung Tuan

Convex sets

Nonconvex sets

Definition of convex set in a vector space

Important vector spaces

- \mathbf{R}^{n} : set of n-dimensional column vectors
- $\mathbf{R}^{n \times m}$: set of $n \times m$ matrices
- \mathbf{S}^{n} : set of $n \times n$ symmetric matrices

Definition. A set S in a vector space V is convex if

$$
(1-\alpha) x+\alpha y \in S
$$

for all $x, y \in S$ and $\alpha \in[0,1]$.

How do we recognize convex sets?

List of simple ones
$+$
Apply convexity-preserving operations

Simple convex sets

- hyperplanes
- closed half-spaces
- norm balls
- cones

Hyperplane in \mathbf{R}^{2}

$$
H_{s, r}=\left\{x \in \mathbf{R}^{2} \mid s^{T} x=r\right\}
$$

Hyperplane in \mathbf{R}^{3}

$$
H_{s, r}=\left\{x \in \mathbf{R}^{3} \mid s^{T} x=r\right\}
$$

Example: network flow

- you want to sent one unit of fluid from s to t
- cost per unit flow in arc i is c_{i}
- how much fluid should be sent through arc i : $x_{i}=$?

Formulation that minimizes cost:

$$
\begin{array}{ll}
\underset{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}}{\operatorname{minimize}} & c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}+c_{5} x_{5} \\
\text { subject to } & 1=x_{1}+x_{2} \\
& x_{1}+x_{3}=x_{4} \\
& x_{2}=x_{3}+x_{5} \\
& x_{4}+x_{5}=1 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array}
$$

Hyperplane in a vector space

Default inner-products in important vector spaces

- $\mathbf{R}^{n}:\langle x, y\rangle=x^{T} y$
- $\mathbf{R}^{n \times m}:\langle X, Y\rangle=\operatorname{tr}\left(X^{T} Y\right)$
- $\mathbf{S}^{n}:\langle X, Y\rangle=\operatorname{tr}(X Y)$

Definition. A hyperplane in a vector space V with inner product $\langle\cdot, \cdot\rangle$ is a set of the form

$$
H_{s, r}=\{x \in V \mid\langle s, x\rangle=r\}
$$

for some $s \in V-\{0\}$ and $r \in \mathbf{R}$.

Closed half-space in \mathbf{R}^{2}

Example: warehouse management

- you can buy two products with costs c_{1} and c_{2}
- you can sell them at prices p_{1} and p_{2}
- demands for the products are d_{1} and d_{2}
- volumes of products are v_{1} and v_{2}
- maximum capacity of your warehouse is volume v
- how much should you order from each product: $x_{1}=$? and $x_{2}=$?

Formulation that minimizes your net cost:

$$
\begin{array}{cl}
\underset{x_{1} \in \mathbf{R}, x_{2} \in \mathbf{R}}{\operatorname{minimize}} & c_{1} x_{1}+c_{2} x_{2}-\left(p_{1} \min \left\{x_{1}, d_{1}\right\}+p_{2} \min \left\{x_{2}, d_{2}\right\}\right) \\
\text { subject to } & v_{1} x_{1}+v_{2} x_{2} \leq v \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{array}
$$

Closed half-space in a vector space

Definition. A closed-half space in a vector space V with inner product $\langle\cdot, \cdot\rangle$ is a set of the form

$$
H_{s, r}^{-}=\{x \in V \mid\langle s, x\rangle \leq r\}
$$

for some $s \in V-\{0\}$ and $r \in \mathbf{R}$.

Norm ball in \mathbf{R}^{3}

Example: signal design

- node s transmits $x(1), x(2), x(3), \ldots, x(T)$ to flag an event
- node t receives $y(1), y(2), y(3), \ldots, y(T)$
- multipath channel:

$$
y(t)=h_{0} x(t)+h_{1} x(t-1)+h_{2} x(t-2)+h_{3} x(t-3)
$$

- assume system at rest:

$$
\underbrace{\left[\begin{array}{c}
y(1) \\
y(2) \\
y(3) \\
\vdots \\
y(T)
\end{array}\right]}_{y}=\underbrace{\left[\begin{array}{ccccc}
h_{0} & 0 & \cdots & \cdots & 0 \\
h_{1} & h_{0} & 0 & \cdots & 0 \\
h_{2} & h_{1} & h_{0} & \ddots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & h_{2} & h_{1} & h_{0}
\end{array}\right]}_{H} \underbrace{\left[\begin{array}{c}
x(1) \\
x(2) \\
x(3) \\
\vdots \\
x(T)
\end{array}\right]}_{x}
$$

- power constraint: $x(1)^{2}+x(2)^{2}+\cdots+x(T)^{2} \leq p$
- which input x gives the largest output y ?
- formulation:

$$
\begin{array}{ll}
\underset{x \in \mathbf{R}^{T}}{\operatorname{maximize}} & \|H x\|_{2} \\
\text { subject to } & \|x\|_{2} \leq \sqrt{p}
\end{array}
$$

- a curiosity: the problem above is not convex but it is easily solved, via SVD

Norm ball in a vector space

Default norms in important vector spaces

- euclidean norm in $\mathbf{R}^{n}:\|x\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$
- frobenius norm in $\mathbf{R}^{n \times m}:\|X\|_{\mathrm{F}}=\sqrt{\sum_{i, j} X_{i j}^{2}}$
- frobenius norm in $\mathbf{S}^{n}:\|X\|_{\mathrm{F}}=\sqrt{\sum_{i, j} X_{i j}^{2}}$

Definition. A norm ball in a vector space V with norm $\|\cdot\|$ is a set of the form

$$
B(c, R)=\{x \in V:\|x-c\| \leq R\}
$$

for some $c \in V$ and $R \geq 0$.

ℓ_{1} norm in \mathbf{R}^{n}

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}:\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$

$$
B_{1}(c, R)=\left\{x \in \mathbf{R}^{n}:\|x-c\|_{1} \leq R\right\}
$$

ℓ_{∞} norm in \mathbf{R}^{n}

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}:\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$

$$
B_{\infty}(c, R)=\left\{x \in \mathbf{R}^{n}:\|x-c\|_{\infty} \leq R\right\}
$$

Convex cone in \mathbf{R}^{2}

Convex cone in a vector space

Definition. A set K in a vector space V is a convex cone if K is a convex set and

$$
\mathbf{R}_{+} K=\{\alpha x: \alpha \geq 0, x \in K\} \subset K
$$

Nonnegative orthant in \mathbf{R}^{n}

$$
\mathbf{R}_{+}^{n}=\left\{x \in \mathbf{R}^{n}: x_{i} \geq 0, \text { for } i=1, \ldots, n\right\}
$$

Lorentz cone or second-order cone in \mathbf{R}^{n+1}

$$
L^{n+1}=\left\{\left(x, x_{n+1}\right) \in \mathbf{R}^{n} \times \mathbf{R}:\|x\|_{2} \leq x_{n+1}\right\}
$$

Positive semidefinite cone in \mathbf{S}^{n}

($X \succeq 0$ means that all eigenvalues of X are nonnegative)

Eigenvalue decomposition

Theorem. Any $X \in \mathbf{S}^{n}$ can be factored as

$$
X=Q \Lambda Q^{T}
$$

where

- $Q=\left[\begin{array}{lll}q_{1} & \cdots & q_{n}\end{array}\right] \in \mathbf{R}^{n \times n}$ is orthogonal: $Q^{T} Q=Q Q^{T}=I$
- $\Lambda \in \mathbf{R}^{n \times n}$ is diagonal:

$$
\Lambda=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right] .
$$

Note: each $\left(\lambda_{i}, q_{i}\right)$ is an eigenpair of X,

$$
X q_{i}=\lambda_{i} q_{i}, \quad i=1, \ldots, n
$$

Example: finance

- given an invalid correlation matrix $\widehat{\Sigma}$
- find the closest correlation matrix with unit diagonal

Formulation:

$$
\begin{array}{ll}
\underset{\Sigma \in \mathbf{S}^{n}}{\operatorname{minimize}} & \|\Sigma-\widehat{\Sigma}\|_{\mathrm{F}} \\
\text { subject to } & \Sigma_{i i}=1, \quad i=1, \ldots, n, \\
& \Sigma \succeq 0
\end{array}
$$

Operations that preserve convexity

- intersection
- push-forward by affine map
- pull-back by affine map

Intersection preserves convexity

Theorem. If $\left\{S_{i}: i \in \mathcal{I}\right\}$ is a family of convex sets in a vector space V, then their intersection $\bigcap_{i \in \mathcal{I}} S_{i}$ is a convex set.

Important: the index set \mathcal{I} may be uncountable.

Example: polyhedron

$$
P=\left\{x \in \mathbf{R}^{2}: a_{i}^{T} x \leq b, i=1, \ldots, 7\right\}
$$

Compact notation:

$$
P=\left\{x \in \mathbf{R}^{2}: A x \leq b\right\} \quad A=\left[\begin{array}{c}
a_{1}^{T} \\
a_{2}^{T} \\
\vdots \\
a_{7}^{T}
\end{array}\right] \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{7}
\end{array}\right]
$$

Affine map

Definition. An affine map $\mathcal{A}: V \rightarrow W$ is a map of the form

$$
\mathcal{A}(v)=\mathcal{L}(v)+w
$$

for some linear map $\mathcal{L}: V \rightarrow W$ and some $w \in W$.

Examples:

- $\mathcal{A}: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}, \mathcal{A}(x)=A x+b\left(A \in \mathbf{R}^{n \times m}, b \in \mathbf{R}^{m}\right)$ (all affine maps $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ are of this form)
- $\mathcal{A}: \mathbf{R}^{n} \rightarrow \mathbf{S}^{m}, \mathcal{A}(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}\left(A_{i} \in \mathbf{S}^{m}\right)$ (all affine maps $\mathbf{R}^{n} \rightarrow \mathbf{S}^{m}$ are of this form)
- $\mathcal{A}: \mathbf{S}^{n} \rightarrow \mathbf{S}^{m}, \mathcal{A}(X)=A^{T} X A+B\left(A \in \mathbf{R}^{n \times m}, B \in \mathbf{S}^{m}\right)$ (just an example; not all affine maps $\mathbf{S}^{n} \rightarrow \mathbf{S}^{m}$ are of this form)

Push-forward by affine map preserves convexity

Theorem. If $S \subset V$ is a convex set and $\mathcal{A}: V \rightarrow W$ an affine map, then

$$
\mathcal{A}(S)=\{\mathcal{A}(v): v \in S\}
$$

is a convex set.

Example: possible positions of robot after disturbance

- robot is at position $p \in \mathbf{R}^{2}$
- disturbance $u \in \mathbf{R}^{2}$ hits the robot
- robot moves to new position $p+B u$ (B depends on robot mechanic parameters)
- disturbance is unknown but is limited in magnitude: $\|u\|_{2} \leq 1$
- is the set S of all possible new positions a convex set?

Pull-back by affine map preserves convexity

Theorem. If $S \subset W$ is a convex set and $\mathcal{A}: V \rightarrow W$ an affine map, then

$$
\mathcal{A}^{-1}(S)=\{v \in V: \mathcal{A}(v) \in S\}
$$

is a convex set.
\mathcal{A} does not have to be invertible:

- $\mathcal{A}: \mathbf{R}^{2} \rightarrow \mathbf{R}, \mathcal{A}\left(x_{1}, x_{2}\right)=x_{1}$ and $S=[1,4]$
- $\mathcal{A}^{-1}(S)=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}: 1 \leq x_{1} \leq 4\right\}$

Example: unsafe robot positions

- D is a polyhedral danger zone that the robot must not enter
- an unsafe position may enter D after a disturbance
- is the set S of all unsafe positions a convex set?

A trivial but useful fact

If $S=\{x \in V:(x, y) \in T$ for some $y \in W\}$ then

$$
S=\pi_{1}(T)
$$

where $\pi_{1}: V \times W \rightarrow V$ the projection map $\pi_{1}(x, y)=x$

$$
\begin{aligned}
S & =\left\{p \in \mathbf{R}^{2}: p+B u \in D, \text { for some } u \in B_{2}(0,1)\right\} \\
& =\pi_{1}(\underbrace{\left\{(p, u) \in \mathbf{R}^{2} \times \mathbf{R}^{2}: p+B u \in D, u \in B_{2}(0,1)\right\}}_{T})
\end{aligned}
$$

where $\pi_{1}: \mathbf{R}^{2} \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ the projection map $\pi_{1}(p, u)=p$

- write $T=\underbrace{\{(p, u): p+B u \in D\}}_{T_{1}} \cap \underbrace{\left\{(p, u): u \in B_{2}(0,1)\right\}}_{T_{2}}$
- T_{1} is convex because it is an affine pull-back of convex set D :

$$
T_{1}=\mathcal{B}^{-1}(D)
$$

where $\mathcal{B}: \mathbf{R}^{2} \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}, \mathcal{B}(p, u)=p+B u$

- T_{2} is convex because it is an affine pull-back of convex set $B_{2}(0,1)$:

$$
T_{2}=\pi_{2}^{-1}\left(B_{2}(0,1)\right)
$$

where $\pi_{2}: \mathbf{R}^{2} \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ the projection map $\pi_{2}(p, u)=u$

- T is convex because it is intersection of two convex sets

$$
T=T_{1} \cap T_{2}
$$

- S is convex because it is affine push-foward of convex set T :

$$
S=\pi_{1}(T)
$$

