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1. Introduction

Let Ei, i = 1, . . . , n, be convex, closed subsets of Rm. Suppose that E =
n⋂

i=1
Ei is 

non-empty. Let p ∈ R
m be a point.

By PEi
(p) we denote a projection of a point p to a set Ei. It is well-known that the 

projection of p on the set E exists and is unique. Thus, we have the following problem:

Problem 1. Find a projection of the point p on the set E.

We assume that the projections of a point p, PEi
(p) on each individual set Ei, i =

1, . . . , n, are well known and easy to handle. However, the projection of a point p on the 
intersection E (PE(p)) is very hard to compute:

Problem 1 can be alternatively written as the following optimization problem:

minimize
subject to x∈E

||x− p||2 (1)

Problem 1 finds many applications in practice, e.g. in medical imaging, computerized 
tomography, stat fusion architecture, solving convex problems with strong duality, etc. 
– see [3] and the references therein.

There already exist many algorithms for resolving this problem. All of them are based 
on alternating or cyclic projection onto each set Ei. Von Neumann [10] studied the special 
case n = 2, where each Ei is affine subspace, and Halperin [8] analyzed the case n > 2. 
See [4] for more exhaustive results on the affine case. The non-affine case was considered 
in [6,9]. By reinterpreting the former cyclic projection methods in a suitable Cartesian 
product space one can obtain iterative simultaneous projection methods [11].

In all existing methods the convergence rate is linear, and they can be presented by 
the following scheme:
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In this paper, we address Problem 1 for the general case: any finite number n of closed 
convex sets, and any closed convex sets Ei (i.e. not necessarily affine). Our approach 
consists in reformulating the optimization Problem 1 as a system of nonsmooth equations, 
which is then tackled by a semi-smooth Newton iterative method. We prove that in the 
generic case this algorithm converges near the optimal point. A semi-smooth Newton 
method for computation in certain projections related problems was also used in [1,2,7].

The main advantage is that, the convergence rate of the resulting Newton method can 
be super-linear. Also, the structure of our approach is such that an almost decentralized 
solution method emerges.

Our algorithm is particularly suitable for sensor networks, where the network com-
munication is costly, and in our novel method the number of iterations is much smaller. 
In fact, our method can be presented by the following scheme:

Hence, we give an algorithm that has quadratic convergence rate in the number of 
iterations, and that performs better than all the existing ones.

2. Problem reformulation

Denote by x the projection of a point p on the set E, i.e.

PE(p) = x.

In other words, x is a solution of the optimization problem (1).
Let NEi

(x) be the normal cone of Ei at the point x:

NEi
(x) = {s ∈ R

m|〈s, y − x〉 ≤ 0, for all y ∈ Ei}.

Here, 〈x, y〉 denotes the inner-product of the vectors x = (x1, . . . , xm) ∈ R
m and 

y = (y1, . . . , ym) ∈ R
m, i.e. 〈x, y〉 =

∑m
i=1 xiyi. Suppose that the following constraint 

qualification holds: 
⋂n

i=1 int(Ei) �= ∅, where int(Ei) denotes the relative interior of the 
convex set Ei ⊂ R

m. Then we have

NE(x) = NE1(x) + · · · + NEn
(x),
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and the optimality condition in (1) can be written as:

x + s1 + s2 + . . . + sn = p,

si ∈ NEi
(x), i = 1, . . . , n,

or equivalently

x + s1 + s2 + . . . + sn = p, (2)

PEi
(x + si) = x, i = 1, . . . , n. (3)

All variables x, s1, s2, . . . , sn are from Rm.
We eliminate x in (2) and (3), and set

zi :=
∑

j �=i
sj , i = 1, . . . , n.

The Problem 1 then becomes to resolve the following system of equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PE1(p− z1) + 1
n−1

∑n
i=1 zi = p,

PE2(p− z2) + 1
n−1

∑n
i=1 zi = p,

...
PEn

(p− zn) + 1
n−1

∑n
i=1 zi = p.

(4)

The solution z = (z1, z2, . . . , zn) ∈ R
m × R

m × · · · × R
m, of (4) gives the wanted 

projection by:

x = p− 1
n− 1

n∑
i=1

zi. (5)

The problem (4) can be written as

F (z) = 0, (6)

where F = (F1, . . . , Fn), and Fi : (Rm)×n → R
m, i = 1, . . . , n, are given by

Fi(z) = PEi
(p− zi) + 1

n− 1

n∑
j=1

zj − p, i = 1, . . . , n.

Thus, in order to solve (1), it is enough to resolve the system (6), which then by (5), 
gives the wanted projection x.
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3. Semi-smooth Newton algorithm

We shall solve the system (6) by using Newton-like algorithm.
In particular, if F was smooth, we could use the iterative Newton method

z(k+1) = z(k) − (DF (z(k)))−1F (z(k)),

to solve (6), where DF (z) denotes the derivative of F at the point z.
However, in general F is nonsmooth due to the presence of the projectors PEi

. But it 
is semismooth, and there is an analogous Newton-like method for this case.

Definition 1. [5] A function F : R
N → R

N is semismooth at x if F is locally Lipschitzian 
at x, i.e. if

‖F (y) − F (z)‖ ≤ L ‖y − z‖ for y, z around x,

for some L > 0, and if for any d� ∈ R
N the following limit exists:

lim
d→d�,t↓0

∇F (x + td)d.

The second condition implies that there also exists the derivative

F ′(x; d�) = lim
t↓0

F (x + td�) − F (x)
t

.

The generalization of the differential for semismooth functions is given by the Clarke’s 
generalized Jacobian [5]:

∂F (x) = convex hull
{

lim
xi→x, DF (xi) exists

DF (xi)
}
.

In particular, Clarke’s generalized Jacobian is a multi-valued function.

Example 1. Let P : R → R, be a projection on the positive real axis R+, i.e.

P (x) =
{

x , x ≥ 0,
0 , x < 0

This function is not differentiable at x = 0. However it is semismooth and its generalized 
Jacobian is given by:

∂P (x) = {1}, x > 0,

∂P (x) = {0}, x < 0,

∂P (0) = [0, 1]. �
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In [12], the following iterative method for solving F (z) = 0 when F is semismooth is 
given:

z(k+1) = z(k) −
(
∂F (z(k))

)−1
F
(
z(k)

)
. (7)

Here, the Clarke’s generalized derivative ∂F (z(k)) is involved. Note that in general this 
derivative is multi-valued, and one can put any value in (7).

This algorithm converges quadratically, if ∂F (z∗) is invertible at the optimal point z∗.
In our case:

⎡
⎢⎢⎢⎢⎣
z
(k+1)
1
z
(k+1)
2

...
z
(k+1)
n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
z
(k)
1
z
(k)
2
...

z
(k)
n

⎤
⎥⎥⎥⎥⎦+

(
∂F (z(k))

)−1

⎡
⎢⎢⎢⎢⎢⎢⎣

p− PE1

(
p− z

(k)
1

)
− 1

n−1
∑

j z
(k)
j

p− PE2

(
p− z

(k)
2

)
− 1

n−1
∑

j z
(k)
j

...
p− PEn

(
p− z

(k)
n

)
− 1

n−1
∑

j z
(k)
j

⎤
⎥⎥⎥⎥⎥⎥⎦ (8)

where

∂F (z(k)) =

⎡
⎢⎢⎢⎣
−∂PE1

(
p− z

(k)
1

)
. . .

−∂PEn

(
p− z

(k)
n

)
⎤
⎥⎥⎥⎦+ 1

n− 1LL
T , (9)

with L = [Im · · · Im]︸ ︷︷ ︸
n

T , where Im is the m ×m identity matrix.

In Theorem 2 below we prove that the function F from our main problem (6) satisfies 
the condition for the convergence of the semismooth Newton method, which thus can be 
applied to solve it.

4. Main theorem

In order to apply Newton-like algorithm given in (7), we need to prove that ∂F (z∗)
is invertible at the optimal point z∗.

Due to technical reasons we assume that all sets Ei, i = 1, . . . , n, have smooth bound-
ary.

Let z∗ = (z∗1 , . . . , z∗n). Let x∗ ∈ E =
⋂n

i=1 Ei, and let si ∈ NEi
(x∗), i = 1, . . . , n. As 

in Section 2, we have

x∗ + si = p− z∗i , i = 1, . . . , n.

Condition 1. Let v1, . . . , vn be vectors from Rm. If

v1 + · · · + vn = 0
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and

vi ∈ spanNEi
(x∗),

then

v1 = · · · = vn = 0.

We note that in the generic case, the Condition 1 holds.

Theorem 2. Let the Condition 1 be valid. Then the matrix

⎡
⎢⎣
−∂PE1(x∗ + s1)

. . .
−∂PEn

(x∗ + sn)

⎤
⎥⎦+ 1

n− 1

⎡
⎢⎢⎢⎢⎣
Im Im . . . Im
Im Im . . . Im
...

...
. . .

...
Im Im . . . Im

⎤
⎥⎥⎥⎥⎦

is invertible.

Before giving the proof of Theorem 2, we shall give two auxiliary lemmas.

4.1. Auxiliary lemmas

Lemma 1. Let P denote a projection on a convex closed set C ⊂ R
m, and let b ∈ R

m be 
an arbitrary point. Let M = ∂P (b). Then

xTMx ≥ ||Mx||2, for all x ∈ R
m. (10)

Proof. If b ∈ int C, then M = Im, and thus (10) is trivially valid.
If b /∈ C, then we have the following situation:
By the definition, we have

Mx = d

dt
(P (b + tx)) |t=0= lim

t→0

P (b + tx) − P (b)
t

.

Thus, since x = limt→0
(b+tx)−b

t , in order to prove the lemma, it is enough to prove the 
following:

((b + tx) − b)T (P (b + tx) − P (b)) ≥ ||P (b + tx) − P (b)||2. (11)

Now, let O be the origin of Rm. Let A, B, C and D, be points in Rm, such that −−→OC =
b +tx, −−→OB = b, −−→OD = P (b +tx), and 

−→
OA = P (b). Let s = −−→

BC = −−→
OC−−−→

OB = (b +tx) −b, 
and w = −−→

AD = −−→
OD −−→

OA = P (b + tx) − P (b).
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Then, (11) is equivalent to:

sTw ≥ ||w||2. (12)

Finally, (12) is true since C is convex and so we have:

〈−−→AB,
−−→
AD〉 ≤ 0 ⇒ 〈−−→BA,

−−→
AD〉 ≥ 0,

〈−−→DC,
−−→
DA〉 ≤ 0 ⇒ 〈−−→DC,

−−→
AD〉 ≥ 0.

Therefore

sTw = 〈−−→BA + −−→
AD + −−→

DC,
−−→
AD〉 ≥ 〈−−→AD,

−−→
AD〉 = ||w||2,

as wanted.
Finally, we are left with the case b ∈ ∂C. Then any matrix M from the set ∂P (b)

is, by definition, a convex combination of matrices, that we have already shown above 
to satisfy (10). Therefore, M =

∑k
i=1 ciMi, for some matrices Mi that satisfy (10) and 

numbers ci ≥ 0, i = 1, . . . , k, with 
∑k

i=1 ci = 1. Then we have:

xTMx =
k∑

i=1
cix

TMix ≥
k∑

i=1
ci||Mix||2 ≥ ||

k∑
i=1

ciMix||2 = ||Mx||2,

where the second inequality holds because the function f(x) = ||x||2 is convex. �
Lemma 2. Let P be a projection on a convex closed set C ⊂ R

m with a smooth boundary, 
and let b ∈ R

m be an arbitrary point. Let M = ∂P (b). Then

Mx = 0 ⇒ x ∈ spanNC(P (b)). (13)

Proof. If b ∈ int C, (13) trivially holds since M = Im and NC(P (b)) = {0}.
The most important case is when b /∈ C. In that case, we choose coordinates in Rm

such that P (b) is at the origin, such that the tangent space TC(P (b)) is Rm−1 ×{0}, and 
such that C is in the upper half space. Then locally near the origin ∂C consists of the 
points of the form

(y1, y2, . . . , ym−1, f(y1, . . . , ym−1)),

for some f : Rm−1 → R. Also, NC(P (b)) is the negative ym-axis, and b is mapped to a 
point (0, . . . , 0, −d), for some d ≥ 0.

Now, let x = (x1, . . . , xm) ∈ R
m be arbitrary. Since M = ∂P (b), we have

Mx = ∂P (b)x = d

dt
P (b + tx) |t=0=

d

dt
(P (tx1, . . . , txm−1,−d + txm)) |t=0 .

Now, P (tx1, . . . , txm−1, −d + txm) = (y1(t), y2(t), . . . , ym−1(t), f(y1(t), . . . , ym−1(t))) is 
a curve on ∂C that tends to P (b) = 0 as t → 0. Thus,
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Mx = (ẏ1(0), . . . , ẏm−1(0), 0).

Also, if we denote by At = (tx1, . . . , txm−1, −d + txm), we have that At − P (At)
is orthogonal to the tangent space TCP (At), i.e. to all m − 1 vectors (0, . . . , 1, . . . , 0,
fi(y1(t), . . . , ym−1(t))), i = 1, . . . , m − 1, where 1 is on the ith position, and fi = ∂f

∂yi
.

Thus, for all i = 1, . . . , m − 1, we have that

yi(t) − xit + fi(y1(t), . . . , ym−1(t))(f(y1(t), . . . , ym−1(t)) + d− xmt) = 0.

By taking derivative d
dt , and setting t = 0, and by using f(0) = fi(0) = 0 (since the 

tangent space of C at the origin is Rm−1 × {0}), we have:

ẏi(0) − xi + d
m−1∑
j=1

fij(0)ẏj(0) = 0, i = 1, . . . ,m− 1.

Here, ẏi = d
dt (yi), and fij(0) = ∂2f

∂yi∂yj
(0). In other words:

(Im−1 + dHf (0))

⎛
⎜⎜⎜⎝

ẏ1(0)
ẏ2(0)

...
ẏm−1(0)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x1
x2
...

xm−1

⎞
⎟⎟⎟⎠ , (14)

where Hf (0) =
[

∂2f
∂yi∂yj

(0)
]m−1

i,j=1
is the Hessian of f at the origin.

Now, since C is convex, by assumption f ≥ 0, and since f(0) = fi(0) = 0, we have 
that the Hessian Hf (0) is positive semi-definite. Since d ≥ 0, we have that the matrix 
Im−1 + dHf (0) is invertible, and so⎛

⎜⎜⎜⎝
ẏ1(0)
ẏ2(0)

...
ẏm−1(0)

⎞
⎟⎟⎟⎠ = (Im−1 + dHf (0))−1

⎛
⎜⎜⎜⎝

x1
x2
...

xm−1

⎞
⎟⎟⎟⎠ .

Going back to the definition we have

Mx = d

dt
(y1(t), y2(t), . . . , ym−1(t), f(y1(t), . . . , ym−1(t))) |t=0 =

= (ẏ1(0), ẏ2(0), . . . , ẏm−1(0), 0) =
[

(Im−1 + dHf (0))−1 0
0 0

]⎡⎢⎢⎢⎢⎣
x1
x2
...

xm−1
xm

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=x

.

So, we have Mx = 0 ⇔ x1 = · · · = xm−1 = 0 ⇔ x ∈ spanNC(0), as wanted.
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Finally, let b ∈ ∂C. Then any matrix M ∈ ∂P (b) is a convex combination of the 

identity matrix Im and the matrix 

[
Im−1 0

0 0

]
(since d = 0 in this case). Therefore, in 

the same coordinates as above, any such matrix can be written in the following form for 
some 0 ≤ c ≤ 1:

Mx =
(
cIm + (1 − c)

[
Im−1 0

0 0

])
x =

[
Im−1 0

0 c

]
x,

and so again Mx = 0 ⇒ x ∈ spanNC(0). �
Now, we can give a proof of Theorem 2:

Proof of Theorem 2. Let Mi = ∂PEi
(x∗ + si), i = 1, . . . , n. Note that x∗ ∈ int Ei ⇒

Mi = Im.
Denote by M the matrix in Theorem 2, i.e.

M =

⎡
⎢⎣
−M1

. . .
−Mn

⎤
⎥⎦+ 1

n− 1

⎡
⎢⎢⎢⎢⎣
Im Im . . . Im
Im Im . . . Im
...

...
. . .

...
Im Im . . . Im

⎤
⎥⎥⎥⎥⎦ .

It is well known, that the matrix M is invertible if and only if the following is true:
If v1, . . . , vn ∈ R

m, are such that

M

⎡
⎢⎢⎢⎢⎣
v1
v2
...
vn

⎤
⎥⎥⎥⎥⎦ = 0, (15)

then

vi = 0, for all i = 1, . . . , n. (16)

Thus, we are left with proving that (15) implies (16).
Equation (15) is equivalent to

Mivi = 1
n− 1(v1 + · · · + vn), i = 1, . . . , n,

i.e. there exists w ∈ R
m, such that

v1 + · · · + vn = (n− 1)w (17)

Mivi = w, i = 1, . . . , n. (18)
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Relation (17) can be written as:

(v1 −M1v1) + (v2 −M2v2) + · · · + (vn −Mnvn) = −w. (19)

After taking scalar product with w = Mivi in (19), we obtain

−||w||2 = −wTw = wT
n∑

i=1
(vi −Mivi) =

n∑
i=1

(Mivi)T (vi −Mivi).

Since viTMivi ≥ ||Mivi||2 is equivalent to (vi − Mivi)TMivi ≥ 0, we have that 
Lemma 1 gives:

(Mivi)T (vi −Mivi) ≥ 0, i = 1, . . . , n.

Thus, we have

−||w||2 =
n∑

i=1
(Mivi)T (vi −Mivi) ≥ 0,

i.e.

w = 0.

Finally, the last with (17) and (18) gives

(∗)
{

v1 + · · · + vn = 0
Mivi = 0, i = 1, . . . , n.

Now, by Lemma 2, we have that Mivi = 0 if and only if vi ∈ spanNEi
(x∗).

Finally, the Condition 1 from our theorem implies that (∗) is satisfied only for zero 
vectors, i.e. vi = · · · = vn = 0, as wanted. �

Let F be as in (6). Then Theorem 2 gives our main result:

Theorem 3. ∂F (z∗) is invertible at the optimal point z∗. �
Example 2. For i = 1, . . . , n, let Ei = {x ∈ R

m|aTi x ≤ bi}, with ai ∈ R
m, |ai| = 1, bi ∈ R, 

be half-spaces in Rm. Then E = ∩n
i=1Ei is a polyhedron.

The projection of a point z ∈ R
m on Ei is given by:

PEi
(z) =

{
(Im − aia

T
i )z + biai, z /∈ Ei

z, z ∈ Ei.
(20)

Hence, the Clarke’s generalized Jacobian of pEi
is given by:
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∂PEi
(z) =

⎧⎪⎨
⎪⎩

Im − aia
T
i , z /∈ Ei

Im, z ∈ intEi

{Im − kaia
T
i | k ∈ [0, 1]}, z ∈ ∂Ei.

(21)

In particular, it is straightforward to see that ∂PEi
(z), for z /∈ Ei, satisfies Lemmas 1

and 2.

5. Fast computation of (∂F (z(k)))−1

In the previous section we have proved that the ∂F (z∗) is invertible at the optimal 
point z∗, and that therefore we can use the semi-smooth Newton algorithm for compu-
tation of the projection point. The computation is now done in parallel and the number 
of iterations is drastically reduced comparing to existing algorithms. However, there is 
a time-consuming operation involved in this algorithm – the computation of the inverse 
of the matrix ∂F (z(k)) in (8). This is a matrix of the size mn × mn, and for large m
and n it can be slow to compute its inverse. However, by exploring the special form of 
this matrix we can make the computations much faster by performing only inverses of 
m ×m matrices.

As it can be seen from the form of the matrix (9), it is a sum of a block-diagonal 
matrix and a low-rank matrix. In the block-diagonal matrix there are n diagonal blocks 
of size m ×m, but they are not all invertible.

To resolve this we do the following: for every i = 1, . . . , n, denote by Mi, the i-th 
block, i.e.

Mi = −∂PEi
(p− z

(k)
i ), for i = 1, . . . , n.

Now, we shall define certain auxiliary numbers ci and vectors wi, such that the matri-
ces M i, given by M i = Mi − ciwiw

T
i are invertible.

If p − z
(k)
i ∈ Ei then we have that Mi = −Im. In this case we also set the auxiliary 

number and vector ci := 0 and wi := 0, and so M i = −Im.
But if p − z

(k)
i /∈ Ei, then as we have shown in Lemma 2, the matrix Mi is not 

invertible, but rather rankMi = m − 1. However, as shown in the proof of Lemma 2, 
the matrix Mi acts in the hyperspace orthogonal to the line going from p − z

(k)
i to its 

projection on Ei. Therefore, if we define the matrix

M i = Mi − ciwiw
T
i , (22)

where

wi = p− z
(k)
i − PEi

(p− z
(k)
i )

||p− z
(k)
i − PEi

(p− z
(k)
i )||

∈ R
m×1.

Then M i is invertible for any ci > 0.
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Now, for any i = 1, . . . , n, let w̄i ∈ R
mn×1 be given by

w̄i = [0Tm 0Tm . . . 0Tm︸ ︷︷ ︸
i−1

wT
i 0T(n−i)m]T ,

where 0m ∈ R
m×1 is the column vector of length m consisting only of zeros. Then, the 

matrix ∂F (z(k)) can be written as

∂F (z(k)) =

⎡
⎢⎣
M1

. . .
Mn

⎤
⎥⎦+ 1

n− 1LL
T +

n∑
i=1

ciw̄iw̄
T
i . (23)

Denote by

D := diag(M1, . . . ,Mn).

Since all M i, i = 1, . . . , n, are m × m invertible matrices, so is D, and D−1 =
diag(M−1

1 , . . . , M
−1
n ).

As we can see from (23), the matrix ∂F (z(k)) is obtained by perturbing D by two 
low-rank matrices, 1

n−1LL
T and 

∑n
i=1 ciw̄iw̄

T
i .

Denote by

W := diag(M1, . . . ,Mn) + 1
n− 1LL

T .

The matrix LLT is of rank m, and we can compute the inverse of the matrix W by using 
the Woodbury matrix identity:

Theorem 4 ((Sherman–Morrison–)Woodbury matrix identity). Suppose A is an invertible 
square n × n matrix and U is n × k, C is k × k and V is k × n matrix. Then

(A + UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. � (24)

In our case, we set A = D, C = Im, U = 1√
n−1L and V = UT . Since D and 

D + 1
n−1LL

T are invertible (note that D + 1
n−1LL

T is invertible for a generic ci), by 
(24) we have(

D + 1
n− 1LL

T

)−1

= D−1 − 1
n− 1D

−1L

(
Im + 1

n− 1L
TD−1L

)−1

LTD−1.

Note that on the right-hand-side we have involved inverses only of matrices of sizes 
m ×m.

Finally, in order to get (∂F (z(k)))−1, by (23) we are left with perturbing the matrix 
D + 1

n−1LL
T by the matrix 

∑n
i=1 ciw̄iw̄

T
i whose rank is at most n.

By using Woodbury’s identity again, we obtain the wanted inverse. In this case we 
put A = D + 1 LLT , C = Im, U =

[√
c1w̄1 · · · √

cnw̄n

]
, and V = UT .
n−1
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Fig. 1. Blue line represents the cyclical projections method, while red line represents the results of our 
semi-smooth Newton algorithm. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

This algorithm significantly improves the calculations of the inverse of the matrix 
∂F (z(k)), making our approach faster and even more appealing for applications, espe-
cially in sensor network.

6. Applications

The method we described for computing the projections is very useful in applications, 
and particularly in the cases of distributed computations. Our method uses parallel, 
simultaneous computations of projections on each of particular convex sets. We can 
describe the setting by having n nodes, with i-th one knowing the projection on the 
set Ei, for each i = 1, . . . , n. Then, in each iteration, one additional, central node sends 
z
(k)
i to the i-th node. Then, all n nodes perform simultaneous computations: the i-th 

node computes pEi

(
p− z

(k)
i

)
and ∂pEi

(
p− z

(k)
i

)
, and sends the answer to the central 

node. Then central node computes the updates z(k+1)
i according to the formulas from 

the Newton method, and sends them back to the nodes.
This parallel computation is particularly relevant in the case when communications 

between the nodes are costly. In addition the number of iterations is drastically reduced 
comparing to the standard methods.

Example 3. In the following example we computed the projecting of a point on the 
intersection of n = 15 affine half-spaces in R

8. In Fig. 1 we plot the distance to the 
optimum as a function of number of iterations. The slow, linear, dependence is obtained 
for the case of cyclical projections, where as one iteration is counted the whole sequential 
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cycle of projections onto each of the n sets. In contrast, in our approach the convergence 
is very fast and quadratic, and very few iterations are needed to get to the optimum.

6.1. Conclusions

We presented a semi-smooth Newton-type method for projecting a point on the inter-
section of arbitrary number of convex sets in the Euclidean space, when the projection 
on each of these convex sets is known. This gave a novel algorithm that explores parallel, 
simultaneous computation and is perfectly suited for distributed computation.

The strengths of the approach is that it works for arbitrary closed convex sets, that 
it significantly reduces the number of iterations needed to reach the optimal point, and 
also a particular form of the matrix from the Newton algorithm enables fast computation 
of its inverse. The parallel computation is particularly well-suited for the applications in 
distributed systems, like e.g. sensor networks.
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