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1. Introduction

By a quadratic programming problem (QP) we understand the following optimization 
problem:

Given matrices Ai ∈ R
n×n, bi ∈ R

n×1 and ci ∈ R, i = 0, . . . , k, solve

minimize
subject to qTA1q + bT1 q + c1 ≥ 0

qTA2q + bT2 q + c2 ≥ 0
...

qTAkq + bTk q + ck ≥ 0

qTA0q + bT0 q + c0 (1)

where q ∈ R
n×1 is a variable.

Quadratic Programming problems frequently appear in various fields, like control 
theory [4,5], optimization [1], computer vision, etc. Particular problems that we will be 
dealing with in this paper have also strong applications in Procrustes’ type problems 
(see Section 4).

The difficulty in solving Quadratic Programming problems (1) depends heavily on the 
number of constraints involved (k), on whether the cost function is homogeneous or not 
(b0 = 0), as well as on the properties of the matrices involved. The general theory for 
solving (efficiently) Quadratic Programming problems, can deal only with some subcases. 
For a nice exposition of known methods, see [5] and the references therein.

In particular, there exists a solution to problem (1) if there is only one constraint 
(k = 1), or if the cost function is homogeneous and we have two constraints (b0 = 0 and 
k = 2).

In this paper we focus on one particular, but very important, Quadratic Programming 
problem. Namely, we focus on the case when the variable q runs through vectors of 3 ×2
Stiefel matrices, i.e., of 3 × 2 matrices whose columns are orthogonal vectors of unit 
norm. Also, we shall focus on the homogeneous case.

Thus our main problem is the following one:

Problem 1. For given C ∈ R
6×6 solve

minimize
subject to q = vec(Q)

qTCq (2)

where Q runs through the Stiefel matrices, i.e.,

Q ∈ O(3, 2) = {Q ∈ R
3×2 : QTQ = I2}.

As we shall show below, the set of all the constraints in Problem 1 can be characterized 
by three quadratic constraints. Thus Problem 1 is a QP problem which is beyond the 
scope of standard techniques.
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In this paper, we propose a completely novel approach to Problem 1. In Section 2, we 
present a very fast algorithm that gives the solution, by using semi-definite programming 
(SDP) that finds the minimum of linear functions on a convex set of matrices.

In fact, we rewrite Problem 1 as a minimization of a linear function over a certain set 
of 6 × 6 matrices. The set over which we are minimizing is non-convex, and we compute 
its convex hull (tight convex relaxation). We conjecture that it can be computed by in-
troducing one novel constraint. Not only we manage to rewrite the original, non-convex 
problem, as an equivalent problem, but surprisingly we can describe the convex hull ex-
plicitly by using only Linear Matrix Inequalities (only linear functions of the entries of 
the matrix are involved). Consequently, we managed to rewrite a Problem 1 as a Semi-
Definite Programming (SDP) problem [1,2], hence easily solvable via SeDuMi MATLAB 
toolbox [6].

Our result is of immediate interest for so-called structure from motion (SfM) prob-
lems in computer vision. In [3] it proved to be very effective in solving SfM problems 
for nonrigid (deformable) shapes. In Section 4, we show that it can also be used for 
Procrustes-like problems on O(3, 2).

In Section 5 we give the results of numerical experiments to illustrate the tightness 
of the convex approximation obtained by the two aforementioned methods (“standard” 
and ours), that clearly show the superiority of our method.

2. Computing the convex hull

For a real symmetric matrix A ∈ R
n×n, we write

A � 0

if it is positive semi-definite, i.e., if xTAx ≥ 0 for all x ∈ R
n.

For two real symmetric matrices of the same size, A, B ∈ R
n×n, we write

A � B iff A−B � 0.

Problem 1 is indeed a quadratic programming problem since the vector q ∈ R
6×1 is 

of the form vec(Q) for some Stiefel matrix Q if and only if

qT

[
I3 0
0 0

]
q = 1,

qT

[
0 0
0 I3

]
q = 1,

qT

[
0 I3
0 0

]
q = 0.
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Moreover, since we are minimizing a quadratic function over the set given by three 
quadratic restrictions, it is beyond the scope of known general techniques (see [4]).

Our problem can be re-written in the following way:

min
q=vec(Q)

qTCq = min
q=vec(Q)

Tr(CqqT ) = min
X∈S

Tr(CX).

Here S is the set of all matrices of the form qqT , with q = vec(Q), for some Stiefel 
matrix Q ∈ R

3×2. The set S can be equivalently described as a set of all real symmetric 
6 by 6 matrices

X =
[
X11 X12
X21 X22

]
, (3)

with X11 ∈ R
3×3, satisfying the following

X � 0, (4)

Tr(X11) = Tr(X22) = 1, Tr(X12) = 0, (5)

rankX = 1. (6)

Because of the rank constraint, the set S is non-convex.
Denote by co(S) the convex hull of the set S, i.e. the set of all convex combinations 

c1X1 + c2X2 + . . . + ckXk, where Xi ∈ S, i = 1, . . . , k, and ci’s are nonnegative real 
numbers such that c1 + c2 + · · · + ck = 1. In other words, the convex hull of the set S
(co(S)) is the smallest convex set (with respect to inclusion) that contains the set S.

Since the cost function is linear we have

min
X∈S

Tr(CX) = min
X∈co(S)

Tr(CX).

The convex hull co(S) cannot be obtained by simply loosening the rank constraint 
(6) in the definition of the set S (“standard” convex relaxation), as can be shown by the 
following example:

Example 1. The matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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satisfies the conditions (4) and (5). However, it doesn’t belong to the convex hull of S. 
Indeed, if there exist nonnegative numbers c1, . . . , ck such that c1 + c2 + · · · + ck = 1, 
and the matrices M1, . . . , Mk ∈ S, such that

M = c1M1 + · · · + ckMk,

then we would have that in matrices M1, . . . , Mk, entries at the positions (2, 2), (3, 3), 
(5, 5) and (6, 6) are zero. Consequently all entries in the second, third, fifth and sixth 
rows and columns are zero (all matrices are positive semi-definite). However, matrix M1

being from S is of the form qqT for some q = vec(Q), and thus the corresponding matrix 
Q would be of the form

Q =

⎡
⎢⎣ ∗ ∗

0 0
0 0

⎤
⎥⎦ .

The last is impossible, since Q is a Stiefel matrix.

Thus, we want to compute co(S) by introducing some novel constraints instead of the 
rank constraint (6), and if possible to describe co(S) by linear matrix inequalities.

Let Q ∈ R
3×2 be a Stiefel matrix, and denote its columns by q1 and q2. Then the 

vector q = vec(Q) ∈ R
6×1 is given by qT = [qT1 qT2 ], and the matrix X = qqT belongs 

to S.
The vectors q1, q2 and their cross-product q1 × q2 form an orthonormal basis of R3, 

and consequently the sum of projectors to these three vectors is equal to the identity 
matrix I3. Moreover, we have access to the entries of q1 × q2 as linear functions of the 
entries of the off-diagonal block X12. So, we have that the matrices X ∈ S satisfy

vvT + X11 + X22 = I3, (7)

where

v = v(X) :=

⎡
⎢⎣ b23 − b32
b31 − b13
b12 − b21

⎤
⎥⎦ (8)

with X12 = [bij ].
Let Y ∈ co(S), and let

Y =
[
Y11 Y12
Y21 Y22

]
,
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with Y11 ∈ R
3×3. Let

v′ = v(Y ) :=

⎡
⎢⎣ b′23 − b′32
b′31 − b′13
b′12 − b′21

⎤
⎥⎦ ,

where Y12 =
[
b′ij

]
. Then we have that

v′v′ T + Y11 + Y22 � I3. (9)

Indeed, as we saw above, all matrices from S satisfy (7) and hence (9). Moreover, if 
matrices Y ′ and Y ′′ satisfy (9) (the corresponding vectors v(Y ′) and v(Y ′′) are denoted 
by v1 and v2, respectively), and if c1 and c2 are nonnegative real numbers such that 
c1 + c2 = 1, then the matrix Z := c1Y

′ + c2Y
′′ also satisfies (9):

v(Z)v(Z)T + Z11 + Z22 = (c1v1 + c2v2)(c1vT1 + c2v
T
2 ) + c1Y

′
11 + c2Y

′′
11

+ c1Y
′
22 + c2Y

′′
22

= c1(v1v
T
1 + Y ′

11 + Y ′
22) + c2(v2v

T
2 + Y ′′

11 + Y ′′
22)

− c1c2(v1 − v2)(v1 − v2)T

� c1I3 + c2I3 = I3.

Furthermore, we can write (9) as a Linear Matrix Inequality

[
I3 − Y11 − Y22 v′

v′ T 1

]
� 0, (10)

since all entries of the matrix on the LHS of (10) are linear functions of the entries of the 
matrix Y . It is straightforward to see that this new condition easily discards the matrix 
from Example 1.

We define the set Σ of all real, symmetric matrices X =
[
X11 X12
X21 X22

]
∈ R

6×6, Xij ∈

R
3×3, that satisfy:

X � 0, (11)

Tr(X11) = Tr(X22) = 1, (12)

Tr(X12) = 0, (13)[
I3 −X11 −X22 v(X)

v(X)T 1

]
� 0. (14)
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Here the vector v(X) is given as the following linear function of the entries of the off-
diagonal block X12:

v(X) =

⎡
⎢⎣ b23 − b32
b31 − b13
b12 − b21

⎤
⎥⎦ (15)

with X12 = [bij ].
We have proved the following:

Theorem 2. For the above defined sets S and Σ, we have

co(S) ⊂ Σ

Moreover, we conjecture that the converse is also valid:

Conjecture 3.

co(S) = Σ.

Although we don’t have the complete rigorous proof of Conjecture 3, we have strong 
evidence of its validity. First of all, we have run the tests on very large number of 
randomly generated matrices (≥ 1000), and the results were always correct, i.e. each 
randomly generated matrix from Σ was always in the convex hull of the set S (for 
details see Section 5). Also, we have rigorous proofs for some particular cases – for the 
complete proof of Conjecture 3 in these particular cases see Section 3. As can be seen 
from these proofs, they are quite involved and technical, and we expect that the general 
proof will be along the same lines.

3. Proof of the two particular cases

In order to prove Conjecture 3, we are left with proving

Σ ⊂ co(S).

Hence, we need to prove that every matrix X ∈ Σ can be written as a convex combination 
of the matrices from S, i.e. that there exist nonnegative real numbers c1, . . . , ck ≥ 0, with ∑k

i=1 ci = 1, and matrices X1, . . . , Xk ∈ S, such that

X =
k∑

ciXi.

i=1
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So, let X =
[
X11 X12
X21 X22

]
be an arbitrary matrix in Σ. First of all, note that if P ∈ R

3×3

is an orthogonal matrix, then the matrix X is from Σ (respectively, from S) if and only 
if the matrix [

P 0
0 P

][
X11 X12
X21 X22

][
PT 0
0 PT

]
, (16)

is from Σ (respectively, from S). Hence, it is enough to show that for some orthogonal 
matrix P , the matrix (16) is from co(S).

Denote by

v =

⎡
⎢⎣ x

y

z

⎤
⎥⎦

the vector v(X) given by (15). Then the condition (14) in the definition of the set Σ can 
be written as

X11 + X22 + vvT � I3,

and since X11 and X22 are positive semi-definite, we have that ||v|| ≤ 1.
In the following two subsections we give a complete proof of Conjecture 3 in the cases 

||v|| = 1, and rank(X11 + X22) = 2, respectively.

3.1. Case ||v|| = 1

Let P be a matrix from SO(3) such that Pv =
[

0
0
1

]
. Since for every orthogonal matrix 

Q ∈ R
3×3 we have that

Qv(X) = v
(
diag(Q,Q)X diag(QT , QT )

)
det(Q),

we obtain that v
(
diag(P, P )X diag(PT , PT )

)
=

[
0
0
1

]
. Therefore, by using the transfor-

mation (16) for this matrix P , without loss of generality, we can assume that X is such 

that v = v(X) =
[

0
0
1

]
, and so by the definition of v(X):

X12 −XT
12 =

⎡
⎢⎣ 0 1 0
−1 0 0
0 0 0

⎤
⎥⎦ . (17)

Thus, we are left with proving that all matrices X ∈ Σ that satisfy (17), belong to 
co(S).
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From the defining conditions (12) and (14) of the set Σ, and since v(X) =
[
0 0 1

]T , 
we have that

X11 + X22 =

⎡
⎢⎣ 1 0 0

0 1 0
0 0 0

⎤
⎥⎦ .

Moreover, since matrices X11 and X22 are positive semi-definite, we have that the third 
and the sixth rows, as well as the third and the sixth columns of the matrix X are zero. 
Also, since all matrices from S are also positive semi-definite, the only matrices from 
S which can be summand in the convex combination making X, must have the same 
property, i.e. their third and sixth rows and columns are all zero. Therefore, from now 
on we can restrict only to the submatrix of X formed by the first, second, fourth and 
fifth rows and columns.

Then we have that the obtained matrix (still denoted by X) is of the following form:

X =

⎡
⎢⎢⎢⎣

a1 a2 b1 b2 + 1
a2 1 − a1 b2 −b1
b1 b2 1 − a1 −a2

b2 + 1 −b1 −a2 a1

⎤
⎥⎥⎥⎦ , (18)

for some a1, a2, b1, b2 ∈ R. From the positive semi-definiteness (non-negativity of the 
principal minors), we obtain the following inequalities for the minors of the dimension 
two:

a1(1 − a1) ≥ a2
2, (19)

a2
1 ≥ (b2 + 1)2, (20)

(1 − a1)2 ≥ b22, (21)

a1(1 − a1) ≥ b21. (22)

Also, by considering minors of the dimension one in the matrix (18), we have that

0 ≤ a1 ≤ 1 (23)

From (20), (21) and (23), we have b2 = a1 − 1. Moreover, the principal 3 by 3 minor 
of (18), gives:

(a1 − 1)(a2 + b1)2 ≥ 0. (24)

If a1 = 1, then X automatically belongs to S, i.e. then X ∈ S ∈ co(S), which finishes 
our proof.
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If a1 < 1, then by (24), we must have b1 = −a2, and so our matrix X has the form

X =

⎡
⎢⎢⎢⎣

a1 a2 −a2 a1
a2 1 − a1 a1 − 1 a2
−a2 a1 − 1 1 − a1 −a2
a1 a2 −a2 a1

⎤
⎥⎥⎥⎦ , (25)

with a1 ≥ a2
1 + a2

2.
On the other hand, matrices from S whose third and sixth rows and columns are zero, 

have the following form:
⎡
⎢⎢⎢⎣

cos2 ϕ sinϕ cosϕ − sinϕ cosϕ cos2 ϕ
sinϕ cosϕ sin2 ϕ − sin2 ϕ sinϕ cosϕ
− sinϕ cosϕ − sin2 ϕ sin2 ϕ − sinϕ cosϕ

cos2 ϕ sinϕ cosϕ − sinϕ cosϕ cos2 ϕ

⎤
⎥⎥⎥⎦ ,

with ϕ ∈ R.
Hence we are left with proving that the point (a1, a2) ∈ R

2 satisfying a1 ≥ a2
1 + a2

2, is 
in the convex hull of the set

K = {(cos2 ϕ, sinϕ cosϕ) | ϕ ∈ [0, 2π]}.

Since K is a circle given by the equation (x − 1
2 )2 + y2 = (1

2 )2, i.e. x2 + y2 = x, by 
(19) we have that the point (a1, a2) is inside the circle K. This finishes our proof. �
Remark 4. Above we have obtained that matrices of the form (25) with a2

1 + a2
2 ≤ a1

belong to co(S) (remember that the third and the sixth rows and columns are zero and we 
omit those rows and columns). By multiplying this matrix from the left by diag(I2, −I2)
and from the right by diag(I2, −I2), we obtain that the matrices of the form

⎡
⎢⎢⎢⎣

a1 a2 a2 −a1
a2 1 − a1 1 − a1 −a2
a2 1 − a1 1 − a1 −a2
−a1 −a2 −a2 a1

⎤
⎥⎥⎥⎦ , (26)

with a2
1+a2

2 ≤ a1 also belong to co(S). This will be important in the following subsection.

3.2. Case rank(X11 + X22) = 2

Now, let X =
[
X11 X12
X21 X22

]
be a matrix from Σ such that rank (X11 + X22) = 2. In 

this case, from the conditions (12) and (14), we have that there exists an orthogonal 
matrix P ∈ R

3×3 such that
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P (X11 + X22)PT =

⎡
⎢⎣ 1 0 0

0 1 0
0 0 0

⎤
⎥⎦ , (27)

and such that PX11P
T is diagonal. Therefore, without loss of generality we can assume 

that the matrix X ∈ Σ satisfies that

X11 + X22 =

⎡
⎢⎣ 1 0 0

0 1 0
0 0 0

⎤
⎥⎦ , (28)

with X11 being a diagonal matrix. Also, by (14), the vector v(X) has the form v(X) =[
0 0 x

]T , for some |x| ≤ 1.
Hence, we are left with proving that the positive semi-definite matrix of the form (we 

are not writing the third and the sixth rows and columns since they are all zero)

X =

⎡
⎢⎢⎢⎣

a1 0 b1 b2 + x

0 1 − a1 b2 −b1
b1 b2 1 − a1 0

b2 + x −b1 0 a1

⎤
⎥⎥⎥⎦ , (29)

belongs to co(S).
The case |x| = 1 we have already solved in Section 3.1, so we can assume that −1 <

x < 1.
In fact, we shall show that the matrix X in (29) can be written as a convex combination 

of matrices of the forms (25) and (26), which, as we have already shown above, belong to 
co(S). Namely, we shall show that there exist m1, m2, n1, n2 ∈ R, with m2

1 + m2
2 ≤ m1, 

and n2
1 + n2

2 ≤ n1, such that

X = 1 + x

2

⎡
⎢⎢⎢⎣

m1 m2 −m2 m1
m2 1 −m1 m1 − 1 m2
−m2 m1 − 1 1 −m1 −m2
m1 m2 −m2 m1

⎤
⎥⎥⎥⎦ + 1 − x

2

⎡
⎢⎢⎢⎣

n1 n2 n2 −n1
n2 1 − n1 1 − n1 −n2
n2 1 − n1 1 − n1 −n2
−n1 −n2 −n2 n1

⎤
⎥⎥⎥⎦ .

(30)

Straightforward computation gives the unique solution of (30):

m1 = a1 + b2 + x

1 + x
,

m2 = − b1
1 + x

,

n1 = a1 − b2 − x

1 − x
,

n2 = b1
.
1 − x
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Since |x| < 1, the right-hand side of the expression (30) is a convex combination of 
two matrices of the forms (25) and (26), respectively. Hence, in order to use the result 
from Section 3.1 that these two matrices are from co(S), we are left with proving that 
m2

1 + m2
2 ≤ m1 and n2

1 + n2
2 ≤ n1, i.e.

b21 ≤ min{(a1 + b2 + x)(1 − a1 − b2), (a1 − b2 − x)(1 − a1 + b2)}. (31)

In order to prove (31), we use the fact that X � 0, and in particular that its determinant 
is nonnegative, which gives:

b41 − 2(a1(1 − a1) − b2(b2 + x))b21
+ (1 − a1 − b2)(1 − a1 + b2)(a1 − b2 − x)(a1 + b2 + x) ≥ 0. (32)

Denote by

A = a1(1 − a1) − b2(b2 + x)

and

B = (1 − a1 − b2)(1 − a1 + b2)(a1 − b2 − x)(a1 + b2 + x).

Then we have

A2 −B = (a1b2 − (1 − a1)(b2 + x))2,

and so (32) is equivalent to

b21 ≤ A−
√

A2 −B or b21 ≥ A +
√
A2 −B. (33)

However, from the non-negativity of the principal 3 by 3 minors of the matrix X from 
(29), we obtain that

b21 ≤ a1(1 − a1) − max
{

a1b
2
2

1 − a1
,
(1 − a1)(b2 + x)2

a1

}
.

The maximum of the two nonnegative numbers is always greater or equal to their geo-
metric mean, and so we obtain

b21 ≤ a1(1 − a1) − |b2(b2 + x)| ≤ A.

Therefore, only the first inequality in (33) is valid, and it reads

b21 ≤ a1(1 − a1) − b2(b2 + x) − |a1b2 − (1 − a1)(b2 + x)|.

The last is equivalent to (31), which finishes our proof. �
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4. Applications and experiments

Our result is of the highest interest for structure from motion (SfM) problems in 
computer vision. In fact, in [3] it already proved to be extremely effective in solving SfM 
problems for nonrigid (deformable) shapes.

Here we show that it can also be used for Procrustes-like problems on O(3, 2).
Consider the following Procrustes problem:
Let B ∈ R

3×2 and A ∈ R
3×3

minimize
subject to Q∈O(3,2)

‖B −AQ‖2 (34)

Problem (34) can be regarded as a typical subproblem in SfM algorithms (e.g. see [3]).
Problem (34) is equivalent to

minimize
subject to X∈X

Tr
([

A 1
2c

1
2c

T 0

]
X

)
(35)

where A := I2 ⊗ATA, c := 2 vec(ATB) and

X =

⎧⎪⎨
⎪⎩X =

⎡
⎢⎣X11 X12 x1
X21 X22 x2
xT

1 xT
2 1

⎤
⎥⎦ � 0 : Tr (Xii) = 1,Tr (X12) = 0, rankX = 1

⎫⎪⎬
⎪⎭ .

Now, the “standard” convex relaxation for (35) consists in dropping the rank constraint 
from X , thus turning (35) into a (relaxed) SDP.

Let X� be the solution obtained by solving a particular instance of the relaxed SDP. 
Note that X� is also a solution of (35) if it happens that rankX� = 1 or, equivalently,

λmax (X�) = 3, (36)

where λmax(X) denotes the maximum eigenvalue of a symmetric matrix X.
Here, we propose a tighter relaxation, by capitalizing on our result. First, note 

that (34) can be rewritten as

minimize
subject to q=vec(Q)

Tr
(
AqqT

)
− |qT c| (37)

with the understanding that Q runs through the Stiefel matrices O(3, 2). Problem (37)
is, in turn, equivalent to

minimize Tr (AX) −
√
cTXc (38)
subject to X∈S



264 M. Dodig et al. / Linear Algebra and its Applications 475 (2015) 251–264
Recall that S ⊂ R
6×6 was defined in (4)–(6). We now propose to relax the nonconvex 

constraint set S in (38) to the convex set Σ defined in Conjecture 3. This turns (38) into 
a (relaxed) convex problem which, in fact, is easily reformulated into a SDP.

Let X� be a solution of this relaxed SDP. Then, X� is also a solution of (38) if 
rankX� = 1 or, equivalently,

λmax (X�) = 2. (39)

5. Numerical experiments

We report some numerical experiments to illustrate the tightness of the convex ap-
proximation obtained by the two aforementioned methods (“standard” and ours). We 
generated more than 1000 random instances of problem (34) (in each instance, the entries 
of A and B were independently drawn from a zero-mean unit-variance Gaussian distri-
bution). For instance k (k = 1, 2, . . . , 1000), we solved the “standard” convex relaxation 
of (35) (i.e., we dropped the rank constraint from X ) and our convex relaxation of (38)
(i.e., we replaced S with Σ). Let X�

1k and X�
2k denote the respective obtained solutions 

on instance k. We then checked if X�
1k and X�

2k also solved the associated nonconvex 
problems (35) and (38) (both equivalent to (34)), i.e., we verified if (36) and (39) hold 
(we used the tests, λmax (X�

1k) ≥ 2.9999 and λmax (X�
2k) ≥ 1.9999, respectively). For the 

“standard” relaxation, only 48% of the instances turned out to be exact, whereas our 
method was exact in 99.9% of the instances.
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