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Abstract—We address the problem of joint source symbol detection and the symbol period” (narrowband source assumption). Assum-

multi-channel estimation in time-selective digital communication scenarios. ing that themth receiver is time-synchronized to the transmitted
Our approach is based on a statistical model which decouplebe time dy-

namics of the multi-channel vector in amplitude and directon. We com- .Slgnal' the compleé bfa{]dpass signal picked byrthis antenna
pute the most probable emitted symbol sequence and channetalization IS 7' (1) = T, (£)€7*™/ <t Wherew,, (t) = Ry, (t) b(t) + wp (1)

for this statistical model, given the set of array observatns. Our maxi-  stands for its baseband equivalent. Here,
mum a posterior (MAP) receiver consists of a bank of parallelprocessors.

Each processor finds the most probable channel realizatiorof a given sym- h (t) —c (t) eifm (t) (1)
bol sequence via a relaxed semidefinite programming (SDP)fermulation m —m

of the original estimation problem. Computer simulations ae included to . .

assess the capability of our technique in acquiring fast-cinging flat-fading  denotes the net baseband gaip,(¢) is the complex-valued

channels. fading channel,f,,(t) models carrier phase drifts between
the source and thesth spatial sensor, and,,(t) stands for
I. PROBLEM FORMULATION zero-mean complex additive white Gaussian noise (AWGN)

ONSIDER a wireless communication scenario in which ith power spectral density (PSI)N, Watts/Hz, that is,

multiple antenna receiver observes a mobile digital squr {w’”(t)“fm(t. B T)*.} = 2Nod(7). .LEt the Iowpass signal
P g 9 (t), which is available at the receiver aftey,(¢) is demod-

as depicted in figure 1. The source transmits the bandpass c& )
P g P u@ted to baseband, be oversampled by an integrate-ang-dum

(I&D) circuit yielding the discrete-time sequence

1 rT+e+na
T [nP+p] = Z/ Ty,(t)dt, p=0,1,...,P-1,
LN () I ———— b(t) v _ nT+pA
T i where the integeP = T'/A > 1 denotes the number of data
':\ b[n] samples taken in each symbol period. Assuming thatt) is
K / i constant during the interval of integration, we have
““ :'.' h/M(t) :i
‘ ' ‘ Em[nP + p] = hy[nP + plbn] + wn[nP +p],  (2)
whereh,[nP + p] = hy, (0T + pA) and
£y (t) b T (t) 1 nT+(p+1)A
wp[nP +p] = — Wiy, (t) dt.
Rx A nT+pA
Let N be the number of successive symbol intervals thus
l recorded by the receiver, startingtat T for convenience of
7 (t), ..., has(t),b[n] notation. Lettingk = nP + p denote the time-index in (2),
. o . . stacking the data sequenceg,[k] into the complex vector
Fig. 1. Flat-fading multi-link channel with a mobile sour@®@seband model) a:[k] _ (l‘l[k], sz[k], o ;EM[k])LW, and collecting the vectors

plex signals(t) = b(t)e/?"/<t, wheref. denotes the frequencyw[k]’ k=12,..,K = NP into the data matrix

of the complex sinusoidal carrier. The baseband informatio _
bearing signal is given by(t) = Zi‘:oo bln]p (t —nT) X =[] =p2 2K, ®)
whereb[n| denotes thenth emitted information symboll” is  yje|ds the matricial data model

the symbol period ang(¢) is a unit amplitude rectangular shap-

ing pulse of duratiod” seconds. We assume a flat-fading chan- X =Hdiag(b® 1p) + W. (4)
nel between the source and each one ofitheeceiving anten-

nas,i.e.,, the maximum delay spread of the multipath channklere,

linking the source to each spatial sensor is a small fraation H=[h[1] h[2] --- h[K]] )
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(POSI) in the frame of QCA IlI, under contract POSI/2001/C38375 [w[l]w[2] --- w[K]] represents the noise matrixy[k] =
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(w1 [k], walk], ... ,wM[k])T. We assume that the additive noiséarge number of these discrete propagation paths, it issplau
processes are spatially white, ble to invoke the central limit theorem and model the complex
o2 gainc,,(t) as a wide-sense stationary (WSS) complex circular
E{wlklw[k —1]"} = 711\/15[1], (6) Gaussian process [3], [4], [5]. Moreovet,, (t) can be taken

as zero-mean (Rayleigh fading model) if there is no dire-li

whereo? = 4Np/A, ()" denotes the Hermitean operatopf.sight (LOS) component, whereas a nonzero mean must be
(transpose conjugate) adfl] stands for the discrete-time Kro-included if a direct specular component is present (Ricengad
necker signal{[0] = 1 andé[l] = 0 for I # 0). For a generic model). Besides the Rayleigh/Rice distribution, othet-finrsler
vectorv = (v1,vs, ..., v,)" , diagw) denotes the diagonal ma-statistics modeling the envelope of the complex-valueihtad
trixwith vy, vs, ..., v, as its main diagonal entries. The symbathannel,|c,, (t)|, have been considered in the literature, e.g.,
® stands for the Kronecker product and, for an integef,, is  the Nakagami-q (Hoyt), the Nakagami-n, and the Nakagami-
then x n identity matrix andL,, = (1, 1,...,1)" represents the m models, see [4] and the references therein. The autocorre-
n-dimensional column vector with all entries equalto lation function of the WSS Gaussian procesgt), (1) =

In this paper, we address the problem of jointly detectireg the { ¢, (t)c,, (t — 7)"}, dictating the second-order statistics of
emitted information sequendeand estimating the channel mathe fading channel, can be obtained for some specific sirajter
trix H from the available data matriX', see (4). We work propagation configurations from Doppler-shift motion+iced
under a Bayesian framework. Moreover, we assume that oplysical considerations. For example, the assumption ifean
small data bursts are available for processing, say, witbtte alized isotropic scattering scenario (the mobile is sundmgd
N ~ 4 symbols. This precludes the usagentl order statistics by a cluster of scatterers uniformly distributed in angla),
methods [1], [2]. We assign probabilistic priors to both-raruniform azimuthal power gain for theith receiving antenna
dom objectsH (channel) ancb (source), and present a subfomnidirectional sensor), and a constant vehicle speedisle
optimum implementation of their corresponding maximum-ae the Clarke’s model [5] with the fading autocorrelationegi
posteriori (MAP) estimators. Our paper is organized as fql; _ 2 2 _ 2 }
lows. In section IlI, we describe and motivate the priors (C))é1y rm(r) = omJo (2nfm7). Here,op, = Eqlen(t)]" g de

the channel and source. We decouple the time dynamics of foes Ithe power ththe. faclii_ng process/() i§ tr;]e zero?order
channel vectoh[k] in amplitudep[k] = ||k[k]|| and direction B€SSel function of the first iy = v fe/c iS the maximum

ulk] = h[k]/ |h[k]|l. Separate priors are then assigned to t oppler frequency in Hzy,, is the speed of the mobile source

stochastic sequencég[k]} and {u[k]}. For simplicity, we re- relative to themth antenna iq m/sf? stands for the cengral fre-
strict ourselves in this paper to a constant fading envelope quency of the transm|t.ted signal |r’1 Hz, aack 3 x 10 m'/s
we assume thatlk] = pfork = 1,2, ..., K, wherep denotes a denqtes the speed of light. Clarkes model is employed id lan
random variable uniformly distributed in an intery@J A]. The mobile scenarios [4]. Other fading autocorrelation modeés

stochastic sequendau[k]} is modeled as a first-order Markov2Vailable for distinct propagation scenarios, see [4]. fhase
process on the unit-sphere. The conditional transitiob@ro drift &m () in (1) models non-channel induced phase shifts be-
bility of w[k] | u[k — 1] is a von Mises-Fisher distribution with tween the transmitter and theth receiver, e.g., transmitter and

mean (or mode}[k — 1] and concentration parameter This local oscillator asynchronism. As an illustrative examglen-
1-parameter) model permits to capture the characteristics (ﬁ'der ath: 2 argtelnna a r(;ﬁayecc;wer Wh'dCh ob'ser]:/es a digital
several fast flat-fading digital communication channetsséc- sou_rce with symbo perloh _hO' n;]s Ian carrier rr]equenC)(/j f
tion 111, we discuss a sub-optimum implementation of the MAIfC__ 1 G}I(—Iz./g/vi\as;uq\%'t at th eve IIC eorln?ves with a spe&e 0
estimators ofif andb for the given probabilistic prior. We show? ~ 120 Km/h. As the fading channel model, we tadg?) an

how the optimization problem underlying the MAP estimatioﬁz(t) as zero-mean unit-power s.tatlstlcally mde_pendent_ com-
of H, for a fixed data sequende can be approximated by aPlex Gaussian processes, each with autocorrelation impte-

semidefinite program (SDP). This class of convex progranflicted by Clarke’s model. Moreover, we assume that the crys-

which extend linear and quadratic programming, has acacidl oscillator at the receiver has a stability pf= 0.5 ppm
much attention from the optimization community in the pa§9art per million),i.e., we letd,(t) = 2 fyt, where the os-
recent years, leading to the development of powerful pﬁmeﬁ'”ator frequency errotfy = nfe = 500 HZ,.f-OI’m =12
dual interior-paint solvers. These algorithms can find tobgl -6t 2(t) = p(?) u(t) denote the decomposition of the chan-
minimum of SDPs with polynomial worst-case complexity ange! vectorh(t) in amplitudep(t) = ”;l(t)” .Z 0 and direction
exhibit very good performance in practice. In section IV, wt(t) = h(t)/ [[h()[| = (u1(t),us(t))" . In figures 2 and 3, we
present some computer simulations to assess the perfoernan&ee & realization di(t), through its componenig(#) andu(t),
our MAP estimator in acquiring fast flat-fading multichatme OVer @ time span oN' = 4 symbol periods. We have takef

Section V concludes our paper. equi-spaced time samplesgif) andu(t) in the observation pe-
riod [0, NT'], and computed some statistics. For this realization,
II. CHANNEL AND SOURCE PROBABILISTIC PRIORS the mean value of the channel amplitudepis= 1.9234 with

F i idealized radi . . . a standard deviation af, = 0.0907. Thus, the envelope ex-
or certain idealized radio propagation environmentss it s 4 fyctuation of, /5 = 4.7 % about its nominal valug.

possible to deduce analytically some simplified statistivad- The mean values of Re (t), Reus(t), Imuy (£), Imus (t) are

els for the fading channel,(t) in (1). As an example, if _ 5699 () 4923 —0.4793 and0.2794, respectively. The cor-
the mobile is surrounded by many scatterers, several pEP3G,sponding standard deviations 659, 0.1334,0.2210 and

tion paths (each with its own amplitude and phase) do exi$h g5 eading to fluctuations c29.11 %, 27.10 %, 46.11 %
between the narrowband source and th#éh antenna. For a ' ’ ’
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model for the length” vector channel sequence defined in (5):
a1l ] we leth[k] = pulk], where
: p ~ U ([0, A]) 7
°r : ‘ ] denotes a random variable uniformly distributed over therin
Lo ‘ ] val [0, A], whereA > 0 denotes some fixed constant; the se-
quence{u[l],u[2],...,u[K]} is statistically independent ¢f
o ] and is taken as a first-order Markov process on the unit-spher
] More specifically, letv[k] = (Reu[k]” Im u[k]T)T. Notice
] that eact2 M -dimensional vectoo|[k] lies inS2 1. Here, and
b for further referenceS™” ! = {v € R" : |jv|| = 1} denotes the
R T e (n — 1)-dimensional unit-sphere of the Euclidean sp&te We
e let v[1] be uniformly distributed over the sphe§&™ —*, written

Fig. 2. Realization op(t) (example) [1] ~U (SQMfl) @8)
v ~ )

and let the one-step transition probability be given by

olk] | vlk — 1] ~ Moy (wfk — 1], ). (9)

08

Reus (t)

06

041

Here, M, (u,x) denotes the von Mises-Fisher distribution
on SP~! with the unit-norm vectop as mean direction and the
non-negative scalas as the concentration parameter, see [7].
The density of the von Mises-Fisher distributiof,, (1, ) with
respect to the uniform distribution on the unit-sphere is

f(v) = ap(k) exp (Ii uT'u) , (10)

: : : : : : : wherev € SP~! anda,(x) denotes the normalizing constant.

0 005 oL 035020 0 02 03 04 This distribution reduces to the uniform distribution oe timit-
sphere fork = 0, and exhibits a mode gt for x > 0.

As k increases, the probability mass becomes more concen-
trated around the mean directipn As an example, we plot

and66.02 %, respectively. From these data, we can concludfe figures 4 and S, the density of the von Mises-Fisher dis-
that the time variation of the channel vectoft) over the re- tribution M, (u, ) on the C'ere £ = 2) with mean direc-
stricted interval0, N7 is mainly due to the time variation of tion v = (cos(m/4),sin(r/4))" and concentration parameters
the phase in eachuth entry of h(t), i.e, the net effect of the x = 0.5 andx = 5, respectively. Some remarks are in order
time variation of the phase of the fading chansg(t) and the
phase driftd,,, (t), which u(t) preserves up to a multiplicative
factor. The channel amplitudgt) is nearly constant over the
time interval considered. This asymmetric behaviop@f and

u(t) becomes more noticeable if more statistically independent
antennas are employed at the receiver (spatial diversityif,

a Rice channel model is considered, as both of these scenar-
ios tend to stabilize the amplitude of the channel vectorr Fo
example, as it is well-known, the Ricean fading channel ap-
proaches the classical non-fading (constant amplitudelaAV
channel as the Rician factor tends to infinity. The fact that
the amplitudep(t) = ||h(t)|| of the source spatial signature
varies slower, for small time intervals, than the “phaseitoe

u(t) = h(t)/||h(t)| is in agreement with experimental mea-
surements (e.g., see [6]), and generalizes the typicalvilha Fig. 4. Density ofMy (p, %) : 1 = (cos(w/4), sin(w/4))T andk = 0.5

of single-channel systems: notice that, faf = 1 channel

given by h(t) = A(t)e?®®), we havep(t) = A(t) > 0, and regarding our channel statistical modé). It is a 1-parameter
the vectoru(t) specializes to the pure (unit-amplitude) phasanodel (with parametes) that does not rely on any special as-
u(t) = /%), where¢(t) accounts for the joint time variation sumption about the scattering environment, antenna diigct
of the phase of the fading channel and carrier phase drifti-Magpattern, etc. Its main purpose is to be able of reproduciag th
vated by this behavior of the time dynamics of the channel vagpical time variation of the channel vecth(t) over small ob-
tor h(t) over short time intervals, characteristic of many fadingervation intervals, which occurs in many flat-fading piggpa
scenarios, we work in the sequel with the following statasti tion scenarios. Of course, if an alternative, more sopfastd

021

Fig. 3. Realization ots(t) (example)
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1. MAP CHANNEL AND SYMBOL ESTIMATORS
The MAP estimates of the unknown channel random param-
etersp, V = [v[1]v[2] - -- v[K]] and the source sequence of

bits b = (b[1],b[2],...,b[N])" correspond to the global solu-
tions of the optimization problem

(ﬁ,f/,g) = argmax p(p,V,b| X). (12)
p,V,b

Recall from (3) thatX denotes the matrix of observations.

In (12), we have the explicit constrairiis< p < A (recall the

prior on the amplitude of the vector channel in (TR[%]|| = 1

fork=1,2,...,K andb[n] € {1} forn =1,2,...,N. We

Fig. 5. Density ofMo (p, k) : pt = (cos(m/4),sin(r/4))7 andk = 5 are assuming that both the noise varianéeand the concen-

tration parametek are known. In fact, only their produet s
needs to be assumed known (see (14) below). Using the Bayes

channel model (perhaps based on field measurements) may4jg @nd our statistical assumptions — see (6), (), (8),((D)

trusted, it should be employed. In sum, we are trading siitpli @nd (11) — we have, after some trivial algebraic manipufetio

(only one parameter to tune) and robustness (no speciaaprdf€ €quivalent optimization problem

gation scenario is assumed) for accurady. The assumption PPN .

that the vector channel amplitude is constajit[k]|| = p, is (p’V’b) = argmin ¢ (p,V,b) (13)

taken here because we work only with small data bursts. How- pV,b

ever, it should be said that the constant amplitude assomptj, ;..o

is mainly taken for simplicity: for example, it can be seeatth

the inclusion of independent fading amplitudes per each dat K K

sample is easily accgmmodated “? ourpSDP fralranework to Bér; V, b) :Pz—% Zpyb[’f]T”[’f]—;—; > vk v[k-1],

presented in the next section (see also [8]). The distohuti k=1 k=2

: > L2 : (14)
p ~ U(]0, A]) acts as a non-informative prior, reflecting our . ,
ignorance about the initial channel staii§. Under certain spe- and the sequenagy[k] is defined by
cial circumstances, some models for the phase variatioheof t b[n] Rez[nP + p|
mth multipath channeh,,(t) can be devised. For example, Yp[nP +p| = [ bn] Im [nP + p| } (15)

in the case of perfect transmitter and receiver oscilladois a
propagation scenario with a dominant direct LOS componéot p = 0,1,...,P — 1 andn = 1,2,...,N. Notice that
with weaker (negligible) indirect components, the phaséava the sequencey,[k] depends on the sequence of bits =
tion can be approximated by a linear dynamic, the well-know®([1],5[2], ...,5[N])" as equation (15) shows (hence, the sub-
Doppler effect due to vehicle motion. However, since we db ngcriptb in the notationy, [k]).
rely on any specific propagation scenario nor oscillatomasy The optimization problemin (13) is posed in terms of diseret
chronism model, this viewpoint is not taken here. Insteagl, Wb) and continuousy, V) variables. It may be solved by enu-
let the phase vary randomly from data sample to data sampisrating all bit sequences of lengthand, for each one, sdy
with the concentration parametercontrolling the amount of optimize overp andV to yield the corresponding estimates
“randomness” per transition: larger valuessotorrespond to andVy,
slower time-varying phases, whereas smaller values on (pp, V) = argmin ¢ (p,V,b). (16)
model fast-changing phase processes. Again, the uniform de oV
. . N oM 1 TN
sity as;umptlom[l] u (S . ) about the initial c.j|r'e.ct|on In fact, since there is an unavoidable sign ambiguity in g v
vector is adopted to reflect our ignorance about the inigater
. . blesV' andb, because) (p, V,b) = ¢ (p,—V, —b), we may

channel state. As a final remark, one could complicate theeino? . SR

o . X a bit, e.g.,b[1] = —1, and enumerate over &N~ bit se-
and allow for distinct concentration parameters per vertan- X S

! : . quencegb|[2], ..., b[N]} solving, for each one, the optimization

nel entry, or for a time-varying concentration parametebath.

These and other model refinements are explored elsewhere [%;]Oblem in (16). The MAP estimates of the channel and source

] . . ) alizations in (12) are then given iy = pp, V = V, and
Regarding the transmitter model, we consider that the -mfc&r: b, whereb denotes the sequence minimizindps, Vs, b)
mation source emits a string[n]} of independent and identi- i N

o o , over all bit sequences considered. This approach may be im-
cally dlstrlputeq gymbols drawn from a finite m."d“'a“o,”.*mp plemented through a bank &f'—! parallel processors, which
bet. For simplicity, we assume hereafter a binary-shiftikgy

(BSK) digital sourcej.., the symbolsn] are taken from the is feasible for small sequence lengtNs(as we are assuming
set{-1 lg} and are elciu.i’probak))lle' n throughout the paper). Each processor solves problem¢t &) f

fixed sequence of bits. Hereafter, we treat the vectbi(hence,
yp[k]) as a constant, and focus on the prototype optimization
1 roblem in (16) with constraint$ < p < A and||v[k]|| = 1
P =-1}=P =1} =-. 11) P nsran® = o = 2 :
r{bln] } r{bln] } 2 (11) for k = 1,2,..., K. This is a highly nonlinear problem with
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no apparent closed-form solution. It can be tackled by gdnerinto the positive semidefinite constrai@t > 0, yielding the
purpose iterative algorithms for constrained problemsidlesd semidefinite program
in the standard references of optimization theory, e.@,[3¢

These iterative procedures are usually only locally-coyset. min tr(I'Z). (20)
Thus, several time consuming re-initializations might lee r Z-0

quired to find the global solution. Here, we pursue a distinct Zrkmt12KM41 < A

approach. We exploit the special structure of the congtadm {r(zy) =1}

relax problem (16) into a nearby semidefinite program. Th'Ls

: T et Z denote the solution of (20). We obtain an approxima-
particular class of convex optimization problems has bewteu tion for py and Vi, = [w[1] - -- vs[K]] in (16) by letting

intense investigation over the past few years. It contaimeal
g p y o = VZxu ko andvylk] = zi/|zill k=1, K,

(and quadratic) programs as special cases, and admitsllglo X .
convergent efficient algorithms based on iterating intgpa@ints wherez, deno.tes theM-dimensional subvector of the last col-
umn of Z ranging from rowsyy, to 8. These choices fqx, and

which either follow central paths or reduce a potential fiorc V. are exact ifZ has rankl. as seen from the last column of
Moreover, SDP finds applications in combinatorial optirtiza thg identity in (19). The nurhber of variables in each SDP (20)
(providing polynomial-time bounds for NP-hard problenig)], h it ; .t' | lexit be reduced b '
[11], systems and control theory [12], eigenvalue optiriiza . ence Its computational complexity, can be requced by appro
ating the time variation of the channel direction vectae,

|
I 13], etc. Inth I that th ) . .
problems [13], etc. In the sequel, we assume that the readew = [v[1]v]2] - - - v[K]] with a piecewise constant vector se-

familiar with optimization theory and, in particular, setafi- L )
b y P ence. For example, assumifgis even and taking constant

nite programming theory. Survey papers can be found in [1 7 -
[10]. Several SDP resources (reviews, bibliography, sarfew Bﬂfgmerx?li)zjl[el]ngt[lg] (;[22] W?Lio[lll{e/%?i?ék}g]?a{r? Tvﬁiﬂzv?/gon

. ; ) vV =
packages) are available from Christoph Helmberg's horrxepao%ly Ie[t the channel direction[k] change event, = 2 data

http://ww. zi b. de/ hel nber g/ seni def. ht m . We . ; : .
obtain the SDP relaxation of problem (16) by relaxing a ranksamples. With this approach, the number of variables |§duialv
The general case of constant segments of lehdtii a multiple

constraint that appears in one of its equivalent formurfatio .
This relaxation technique is usually employed in the condéx of L) leads to the reduced-size SDP

(0, 1)-integer optimization [11]. In our case, we start by rewrit- . ~
ing the primal problem (16) witld fixed and variablep and %mn tr (PZ) ’ (1)
o[l],...,v[K]as _ z0 ,
ZzKM/L+1,~2KM/L+1 <A
tr{Z,) =1
min ['UT p]l"[v}, a7 {(k) J
2 S A2 p

whereT = Q'TQ, Q being the diagonal concatenation of
Ig/, ® 1 ® Iy with 1. Notice that the variableZ to be

wherev = veqV'). Here, and for further reference, vec denote%mimizecj in (20) has siz€K M +1) x (2K M + 1), whereas

the vectorization operator: for an arbitrasyx m rectangular N (21) the variableZ ha; siz2KM/L+1) x (2KM/L+1).
matrix A = [a1 a3 - -- a,, ], we have thevm-dimensional col- Let Z denote the solution of21). We obtainp, andwlk] as

p
{v[k]"v[k] =1}

umn vector vegA) = (a{,a%’,...,a%)T. In (17), before: p, = \/ZQKM/L+1’2KM/L+1 andwlk] = Zi/ |zl
fork = 1,...,K/L, wherez;, denotes theM -dimensional
r= { 1; Y } subvector of the last column & ranging from rowsy;, to 3.
y 1 In [8], we study in more detail the performance of this piece-
where _ vec(—i (yell]wsl2] - vy K] ]) T o— wise qonstant model for the fcime variation of the chapnetqrec
y K LYl Yp Yy ' direction. Moreover, we derive a low-cost computationedat

—(0%k)/(4K) R ® Isp, and R is a K x K matrix with 1's
in the first upper and lower main diagonals &l elsewhere.
We can reformulate (17) as

tive scheme, based on differential-geometric conceptzfioe
these sub-optimum estimates.

IV. COMPUTER SIMULATIONS

min tr('Z), (18) . )
P { v } o b We conducted computer simulations to analyse the perfor-
p mance of our proposed MAP estimator. We considergfi & 1
Zrkmt12KM41 < A? antenna receiver. We assumed an oversampling factBr-ef3
{r(2zy) =1} and processV = 4 consecutive bits. Thus, the data packet

. o length isKk' = PN = 12. Each data packet is generated ac-
where tr denotes the trace operai@y,; is the (i, j)th entry of  ¢qrding to our channel and source priors. We have fixed the
the matrixZ, andZ, (fork = 1,2,..., K) standsforth@ M X \ector channel amplitude throughout the simulatigns, 1 (ig-
2M submatrix ofZ obtained by retaining the rows and columng e a4t the receiver) and considered as von Mises-Fiser co

ranging fromay, = (k — 1)2M + 110 By = 2kM. The SDP  ceniration parameters= 5, 10, 15, 20, 25. For eachs, we var-

relaxation of (18) consists in relaxing the rahkonstraint ied the signal-to-noise ratio (SNR) from SNR = —5 dB to
T SNR,.x = 20 dB in steps ofA = 2.5 dB. The SNR is defined
— v T _ vv pv 19 2 2 .
Z = { p ] [v" p]= { pol } (19) as SNR= E{||h[-]b[-]|| }/E{||w[-]|| } — 2/02. For each
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SNR, 2000 statistically independent Monte-Carlos runs were %
performed. Each Monte-Carlo run involves detecting thesra
mitted bitsb and estimating the channel realizatipnV with

our MAP receiver. Figure 6 shows the bit error rates (BER) ob-
tained for each: over the considered range of SNRs. Results
beyond SNR= 7.5 dB are not shown because they are not sta-
tistically significant (more Monte-Carlo runs are requijreth

SNR (dB)

Fig. 8. Mean phase error (degrees) versus SNR

V. CONCLUSIONS

e We addressed the problem of joint source symbol detection
and multi-channel estimation in the context of flat-fadinigew
, , less communications. We rely on a simple vector channel inode
10° w w . - ‘ ‘ which captures its typical behavior in many idealized fedifg

SNR (@8) propagation scenarios. We decouple the time dynamics of the
amplitude and direction of the multi-channel vector ovesrsh
time intervals. We let the amplitude remain constant andehod
the time variation of the channel direction as a Markov pssce
figure 7, we plot the mean of the estimateersus SNR. As can on the unit-sphere. We implemented (sub-optimally) the MAP
be seen, the estimate converges to the true valgel, as the estimators of the emitted symbol sequence and channetaeali
SNR tends to infinity. Suppose the sequence of bits is knowi®n. We exploited the special structure of the MAP optimiza
tion problem, and found a nearby SDP reformulation which can
be efficiently solved by recently developed interior-paitgo-
rithms. Preliminary results assessed the ability of outhoein
acquiring fast-changing channels.

Fig. 6. Bit error rate (BER) versus signal-to-noise ratiblFg
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