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Abstract— We study how 2nd order statistics (SOS) can be exploited 2nd order spectra [6], analytical signal separation for taomts
in two signal processing problems, blind separation of bingy sources modulus sources [2], iterative demodulation of finite-aibdat
and trained-based multi-user channel identification, in a Biyesian context . . . .
where a prior on the mixing channel matrix is available. It is well known sources [3]' gk?ba”y cpnyergent Iterative SePara“‘?mdﬁ‘Pen'
that the SOS of the received data permit to resolve the unknow mixing ~dent and identically distributed sources by kurtosis-asie-

matrix, up to an orthogonal factor. In a Bayesian framework, this residual  rjg [11]_

orthogonal mixing matrix becomes a random object in its own ight, with an | . th .. tri b deled
associated distribution over the group of orthogonal matrces. This distri- n ma_ny Sce_na”_os' e.mlxmg ma. rIX can e mode e asaran-
bution is induced by the prior on the mixing matrix, and must be known for  dom object with given prior probability density functiondfp.
optimum statistical processing. We rely on a previous theatical work to  |n [12], we studied how a given pdf on the set of non-whitened

prowde Fhese answers, and discuss applications for_thlsdmced probabil- mixing matrices contracts to a pdf on the lower-dimensiamal
ity density function (pdf) over the orthogonal group, in the two aforemen-

tioned signal processing problems. Preliminary results, tained through ~ thogonal group containing the whitened mixing matricese Th
computer simulations, demonstrate the effectiveness of éorporating this ~ contribution of this paper consists in providing signal gess-

induced_ distribution ass_ociated with the residual orthogmal matrix into ing applications for the theoretical framework developef].
the design of several estimators. . .
We show how the derived priors over the orthogonal group can
be exploited for improving performance in two problemsntli
. INTRODUCTION separation of co-channel binary sources and trained-wsed
LIND source separation (BSS) has been an active areang identification in multi-antenna systems. Further agtlons
research over the past few years [1]. It finds direct appitan be found in [13].
cation in the exploding field of wireless multi-user commuaii  Our paper is organized as follows. In section I, we intragluc
tions with spatial diversity, e.g., Space Division Mulgpghccess our data model and briefly review the work in [12]. We assume
(SDMA) networks. In these wireless systems, unknown spadbat the non-whitened random mixing matrix has a zero-mean
time channels mix the co-channel user signals prior to biase snatrix variate normal distribution with given dispersiomimix.
tion reception. Blind signal separation techniques areleéat A particular case of this prior is commonplace in works with
the receiver to reconstruct the source signals from thenaate multiple-antenna systems where it is known as the indepgnde
array observations [2], [3], [4], [5], [6]- Rayleigh fading assumption [14]. We handle a more general
A common first step in BSS techniques consists in exploitiodel allowing correlation between the entries of the ngxin
ing the 2nd order statistics (SOS) of the observations to pamatrix. We present the results of [12] in which we examined
tially resolve the unknown mixing matrix [1], [7], [8], [9]10], how this prior on the non-whitened matrices contracts tofa pd
[11]. Usually, the SOS of the received data are used to tusker the group of orthogonal matrices, under the action of tw
the unknown mixing matrix into an unknown rotation mixinglistinct prewhitening methods. The two prewhitening mdtho
matrix. This simplifies the remaining processing as the-algeonsidered are based on the polar andiibiedecomposition of
braic constraints of the orthogonal group can be efficieatly the non-whitened mixing matrix, respectively. In sectitinwe
ploited for algorithmic purposes. Notice that the origif@n- address the problem of blind source separation when theqixi
whitened) mixing matrix often lacks any interesting sturet matrix is drawn from a known zero-mean Gaussian prior. We
The residual unknown rotation matrix can be solved under sepply the results in [12] to find educated guesses for itz
eral identification strategies depending on the sourceacherr a locally convergent source separation algorithm. In ead,
istics, number of available data samples, etc. Some opitienswe address the problem of channel identification in the ctinte
clude: iterative joint diagonalization of several cumulama- of multi-antenna systems. We show how the pdfs derived ip [12
trices for non-Gaussian signals [7], iterative joint dingliza- can be exploited to improve the accuracy of trained-basad-ch
tion of several covariance matrices for instantaneoushenhi nel estimators. Section V contains the main conclusionsiof o
stationary sources with sufficiently diverse but unkn@md or-  work.
der spectra [8], closed-form isometry fitting for convohety Throughout the paper, we use the following notation. The set
mixed stationary sources with sufficiently diverse and knowof n x n matrices with real entries is denotedR¥*™. Matrices
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matrices with positive diagonal entries, respectivelye Tone U for a given prior onA. The results derived in [12] are ex-
of positive definite matrices of sizex n is represented bf(n). pressed in the setting of Riemannian geometry [17], [18]sTh

Additional notation is introduced as needed. viewpoint is natural and almost mandatory since we are udigali
with distributions over lower-dimensional submanifoldssm-
Il. DATA MODEL AND PREVIOUS WORK clidean spaces, e.g., the orthogonal gré@p/), the cone of
We adopt the standard discrete-time instantaneous linixar npositive definite matriceB(1), etc. In the sequel, we assume
ture data model, e.g., see [1], [8], the reader to be acquainted with such differential-gedmein-
cepts. We try to use notation compatible with [17]. We re-
z[n] = As[n] + wn], (1) gardO(M), P(M) andL(M) as differentiable manifolds taking
their Riemannian structure from the corresponding embegdi
where z[n] = (21[n],...,2m[n])” represents theM- e.qg.. : O(M) — GL(M,R), «(X) = X. Here,GL (M, R)
dimensional vector of observationd, € R** stands for js identified with an open subset of the Euclidean spa¥é
the mixing matrix,s[n] = (si[n],...,su[n])" contains theM by interpreting aM x M matrix as aM?-dimensional vec-
source signals, and[n] = (wi[n],... ,wM[n])T models ob- tor. All these manifolds are orientable and we &% (vg),

servation noise. Here, for simplicity, all data objectsetadal- Qg (ar), Qp(ar) @andQy,(5r) denote the corresponding volume el-
ues in the field of real numbers. As usual, the sources are astents (the particular choice of orientation is not imputrta
sumed to be zero-mea®nd order stationary and uncorrelatedys) derived from their Riemannian metrics. Moreover, when
R, = E{s[n]s[n]"} = I, and the mixing matrix is non- taking the Cartesian product of manifolds, we implicitly- as
singular,A € GL(M,R). We assume that the proces§| sume the canonical construction for the product metricchen
is zero-mean and wide-sense stationary with known comelatfor the volume element of the product manifold. In this Rie-
matrix R,,[0] = E {w[n]w[n]” }. Itis well known that thend mannian context, a mass distribution or pdf over any of these
order statistics of the observations can be exploited toghgr manifolds is a non-negatively oriented exterior form. Asean
solve for the unknown mixing matrid. Here, we consider two ample, a mass distributiof?, say, over the orthogonal group,
alternative methods based on the polar and/tbiedecomposi- belongs to the bundle of alternating tens& (O(M)), where
tion of A4, respectively. Both methods act on the so-called dgz = dimQ(M) = M (M — 1)/2. Since for any given dis-

noised correlation matrix af[n], tribution Q over O(M), we havef) = f Qq,) for an unique
. nonnegative smooth functioh : O(M) — R, we use the ter-
R = R,[0] — R, [0] = AA", (2)  minologymass distribution for eitherQ or . This also applies

to the other manifolds considered in this paper.
In the sequel, we shall make use of the following results
from [12]. Letp(A) denote the pdf (prior) on the mixing matrix

whereR,[0] = E {z[n]z[n]"}. In practice,R.[0] can be re-
placed by its sample-mean estimator

L& A € GL(M,R). Then, the factorizatiold = P(Q induces the
I/%;[O] == Z [n]an]?, 3) pdf onP(M) x O(M) given, up to a normalizing constant, by
" p(P,Q) = p(PQ)g(P), ()

where N denotes the number of available data sampiego- , -

cusing first on the polar decomposition, write= P() where where the functiog : P(M) — Rsatlsfl'e@ (,IV(P)) =9(P),

P € P(M) andQ € O(M). This factorization exists and it is Wherelv : HD(@) — IP(n) denotes conjugation by € O(n),
unique for any4 € GL (M, R) [16]. Substituting in (2) yields 1v(£) =VPV™. Likewise, the factorizationl = LU induces
R = P2. Thus, P can be obtained from the availahieas its & PdfOnL(}) x O(M) given, up to a normalizing constant, by
square-rootP = R'/2. Thus, the SOS of the data permit the _

receiver to recover the factd? of the mixing matrixA = PQ. (L, U) = p(LU)A(L), ™
The factor@ is not resolvedii) Using theLU decomposition, whereh : (M) — R is given byh(L) = pm(L)/det(L).

we can write also uniqueld = LU, whereL € (M) and Here, the functiopm : R**" — R is defined, forX e R**",
U € O(M). Thus,R = LLT, meaning thaf. may be obtained as

from R as its unique Cholesky factor. Again, the mixing matrix
A = LU is partially resolved. The factdt is revealed by the i Tz o Tim
correlation matrix of the observations, liitremains unknown. m(X) = 1I" _ det La1 X2 vt d2m
After either the PQ or LU pre-processing step is performed, P - om=l : :
our original data model (1) switches to Tl Tmz T
z[n] = PQs[n] + w(n] (4) In this paper, we restrict ourselves to the scenario whére
has a zero-mean matrix variate normal distribution withacov
or ance matrixIy; ® ¥, denotedd ~ N (0,Iy ® ¥), where
#[n] = LUs[n] + win], () ¥ € P(M), see [15]. This means that < Z ¥/ (equality in
with P or L known, respectively. If the original mixing ma-distribution), whereZ denotes aid/ x M random matrix whose
trix has a prior,A ~ p(A), then the unknown residual orthog-entries are independent and identically distributed as-r@gan
onal matrice) andU in (4) and (5), respectively, denote ranunit-variance Gaussian random variables. We notice that ou
dom objects. In [12], we investigated the distributiongobr assumption does not represent a restriction with respettieto
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more general case where~ N (0, ® ¥), ¥ € P(M), cor- some straightforward computations) that problem (12) is\eq

responding tod < $1/2ZW¥1/2, pecause we can revert to ouflent to
situation by pre-multiplying the observatiom$n] in (1) with . 1 B
$-1/2. The assumptiotd ~ A (0, ® ¥) means thatd s SMAP = argmax ok (XSTAGISXT)~Mlog (det As),

distributed oveGL (M, R) according to S €Buxn 19
B 1. 7 where
p(A) = aetr {—EA\II A } , AS — SST +0'2‘I'_1. (14)
L2 M Problem (13) is an integer optimization problem over a sét wi
where @ = (27)72M'det (V)" 2 and etr{X} =

: _ : cardinality #8 = 2MN_ Thus, solving (13) is infeasible due
exp {tr (X)} for a generic matrix\{, see [15]. Using (6) and (7) {4 the required high-dimensional exhaustive search. AeTrad

for this particular choice of the prior aA, we have, up to a con- jye approach, which leads to a feasible computationalrsehe
stant, the joint distributions on the pai®, @) and(L, U), consists in estimating the most probable realization ofdr
channel-source matrix pair given the available datg,

Q) =e (30U QTP ey

(A, S)vap = arg max p(A4,S1X). (15)
and AGG]L(M,R),SEBj\IxN
1 _
p(L,U) = etr <_§U‘I’ 1UTLTL> h(L), (9  Problem (15) can be solved by the following locally-coneryg

) iterative algorithm: given an initial estimat&® for the channel
respectively. matrix, let

I11. BLIND SEPARATION OFBINARY SOURCES glk+1) arg max p(A(k) S| X)

In this section, we present a possible application for the re S € Buyxn

sults in [12], more specifically, for the induced pdfs in (8) A1) A gk+1) | x
and (9). We take the data model (1) along with the al- N N :rgﬁzxm p(4,S R

ready discussed prior on the unknown mixing matrdix ~
N (0,1x ® ¥), where the dispersion matri¥ is assumed for k = 0,1,2,... until a fixed-point is attained. Given our

known at the receiver. Moreover, we tefn] denote zero-mean, statistical assumptions, we have, after some calculuggiiates
spatio-temporal white Gaussian distributed noise withvkmo

o ,
powero®, i, S+ = argmin HX - A(k)SH (16)
Ry[k] = E{wln]wln — k"} = a*Iyd[k],  (10) S € Barxw
(k+1)  _ (k+1)T A —1
whered[-] denotes the discrete-time Kronecker delfd)( = 1 A XS Agiesn - 17)
and 6[k] = 0 for nonzerok). We consider that[n] = solving problem (16) does not require a search @gr, v . In
(sin,...,sm[n])" denotes a vector of/ independent bi- fact, since

nary sources. We assume that each source emits indepen-
dent and identically distributed symboRyob {s,,[n] = 1} =

Prob {sp[n] = -1} =1/2,form = 1,2,..., M. See [2], [3],

[4], [5], [9] for closely related, although non-Bayesiam (orior

is assumed ont), wireless communication scenarios. Assumnthe optimization problem decouplesMindependent subprob-
ing that/V data samples are available, we have the matricial dé#ans. Thenth subproblem only involves theth column ofS.

2 N 2
X~ AWs| =3 afn] A9 spa|
n=1

model Thus, thenth column ofS®*+1) | written s(*+1)[n] can be found
X =AS+W, (11) by solving

whereX = [z[1]z[2] - -- z[N]] denotes the data matrix con- (k1) ] 2

taining the observations = [s[1]s[2] - -- s[N]] contains the s"7[n] = argmin Hﬂ?[n] -4 SH ; (18)

information sequences sent by the sources fiile row cor- s € Bm

responds to thenth source) and?V = [w[l]w[2] - - w[N]]

where B, denotes the set af/-dimensional binary vectors.

stands for the additive noise matrix. We are interested tin ®$Hroblem (18) requires a search over a much smallef &, =
mating the binary matri in (11) from the available data Ma9M  and is easily implemented with parallel processor’s. The

trix X, W'thOUt !mowmg .the mixing ghannel matrik. A natgral main drawback of the iterative algorithm in (16) and (17)ts$s i
approach in this Bayesian setting is to look for the maximum,a., - global convergence. Accurate initial point€’) are re-
posterior (MAP) estimates of the transmitted bits, :

quired to obtain a good performance in practice. In the deque
(12) we delineate a method which exploits the SOS of the received

data and the results in (8) and (9) to find educated guesses for

starting the iterations. We present our method only for t@e P
whereBBr« n stands for the discrete set 8f x N binary ma- factorization. The extension to the LU factorization isagtht-
trices. With the priotd ~ N(0, Iy ® W), itis easily seen (after forward. We start by partially solving fod as explained in

§MAp: argmax p(S|X),
S € Buxn
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section Il. Namely, consider the sample-mean estimate ef th We conducted some computer simulations to assess the effec-
correlation matrix of the observed datfn| given in (3). The tiveness of our initialization scheme. We considered aaten

denoised correlation matrig in (2) is estimated as with M = 2 binary users. The prior on the mixing matrikis
IS N (0,Iy ® V), where
R = R,[0] — Bo*Iy, (19)
v = [ 100 ] (24)
wheres denotes the maximum number{i6, 0.1,0.2,...,0.9,1} “1 0 1"

which makes the right-hand side of (19) positive-definite. du
not simply subtracR,,[0] = oI, from I/%;[O] as equation (2) This models a scenario where one user strongly dominates
suggests, because, for finite datasé¥s € oc), that method the other, in terms of received power (the channel is not well

does not guarantee a positive-definite maRigwhich is essen- conditioned). We varied the signal-to-noise ratio (SNRnir
tial for the remaining processing). Let SNRuin = 5 dB t0 SNRyax = 20 dB, in steps ofA = 2.5 dB.

The SNR is defined aSNR = E||As[n]||*/E||w[n]]|* =
R=vAVT (20) |A|[?/Mo?. For each SNRj5000 statistically independent
Monte-Carlo runs were performed. Each Monte-Carlo run con-
denote an eigenvalue decompositiorﬁ)fThat is,V € Q(M) sists in generating a realization df S andWV, see (11), for a
andA = diag(\i, \s, . .., A\ar) denotes a diagonal matrix withdata packet length oV = 200. Next, I = 1 iteration of the
positive diagonal entries. In (20), we assume that the diagterative algorithm in (16) and (17) is performed startimgrh
nal of A is sorted in increasing ordek; < s < --- < Ay. the educated guess® in (21). For comparison, we also per-
From (20), theP factor of A = PQ is estimated ag® = formedI = 1 iteration starting from a random initialization
VA2V, \We propose to initialize the aforementioned iterad” ~ N (0,1 ® ¥), that is, an independent realization of
tive algorithm with the channel model. Figures 1 and 2 present the bit error rate
A40) — 13@, (21) (BER), averaged over the Monte-Carlos, for usemd user,

respectively, as a function of the SNR. The solid line desote
where

@ = argmax p(Q|P = ﬁ) (22) o
Q € O(M)

That is,@ denotes the most probable realization of ¢héactor e S random. initialization
of the mixing matrixA4, given that itsP factor isP. Given the R
joint (P, @) pdfin (8), we have

D i SR PR

@ = argmin tr (Q\Il_lQTﬁ2) . (23)
Q € O(M)

10°E

A closed-form solution for (23) is available [16], and can optimum

be computed as follows. Le®# = ZDZT denote an

eigendecomposition off, where Z € O(M) and D = - ‘ ‘

diag(dy,ds, . ..,dy) denotes a diagonal matrix with its diag- ° ° SR (@) * ®

onal entries sorted in decreasing ord&r,> ds > --- > dyy.

Then,@ = VZT. Notice that the determination (ﬁ does not

involve any significative extra computational burdén:is al-

ready available from the step determinifty see (20), andZ "
can be computed off-line (it does not depend on the received
data, only o). As a final remark, perhaps a more defensible
choice forA(®) would be

Fig. 1. BER of useil versus SNRA = 1 iteration)

random initialization

A® = argmax  p(A4]X),
A € GL(M,R)

107°F

or A© = PQ, where

~ optimum
@ = argmax p(Q|X).
Q€ O(M)
Certainly, both these approaches incorporate more infiiloma 107 m I 20
in fact, all the available dat&’, than our simple method in (21), e
which makes use of only the SOS of the observations. However, Fig. 2. BER of usee versus SNR{ = 1 iteration)

it easily checked that both these alternative approaclaestte
computationally untractable problems. a bound (maximum likelihood bit decoding with the chandel
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known), the solid line with squares refers to our proposed in o f f
tialization, and the dashed lined with circles correspdndse ' '
random initialization. As can be seen, our educated guass pe
mits to outperfom the random initialization. In figures 3 ahd W'k
we plot the results of similar simulations, but allow fbr= 2 -
loops of the iterative algorithm (16) and (17). As expected,

107E

- optimum

random initialization

10

T-o- - SNR (dB)

Fig. 5. BER of useil versus SNRL = 3 iterations)

07 optimum . 10°

SNR (dB)

Fig. 3. BER of useil versus SNR[ = 2 iterations)

107°F

optimum

10°

SNR (dB)

Fig. 6. BER of use® versus SNR[ = 3 iterations)

mixing matrix, A ~ N (0,I) ® ¥). We consider a trained-
based channel identification scenario. We assumeRtadtthe

N emitted symbols by th@/ sources, say, the sources’ packet

‘ ‘ headeiS = [s[1]s[2] - -- s[P]], is known by the receiver. This

° 1 SNR(@8) ® 0 preamble is included by the sources in order to assist the re-
ceiver in acquiring or estimating the channel. Once the shhn

A is estimated, it can be used to decode the remaining infor-

, , ._mation symbols irs[P + 1], s[P + 2],..., s[N] from the ob-
allowing for more flops improves the BER for both users, '"es'ervationSr[P +1],2[P + 2],...,z[N]. A possible channel
spective of the initialization method. However, the randam ;. nification strateby is Y

tialization is still outperformed by our approach over tindire

range of SNRs simulated. Figures 5 and 6 show the results cor- Avap = argmax  p(4|X), (25)

responding td = 3 iterations of the algorithm in (16) and (17). A € GL(M,R)

We can draw conclusions similar to the previous ones. We con-

ducted a set of similar computer simulations, but using tbe Lyhere ¥ = [z[1]2[2] - - - z[P]] denotes the observed packet

factor?zat@on method. The performance was identical toR@e header. That ngMAP denotes the most probable channel real-

factorization. ization given the available header of data observationgicBlo

that this approach does not take into account all the redeive

data, only the header. It can be verified that processingoall o
In this section, we discuss another application for the regervations would lead to a computationally infeasible sofy

sults in [12], namely the pdfs in (8) and (9). The data modér basically the same reasons exposed in section 11 (be:jtoen

is as in (11), and we assume the additive observation noisditoe instant» = P, the transmitted data is unknown, represent-

have the same statistics as in section Ill, see (10). Althoutpg 2N —F) bits, and the prior must be integrated against all

not necessary for the method to be discussed, we also let pagsible source sequences). It s straightforward to cheatk

sources be binary and follow the same statistical chaiaater under our statistical framework, we havgiap = XYSTAL,

tion detailed in Ill. Moreover, we maintain the prior on thavhereAg is defined in (14). We propose an alternative channel

optimum

Fig. 4. BER of use® versus SNR[ = 2 iterations)

IV. TRAINED-BASED CHANNEL IDENTIFICATION
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identification strategy, exploiting the SOS of the receidath. estimatorAyap, While the solid line corresponds to the SOS-
Again, we present our results based only on the PQ factorizfased channel estimatdr We can see that the SOS based esti-
tion (the extension to the LU factorization is similar). LBt mator achieves the best performance overall the SNRSsc:onsi
denote the estimate of tHeéfactor of A = PQ, computed from ered.

the received datX as explained in section Ill. We propose to

estimate the channel as V. CONCLUSIONS
A We study how2nd order statistics (SOS) can be exploited
A=PQ, (26) in Bayesian setups for improving the performance of non-SOS

based estimators. We addressed two problems: blind separa-
tion of co-channel binary sources and multi-user chanresi-id
tification with tranining sequences. A prior is assumed an th
mixing channel matrix. The SOS of the observations convey

Thus,( denotes the most probable realization of gdactor information about the unknown underlying channel. Thgy per
of the mixing matrix A, given that itsP factor is P and the mit to resolve the channel, modulo an orthogonal ambigaity f

available packet headdr. This strategy makes the totality of{®"> Which becomes a random object under the Bayesian frame-

the received data participate in the channel estimateygfiris wprk. We exploited the distribution of this residual mixinga—
2nd-order statistics. Using the Bayes rule and the idemti(g) trix for improving the performance of non-SOS based esionat

where R R
Q = argmax p(Q|X,P=P).
Q € O(M)

yields schemes.
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