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Abstract—The problem of space-time codebook design for com-
munication in spread and nonspread multiple-antenna wireless
systems is addressed and a new methodology for space-time
codebook design is proposed. This optimizes the probability of
error of the receiver’s detector in the high signal-to-noise-ratio
(SNR) regime, thus solving a nonlinear non-smooth optimization
problem using an iterative method that exploits the Riemannian
geometry imposed by the power constraints on the space-time
codewords. Computer simulations demonstrate that, for the
low SNR regime, our codebooks are marginally better than
those provided by state-of-art known solutions. However, for the
medium and high SNR regimes, our method provides codes that
outperform other known codes.

I. I NTRODUCTION

Space-time coding has received enormous attention as an
efficient means that employs diversity to combat the effects
of fading in wireless communication systems. This has been
shown to provide a considerable increase in multiplexing
and diversity gain in multiple-input/multiple-output (MIMO)
systems [1], [2].

Previous work. Several space-time block code (STBC)
schemes have been proposed over the recent years by imposing
a certain structure on the codewords, such as orthogonal [3]
or unitary group structures [4]. In the other direction, op-
timum minimum metric (OMM) codes [5] resulted from
exhaustive computer search exhibit considerable performance
improvement over prior structured approaches. In [6], a hybrid
scheme employing limited computer searches together with a
hierarchical codeset construction has been proved to enable
construction of good high-rate codes in a computationally
feasible manner, giving rise to codes that offer improved
performance over previously known codes. In [7], the authors
developed several upper bounds on the performance of STBCs.
Rather than considering only the worst-case pairwise error
probability (PEP), the bounds take the entire distance spec-
trum of the codes into consideration, resulting in improved
performance assessment. The progressive union bound (PUB)
as a performance index for STBCs was also proposed. It was
observed that the PUB allows a tradeoff between numerical
complexity and approximation accuracy. The authors demon-

strated that code searches performed by optimizing the new
criteria demonstrate improvement over worst-case designs.

Contribution. The main contribution of this paper is a new
algorithm that systematically designs space-time codebooks
for both spread and nonspread multiple-antena communication
systems. Computer simulations show that the space-time codes
obtained with our method perform marginally better than those
already known in the low signal-to-noise-ratio (SNR) regime,
but outperform them significantly in the medium and high
SNR regime.

Paper organization.In section II, we formulate the problem
addressed in this paper and discuss the selection of the
codebook design criterium. In section III we propose a new
algorithm that systematically designs space-time constellations
for arbitrary spreading code correlation matrix and anyM ,
N , K and T , respectively, number of transmitter antennas,
number of receiver antennas, size of codebook, and the channel
block length. In Section IV, we present some codebook
constructions and compare their performance with state-of-
art solutions. Section V presents the main conclusions of our
paper.

II. PROBLEM FORMULATION

Assumptions and data model.We work under the follow-
ing assumptions:

1. The codewordX is chosen from a finite codebook
X = {X1, X2, . . . , XK} known to the receiver, where
K is the size of the codebook. We impose the power
constraint tr(XH

k Xk) = TM for each codeword. Also,
Xk ∈ C

T×M ;
2. For simplicity reasons, a single receive antenna is
assumed, i.e.,N = 1. (However, all of our methods are
readily extensible to theN > 1 case) ;

3. An uncorrelated quasi-static narrowband flat1 Rayleigh
fading channel is assumed. That is,h(1) = ... =

h(T )
△
= h∼CN (0, IM )2 where h(n) is the channel

1Our analysis is easily extendible to the frequency selective case.
2We useCN (p, J) to denote a circularly symmetric complex Gaussian

random vector with meanp and covariance matrixJ.



coefficient vector at timen. Also, the channel realizations
are assumed to be known at the receiver but not at the
transmitter;

4. Fixed spreading codes are used within one block

R(1) = ... = R(T )
△
= R whereR(n), for n = 1, ..., T ,

denotes the spreading code correlation matrix at timen

(for nonspread systems,R(n) takes the form of an all-
ones matrix). Also, we assume equicorrelated spreading
codes, i.e.Rij = ρ ∈ R for 1 ≤ i 6= j ≤ M . Note that
0 < ρ ≤ 1 andRii = 1, for i = 1, ..., M ;

Assuming synchronous transmission, it can be shown that
the received signal (output of a matched filter at the receiver)
can be written as

y =
√

σt (IT ⊗ R)
[
D(1)T D(2)T ... D(T )T

]T

︸ ︷︷ ︸
D

h+m (1)

where⊗ and T denote the Kronecker product and the trans-
pose, respectively,D(n) is theM×M matrix obtained by the
diagonalization of then-th row of the codewordX, σt is a free
parameter proportional to the SNR andm∼CN (0, IT ⊗ R).
For a proof see, e.g., [7].

Receiver.Under the above assumptions, the conditional prob-
ability density function of the received vectory, given the
transmitted matrixX and the channelh, is given by

p(y|X , h) =
exp{−||y −√

σt (IT ⊗ R)Dh||2
R−1}

πMT (det(R))T
,

where the notation||z||2A = zHAz is used. We assume a
maximum likelihood (ML) receiver which decides the indexk
of the codeword as the index̂k such that

k̂ = argmax{p(y|Xk, h) : k = 1, 2, . . . , K}.
In words, the ML consists in a bank ofK parallel processors
where the k-th processor computes the likelihood of the
observation assuming the presence of thek-th codeword.

Codebook design criterion.In this work, the goal is to design
a codebookX = {X1, X2, . . . , XK} of size K for the
current setup. One can see that a codebookX is a point
in the spaceM = {(X1, . . . , XK) : tr(XH

k Xk) = TM}.
Remark thatM is the Cartesian product ofK spheres. First,
we need to propose a merit functionf : M → R which will
“measure” the quality of each constellationX . The average
error probability for a specificX would be an intuitively
appealing choice, but the theoretical analysis seems to be
intractable. Instead, as usual [4], we rely on a PEP study to
define our merit function. In this work we recall the Chernoff
bound of the PEP in the high SNR regime, for arbitraryX
and R. Let PXi→Xj

be the probability of the ML receiver
decidingXj whenXi is sent. It can be shown that

Eh

[
PXi→Xj

∣∣ h] ≤
(σt

4

)−M 1

det(Lij)
(2)

with Lij = (Xi − Xj)
H (Xi − Xj) ⊙ R, where⊙ denotes

the Schur product. The proof can be found in, e.g., [7].

Since det(Lij) ≥ (λmin(Lij))
M from (2) we can write

Eh

[
PXi→Xj

∣∣ h] ≤
(σt

4

)−M 1

(λmin(Lij))
M

(3)

whereλmin(Lij) is the minimum eigenvalue of the positive
semidefinite matrixLij . Although the bound in (3) is loose
we will design codebooks aiming at maximizingλmin(Lij).
The simulation results bellow will judge its effectiveness.

Problem formulation. Following the worst-case approach, we
are motivated to define the merit function

f : M → R, X = {X1, . . . , XK} 7→ f(X )

as
f(X ) = min{fij(X ) : 1 ≤ i 6= j ≤ K}

where
fij(X ) = λmin(Lij(X )).

Hence, constructing an optimal codebookX =
{X1, X2, ..., XK} corresponds to solving the following
non-linear and non-smooth optimization problem

X ∗ = arg max
X ∈ M

f(X ) (4)

From (4) we see that, forM = 1 and ρ = 1, the problem
of finding good codes coincides with the very well known
packing problem of points on a sphere [8].

III. C ODEBOOK CONSTRUCTION

Problem (4) requires the optimization of a non-smooth
function over the smooth manifoldM (Cartesian product
of K spheres). We propose an iterative method to tackle
the optimization problem in (4). The method, which we call
geodesic descent optimization algorithm (GDA), efficiently
exploits the Riemannian geometry of the constraints. In the
sequel, an overview of this iterative scheme is given (more
details can be found in [9]).

Let Xk be thek-th iterate (the initializationX0 is randomly
generated). First, the index setA of “active” constraint pairs
(i,j), i.e., A = {(i, j) : f(Xk) = fij(Xk)} is identified. Then,
we verify if there is an ascent directiondk simultaneously for
all functionsfij with (i, j) ∈ A. We search for the ascent
direction dk within TXk

M, the tangent space toM at Xk.
(Note that the search is not computationally demanding since it
consists in solving a linear program. In order to solve the linear
problem we need to determine the gradient∇fij . In Appendix,
we give its respective expression.) If there are no such ascent
direction, the algorithm stops. Otherwise, an Armijo search
for f(X ) along the geodesicγk(t) which emanates fromXk

in the directiondk is performed; see figure 1. This Armijo
search determinesXk+1 and we repeat the loop. A geodesic
is the generalization of a straight line in Euclidean space to
a curved surface [10]. In words, GDA closely assimilates a
sub-gradient method and consequently, the algorithm usually
converges slowly near local minimizers. Nonetheless, since
the codebooks are generated off-line this is not a serious
shortcoming.



Xk

γk(t)

Xk+1
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M

Fig. 1. Optimization of a non-smooth function on a smooth manifold

IV. RESULTS

We have constructed codes for three different cases of the
size of the codebookK = 8, 16 and 32. We shall compare
our codes with the schemes presented in [7]. In all simulations
the solid-plus (blue) and dashed-circle (green) curves represent
performances of codes constructed by our method, and codes
proposed in [7], respectively. In either cases, the ML receiver
is implemented. Also, we assumed a Rayleigh fading model
for the channel, i.e.,h∼CN (0, IM ). We considered the case
where T = 3, M = 3 transmit antennas,N = 1 receive
antennas,ρ = 0.3 and K = 8. In figure 2, we show the
symbol error rate (SER) versus

SNR=
E{||√σt (IT ⊗ R)Dh||2}

E{||m||2}
defined at the output of the matched filter. As we can see,
our codebook construction is only marginally better for this
particular case. Figure 3 plots the result of the experimentfor
T = 3, M = 3, N = 1, ρ = 0.3 andK = 16. It can be seen
that our codes demonstrate a gain that increases with SNR.
Figure 4 plots the result of the experiment forT = 8, M = 3,
N = 1, ρ = 0.3 andK = 32. For SER= 7 · 10−2, our codes
demonstrate a gain of2dB gain when compared with the codes
presented in [7].3

Based on the results presented in figures 2– 4 we conclude
that, when the size of the codebookK increases, our codes
are marginally better than those presented in [7] in the low
SNR regime, but significantly outperform them in the medium
and high SNR regime. The main advantage of our approach
is that, in contrast to [7] where each entry of the codeword
is constrained to phase-shift keying constellations, it exploits
all the design degrees of freedom without restricting the
codewords to have a specific structure.

As a final remark, we remind that it was shown that for
the caseM = 1 andρ = 1 (nonspread systems) the problem
of finding good codes coincides with the very well known
packing problem of points on a sphere. By using our tool we
have recovered the best known packings given by Sloane [8].4

3One can note that there is a4dB “shift” to the left when comparing the
performances of codes proposed in [7] herein and in [7]. It isdue to a different
way of defining the SNR in our work and in [7].

4All codes presented in this work, together with some sphere packings, are
available at http://users.isr.ist.utl.pt/∼marko/Publications.html

Although a novelty of the work is a tool that constructs
codebooks for arbitraryM andρ, nevertheless, we compared
our approach with that in [8] just to check what is the value
of our tool for this special scenario, i.e., the simulationswere
carried out for this particular case just to perform a “sanity
check”.
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Fig. 2. T = 3, M = 3, N = 1, ρ = 0.3 and K = 8. Solid-plus signed
curve–our codes, dashed-circled curve–codes presented in[7]. ML receiver is
implemented.
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Fig. 3. T = 3, M = 3, N = 1, ρ = 0.3 and K = 16. Solid-plus signed
curve–our codes, dashed-circled curve–codes presented in[7]. ML receiver is
implemented.

V. CONCLUSIONS

We addressed the problem of space–time codebook con-
struction for both spread and nonspread multiple-antenna
wireless systems. A new methodology for designing space-
time codebooks for this setup, taking the probability of error
of the detector in the high SNR regime as the code design
criterion was proposed. The method, called a geodesic descent
optimization algorithm, solves the resulting nonlinear and
non-smooth optimization problem by efficiently exploiting
the Riemannian geometry of the constraints. New codebooks
are obtained by this method and their performance is shown
to outperform previous state-of-art solutions. This showsthe
relevance of the codebook construction tool proposed herein.
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Fig. 4. T = 3, M = 3, N = 1, ρ = 0.3 and K = 32. Solid-plus signed
curve–our codes, dashed-circled curve–codes presented in[7]. ML receiver is
implemented.

VI. A PPENDIX

In this appendix, we calculate gradient to be used in the
GDA. Although the functionfij assumes complex valued
entries, that is

fij : C
T×M × ... × C

T×M

︸ ︷︷ ︸
K

→ R,

fij(X1, ..., XK) = λmin(Lij) where Lij =

(Xi − Xj)
H

(Xi − Xj) ⊙ R, we treatfij as a function of
the real and imaginary components ofX1, X2, ..., XK , i.e.

fij : R
T×M × ...RT×M

︸ ︷︷ ︸
2K

→ R,

fij (ℜ{X1} ,ℑ{X1} , ...,ℜ{XK} ,ℑ{XK}) = λmin(Lij).

Let λmin be a simple eigenvalue of the Hermitian matrix
Lij(C0), and letu0 be an associated unit-norm eigenvector,
so thatLij(C0)u0 = λmin (Lij(C0))u0. The differentialdfij ,
computed at the pointC0, is given by, pp. 162 in [12]

dfij = uH
0 dLiju0.

wheredLij denotes the differential of the mapC 7→ Lij(C)
computed at the pointC0. Thus, it can be easily seen that

dfij = tr



d
(
(X i − Xj)

H
(Xi − Xj)

)
UH

0 RT UH
0︸ ︷︷ ︸

C





whereU0 is the matrix obtained by the diagonalization ofu0.
Now, it is straightforward to identify the gradient. Hence,the
gradient is given by

∇fij(x) =





0(i−1)c×1

ℜ{vec(Ci)}
ℑ {vec(Ci)}
0(j−i−1)c×1

ℜ{vec(Cj)}
ℑ {vec(Cj)}

0(K−j)c×1





2KTM×1

for 1 ≤ i 6= j ≤ K, wherec = 2TM , Ci = 2 (X i − Xj)C,
Cj = −Ci and

x =
[
ℜ{x1}T ℑ{x1}T

. . . ℜ{xK}T ℑ{xK}T
]T

2KTM×1

with xi = vec(Xi).
5
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