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Abstract—In today’s large social and technological networks,
since it is unfeasible to observe all the nodes, the source of
diffusion is determined based on the observations of a subset of
nodes. The probability of source localization error depends on the
particular choice of observer nodes. We propose a criterion for
observer node selection based on the minimal pairwise Chernoff
distance between distributions of different source candidates. The
proposed approach is optimal for the fastest error decay with
vanishing noise. Although suboptimal for non-negligible noise,
through simulation, we demonstrate its applicability in achieving
low error probability. We also analyze the effect of network
topology on the resulting error by bounding the smallest Chernoff
distance for some specific networks.

Keywords—source localization, error exponent, multiple hypoth-
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I. INTRODUCTION

In order to quickly curb infectious diseases, prevent spread-
ing of rumors in social networks or identify individuals who
spread computer viruses, it is important to localize the source
of such diffusion. Due to the size of typical social or techno-
logical networks, limited resources, and privacy issues, it is not
practically possible to monitor all the network nodes. Hence,
source localization is often performed knowing only the times
when a subset of nodes became informed or infected. Nodes
whose observations are available are denoted as observer
nodes, and the performance of the source estimator depends on
the choice of the observed subset [1], [2]. Consequently, choos-
ing the most informative subset of observer nodes becomes
an important issue and several strategies have been explored
in the literature. The performance of high-degree nodes is
compared to randomly selected nodes through simulation in
[1]. Selection strategies based on different centrality measures
are experimentally evaluated in [2]. In [3], a graph theoretic
approach is used to determine the smallest subset of observer
nodes that achieves correct source localization, under a simple
deterministic propagation model.

In our diffusion model, we assume that a constant time is
needed for infection to spread from a node to its neighbor,
but each node shows infection symptoms only after some
variable time. This models the existence of incubation period,
which is the time that passes between the moment when an
individual contracts a virus until the symptoms are exhibited.
Similarly, a person might hear about a certain product and
might continue spreading the news about it to friends, but
will purchase that product only after some time. As the
exponential noise is the worst possible non-negative additive
noise [4], we model the duration of the incubation period as

a random variable with exponential distribution, independent
and identically distributed across observer nodes.

With the goal of selecting the subset of observers that
would result in low error probability, we formulate source
localization as a multiple hypothesis problem. Based on an
analysis of the error exponent for vanishingly small noise,
we propose a new criterion for observer node selection. Our
criterion is based on the smallest pairwise Chernoff distance
between distributions that characterize different source candi-
dates and it is optimal for the asymptotically noiseless case.
However, even in the presence of non-negligible noise, we
illustrate through simulation that selecting the observer nodes
based on the proposed criterion results in low error probability.

We also show that the proposed criterion is a true distance
metric. Additionally, in order to capture the effect of the
topology on the performance of the source estimator, we bound
and evaluate the maximum possible values that the proposed
metric can achieve for some specific networks.

II. SOURCE LOCALIZATION MODEL

We assume a widely studied Susceptible-Infected propa-
gation model, where once a node is infected (informed), it
remains infected (informed) [1], [5]. Initially, there is only
a single infected/informed node in the network, the source
node. At a known time, assumed 0, the source node initiates
the network diffusion, modeling the scenarios when some
known external event triggers propagation. We will assume
the network to be an undirected graph, as infections and
rumors spread through contact and ties which are typically
bidirectional. Additionally, we will consider only a connected
network, meaning that there is a path between any two nodes
in a network, otherwise some parts of the network would be
isolated and would not be relevant to the diffusion process.
We adopt a simple model of diffusion where once a node is
infected at t−1, in the next time instant t, where t is a discrete
time index, it will infect all of its neighbors, with probability
1. Given such a model, the true time of infection of a node i
corresponds to its distance to the source s, i.e. the number of
edges in the shortest path between the node and the source,
denoted as d(i, s). Assuming that resources are limited, only a
subset of nodes O = {o1, . . . , or} is monitored. The source is
then identified based on the infection times of observer nodes.
Due to scarcity of the resources, the number of observer nodes
r is typically much smaller than the total number of nodes N .

As a result of the the existence of an incubation period,
the exact time when a node becomes infected/informed is
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not known. Instead, the observations represent noisy versions
of the observer node’s distance to the unknown source. The
random duration of the incubation period is modeled as addi-
tive noise with exponential distribution. Given a source node
s, the true infection time of each observer ol, l = 1, . . . , r
we compactly denote asl = d(ol, s). Denoting the observed
infection time of observer ol as xl, we have

xl = d(ol, s) + nl = asl + nl

where nl is an exponential random variable with density
p(n) = λe−λnu(n), where u(n) is the discrete step function
(u(n) = 1 for n ≥ 0 and u(n) = 0 for n < 0). Stacking the
observations from all observer nodes into a vector, we obtain

x = d(O, s) + n = as + n.

Since we assume the noise in different nodes to be indepen-
dent, the observation density is given by

p(x; s) = λre
−λ

r∑
l=1

xl−asl
r∏
l=1

u(xl − asl ). (1)

Next, we frame source localization as a multiple hypothesis
testing problem. Each node s = 1, . . . , N in a network is a
potential source candidate and represents a hypothesis Hs with
conditional density of observations ps(x) given by (1). Without
any prior knowledge on the source position, we assume each
hypothesis has the same prior probability π = 1/N . The
maximum a posteriori probability decision rule minimizes the
Bayesian probability of error, and in our case of equal priors,
it corresponds to the maximum likelihood estimator [6]. Then
the source s∗ is selected according to

s∗ = arg max
s

ps(x),

where the ties are broken at random. The corresponding
probability of error is typically difficult to calculate and
usually not tractable. Consequently, determining the subset
of observer nodes that minimizes the overall error is not
analytically feasible. Instead, we resort to a popular approach
of asymptotically characterizing the error decay for vanishing
noise, and then selecting the subset of observer nodes that
minimizes the dominant error exponent.

III. OBSERVER NODE SELECTION

A. Error exponent

In the binary hypothesis case, with hypotheses Hi and Hj ,
the overall probability of error of the maximum likelihood
estimator Pe is bounded as [6]

Pe ≤
∫ (

1

πi
pi (x)

)α(
1

πj
pj (x)

)1−α

dx, (2)

for 0 ≤ α ≤ 1. Extending to the multiple hypothesis case, the
bound on the overall error probability is

Pe ≤
N∑
i=1

∑
j>i

Pe(i, j) =

N∑
i=1

∑
j>i

elogPe(i,j), (3)

where Pe(i, j) is the pairwise error for hypotheses Hi and Hj ,
bounded as shown in (2). For the source localization problem,
we insert (1) and the uniform prior into (2) to obtain

Pe(i, j) ≤
1

N

∫
p (x; i)

α
p (x; j)

1−α
dx

=
1

N

r∏
l=1

∫
p (xl; i)

α
p (xl; j)

1−α
dxl

=
1

N

r∏
l=1

λeλ(αa
i
l+(1−α)ajl )

∫ ∞
max{ail ,ajl}

e−λxldxl

=
1

N

r∏
l=1

eλ(αa
i
l+(1−α)ajl )−λmax{ail ,ajl}. (4)

The error probability bound (2) holds for 0 ≤ α ≤ 1,
and the minimum can be taken to achieve a tighter bound
[6]. Substituting α that minimizes the bound and taking the
logarithm on both sides of (4), we further get

logPe(i, j) ≤ log
1

N
− λC(i, j), (5)

where

C(i, j) =


r∑
l=1

I{ail>ajl}
(
ail − a

j
l

)
, 1Tai ≥ 1Taj

r∑
l=1

I{ajl>ail}
(
ajl − ail

)
, 1Taj > 1Tai

, (6)

I is an indicator function for the condition in {.} and 1 is
a vector where all entries are 1. Plugging back (5) into the
overall bound for error probability (3), we finally have

Pe ≤
N∑
i=1

∑
j>i

elog 1
N−λC(i,j). (7)

Note that for different subsets of observer nodes Or, we obtain
different distances ai = d(O, i) of each node i = 1, . . . , N ,
to the selected set Or. This in turn influences the values
obtained for the exponents C(i, j). Now we are ready to state
the proposed criterion for selection of the observer nodes.

Theorem 1: Maximum likelihood estimation of the source
based on the observations of a subset of observer nodes O∗r
that has the highest mini 6=j C(i, j) for all pairs i, j = 1, . . . , N ,
i 6= j, where C(i, j) is given by (6), achieves the fastest error
decay for vanishingly small noise among all possible observer
subsets of cardinality r.

Proof: Let (i, j) be the pair of nodes that determines the
worst exponent of (7), i.e.,

(i, j) = arg min
(k,l)
C(k, l).

Let us assume 1Tai < 1Taj . Analyzing the upper bound
on the total error (7) asymptotically, for vanishing noise, we
obtain the following bound on the error exponent

lim sup
λ→∞

log P (e)

λ
≤ −C(i, j). (8)

In order to prove that the error decays for the vanishing noise
with the rate of the worst exponent, i.e.,

lim
λ→∞

log P (e)

λ
= −C(i, j), (9)
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we first need to prove the following lower bound holds

lim inf
λ→∞

log P (e)

λ
≥ −C(i, j). (10)

Let P (e|Hs) denote the probability of an error given that
hypothesis Hs is true. Then we have

P (e) =

N∑
s=1

P (e|Hs)P (Hs) =
1

N

N∑
s=1

P (e|Hs)

≥ 1

N
P (e|Hi) =

1

N

∫
Ωi

p(x;Hi)dx (11)

where Ωi := {x : p(x;Hi) < p(x;Hk) for some k 6= i}.
Now, we consider the set Ωij = {x : x ≥ max{ai,aj}}.
Note that Ωij ⊂ Ωi; as indeed, if x ∈ Ωij then

p(x;Hi) = λre
−λ

r∑
l=1

xl−ail
and p(x;Hj) = λre

−λ
r∑

l=1

xl−ajl
.

Due to the assumption 1Tai < 1Taj we see that p(x;Hi) <
p(x;Hj). Thus, x ∈ Ωi.

Now, we further evaluate (11) as

P (e) ≥ 1

N

∫
Ωij

p(x;Hi)dx

=
1

N

r∏
l=1

λeλa
i
l

∫ ∞
max{ail ,ajl}

e−λxldxl

=
1

N

r∏
l=1

eλa
i
l−λmax{ail ,ajl}

=
1

N
e
−λ

r∑
l=1

(max{ail ,ajl}−ail)
. (12)

Next, we have max
{
ail, a

j
l

}
− ail = 0, for ail > ajl and

ajl − ail otherwise. Finally, we get the lower bound

P (e) ≥ 1

N
e
−λ

r∑
l=1

I{aj
l
−ai

l}(a
j
l−a

i
l)
, for 1Taj > 1Tai.

Reversing i and j we get the other part of the expression of
C(i, j) in (6), for the condition 1Tai ≥ 1Taj . When ai =
aj , then the two hypotheses cannot be discerned even for the
noiseless case, and hence there is no exponential error decay.
Expression (6) still holds, as the error exponent then evaluates
to zero.

Since both the upper (8) and lower (10) bound hold, so
does (9), and we conclude that the error exponent for vanishing
noise equals the smallest C(i, j). Hence, the subset Or that has
the highest mini6=j C(i, j) achieves the greatest rate at which
the error probability decreases with vanishing noise.

λC(i, j), derived above, actually represents the Chernoff
distance between distributions p(x; i) and p(x; j), i.e.

λC(i, j) = − min
0≤α≤1

log

∫
p(x; i)

α
p(x; j)

1−α
dx,

and it represents the highest achievable exponent for the decay
of the error probability in the binary hypothesis case with
asymptotically large number of observations. The result of
Theorem 1 mirrors the result available for multiple hypothesis

testing, where the best achievable exponent of the error decay
for increasing number of observations is the minimum of
N(N − 1) Chernoff distances between pi(x) and pj(x) [7].

The criterion from Theorem 1 is optimal for minimizing
the error probability only for λ → ∞. However, since exact
minimization of the error probability is often computationally
unfeasible, optimization of sub-optimum performance mea-
sures, such as the Chernoff distance, is a popular approach
in practice [8].

B. Properties of the selection criterion

We have shown that the Chernoff distance between dis-
tributions characterizing source candidates i and j equals
λC(i, j), where C(i, j) has the form given by (6). Note that
the term C(i, j) is completely independent of the noise level
λ and captures the effect of choice of observer nodes and
graph topology on the source localization error in a noiseless
scenario. Next, we show that C(i, j) has some other interesting
properties. First, we slightly change the notation, from C(i, j)
to C(ai,aj), for easier presentation, as the latter form empha-
sizes that (6) is directly a function of vectors ai and aj .

Theorem 2: C(ai,aj), given by (6), is a metric.

Proof: To show that C(ai,aj) satisfies all the conditions
for a metric, we first reformulate (6). Let v+ denote a vector
where negative entries of v are replaces with 0, i.e., v+

i =
max {0, vi}. Similarly, let v− denote a vector where positive
entries of v are set to 0, but instead of negative values, their
absolute values are taken. Then for any vector v, we have
v = v+ − v− and

‖v‖1 = 1Tv+ + 1Tv−

1Tv = 1Tv+ − 1Tv−. (13)

Summing the two expressions of (13) gives

1Tv+ =
1

2

(
‖v‖1 + 1Tv

)
. (14)

Now we can rewrite (6) as

C(ai,aj) = I{1Tai>1Taj}1
T
(
ai − aj

)+
+

I{1Tai=1Taj}1
T
(
ai − aj

)+
+ I{1Tai<1Taj}1

T
(
aj − ai

)+
.

(15)

When 1Tai = 1Taj holds, then 1T
(
ai − aj

)
= 0 and

substituting v = ai−aj in (14), we obtain 1T
(
ai − aj

)+
=

1
2

∥∥ai − aj
∥∥

1
. Again, using (14), we can rewrite (15) as

C(ai,aj) =I{1Tai>1Taj}
1

2

(∥∥ai − aj
∥∥

1
+ 1T

(
ai − aj

))
+I{1Tai=1Taj}

1

2

∥∥ai − aj
∥∥

1

+I{1Tai<1Taj}
1

2

(∥∥aj − ai
∥∥

1
+ 1T

(
aj − ai

))
Finally, we have

C(ai,aj) =
1

2

∥∥ai − aj
∥∥

1
+

1

2

∣∣1Tai − 1Taj
∣∣ . (16)

From (16), we directly see that positive-definiteness and sym-
metry hold. Substituting x = ai − aj and y = aj − ak

into ‖x + y‖1 ≤ ‖x‖1 + ‖y‖1, and x = 1Tai − 1Taj and
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Fig. 1. Unit ball in two-dimensional space for C(x,y), centered at point
(1, 1) denoted with a red circle.

y = 1Taj − 1Tak into |x + y| ≤ |x| + |y|, we see that
C(ai,ak) ≤ C(ai,aj) + C(aj ,ak) also holds. Thus C(ai,aj)
is a metric.

In the proof of Theorem 2, we have made no assumption
on the arguments ai and aj , and we have shown that C(x,y)
is a metric for any two real vectors x and y. A unit ball
defined with this metric is shown in Figure 1. The blue line in
Figure 1 contains all the points which are at distance 1 from
the red point, where distance is defined with C(x, y). Since in
our specific case spatial coordinates represent graph distances
to observer nodes, which are integers, only the vertices of the
unit ball are possible values for ai at distance 1 (given that
the ball is centered at a point with integer coordinates).

Although each pairwise distance can be calculated in
O(r) time, still

(
N
2

)
pairwise Chernoff distances need to be

calculated for each of
(
N
r

)
different subsets that are examined

in order to select an optimal subset. Next, we present some
basic bounds for the smallest pairwise distance. Let C(Or)
denote the smallest C(i, j) for all i, j pairs for a fixed subset
Or, while C(r) denotes the smallest C(i, j) for all i, j pairs
for any observer subset of cardinality r.

Theorem 3: The following bounds hold

C(Or) > 0 ⇐⇒ Or is a resolving set. (17)
C (Or) ≤ C (Or ∪ or+1) (18)
C(r) ≤ r. (19)

Proof: From (6) it follows that C(i, j) = 0 if and only
if ai = aj , i.e., if nodes i and j are equidistant to all the
observer nodes. Then the set Or cannot be a resolving set,
which is by definition a set of nodes O such that each pair of
nodes has a different distance to at least one node from O [9].

The following inequality (18) is intuitive, as it states that
the distances between distributions that characterize source
candidates will not decrease if a new node is observed, and
consequently, the error will not decrease any slower if an
additional observation is included. Including a new observer
node adds a new entry to ai and aj , which cannot decrease
either

(
ai − aj

)+
or
(
aj − ai

)+
. Then each pairwise distance

as seen from (15) does not decrease. This also holds for the
smallest distance. Note that here we only claim that for a fixed
subset, a new observer cannot decrease the distance, and hence
we also have C(r) ≤ C(r+1), but it is not generally true that
C(Or) ≤ C(Or+1), if Or 6⊂ Or+1.

Inequality (19) comes from analyzing C(i, j), when i and j
are neighbor nodes. For any observer ol, we have that d(i, ol) ∈
{d(j, ol)− 1, d(j, ol), d(j, ol) + 1} when i and j are con-
nected by an edge. Hence

∣∣∣ail − ajl ∣∣∣ = |d(i, ol)− d(j, ol)| ≤
1, and for r observers we have

∥∥ai − aj
∥∥

1
≤ r and∣∣1Tai − 1Taj

∣∣ ≤ r. Using these in (16), we have that
C(i, j) ≤ r, when i and j are neighbors, and the same then
holds for the minimal C(i, j).

In order to understand how the source localization error
differs across different topologies and what is the best possible
exponent that can be reached with any subset selection for a
given topology, we analyze the idealized case when all nodes
are monitored.

Theorem 4: For a complete network C(N) = 1, for a
star C(N) = 2, for a path C(N) =

⌈
N
2

⌉
and for a tree

C(N) ≤ max {2(τa + 1), 2(τb + 1)}, where a and b are nodes
at distance 1 to a common ancestor, and τs is the number of
descendants of node s.

Proof: Observing all nodes in a complete graph, for any
two nodes i and j, we have that d(i, ON ) and d(j,ON ) differ
only in two entries, as 0 = d(i, i) 6= d(i, j) = 1 and vice
versa, hence C(N) = C(i, j) = 1.

In a star network, d(i, ON ) and d(j,ON ) for any two leaf
nodes differ only in the entries i and j. Since d(i, j) = 2, this
pair determines the minimal C(i, j), as d(i, ON ) and d(c,ON ),
where c represents the central node, differ in all the entries.

In a path network, we label the nodes sequentially, and

denote with β =
⌊
d(i,j)

2

⌋2

if d(i, j) is an odd number, and

β = d(i,j)
2

(
d(i,j)

2 − 1
)

otherwise. Then it can be shown, and
we omit the proof for brevity, that C(i, j) = β + d(i, j) +
d(i, j) max {i− 1, N − i− d(i, j)}. The minimum is reached
for d(i, j) = 1 and i =

⌈
N
2

⌉
, and equals

⌈
N
2

⌉
.

The bound for C(N) in trees is obtained by analyzing
C(i, j), when a and b are both at a distance 1 to a common
ancestor. Then, nodes a and b are equidistant to all the nodes
except themselves and their descendants. For any node o that
is a descendent of a, we have d(o, a)− d(o, b) = d(a, b) = 2,
from which the bound follows. Although not straightforward,
this bound is useful in cases such as when a tree has two leaves
connected to the same node (like in a star network). Then
regardless of the remaining structure of the tree, or selected
observer subset, the error exponent can be at most 2λ.
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Fig. 2. A small world network example used in simulations
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IV. SIMULATION RESULTS

The proposed criterion for observer node selection is only
optimal for vanishing noise. Here, we illustrate its usefulness
even in a more practical scenario, on a randomly generated
small world network with 20 nodes, shown in Figure 2.
Small world networks represent a popular model for social
networks and the Internet, as they have a small diameter and
a large clustering coefficient. Although networks of interest
are much larger, we present a small example, as we wish to
calculate the exact probability of error for different observer
node subsets. This is computationally very intensive and we
are able to calculate the exact error probability only for
smaller networks and observer subsets. However, computing
the Chernoff distances for a fixed subset can be performed
much faster, even if it is in the order of O(N2). We analyze
the performance of different subsets of 5 randomly selected
nodes. There are in total

(
20
5

)
= 15504 possible subsets, of

which around half have a minimum pairwise Chernoff distance
of 0, the other half have the minimum distance of 1λ, while
only a single subset has the distance of 2λ. The nodes of this
subset with the highest minimal Chernoff distance are labeled
with circles in Figure 2.

We have randomly generated 200 subsets, and for each
subset we have calculated the exact error probability for noise
level λ = 1. Since the true infection times in a network
correspond to graph distances, which take integer values (in
our example network, they range from 0 to 4), additive noise
with mean 1 is significant. Figure 3 shows the distribution
of error probabilities vs. the minimum Chernoff distance for
these subsets. Each scatter point represents a random subset
of 5 nodes. From Figure 3 we observe that even for this
level of noise, the subset with the highest distance performs
better than the other subsets. We also note that subsets with
the same Chernoff distance display a range of different error
probabilities, but the average error decreases with increasing
distance.

0 0.5 1 1.5 2
0.2

0.25

0.3

0.35

0.4

minimum pairwise Chernoff distance

e
r
r
o
r
p
r
o
b
a
b
il
it
y

Fig. 3. Probability of error of different observer subsets of 5 nodes for λ = 1
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Fig. 4. Decay of error probability with vanishing noise for subsets of different
minimum Chernoff distance

Next, for each value of a minimal Chernoff distance, we
have selected a subset that achieved the lowest error, out of
200 randomly generates subsets shown in the previous Figure.
For these three subsets, we have evaluated the probability of
error for different noise levels. As λ increases, the noise level
decreases and the obtained curves are shown on a logarithmic
scale in Figure 4. As expected, the error probability for the
subset with the highest Chernoff distance decays with the
largest slope, illustrating the result stated by Theorem 1.

V. CONCLUSION

We have formulated localization of a source of network
diffusion based on infection times of a subset of nodes as
a multiple hypothesis testing problem. To accommodate for
the existence of a variable incubation time of each node, we
have assumed that the observations are corrupted by additive
exponential noise. In order to bound the error probability we
have derived the expression for the Chernoff distance between
distributions that characterize different suspect nodes. We have
shown that the subset of observer nodes with the highest
minimal pairwise Chernoff distance achieves the fastest error
decay for vanishing noise. We have proved that the proposed
criterion represents a true metric, and we have provided bounds
for it for some specific topologies. We have illustrated the use-
fulness of the selection criterion in achieving low probability
of error even in the presence of non-negligible noise through a
simulation example. As the error exponent does not depend on
the noise level, for future work we leave the investigation of its
applicability in scenarios with noise of different distributions.
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