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Abstract— We address the problem of 6D pose estimation of
a textureless and shiny object from single-view 2D images, for a
bin-picking task. For a textureless object like a mechanical part,
conventional visual feature matching usually fails due to the
absence of rich texture features. Hierarchical template matching
assumes that few templates can cover all object appearances.
However, the appearance of a shiny object largely depends
on its pose and illumination. Furthermore, in a bin-picking
task, we must cope with partial occlusions, shadows, and inter-
reflections.

In this paper, we propose a purely data-driven method to
tackle the pose estimation problem. Motivated by photometric
stereo, we build an imaging system with multiple lights where
each image channel is obtained under different lightning
conditions. In an offline stage, we capture images of an object
in several poses. Then, we train random ferns to map the
appearance of small image patches into votes on the pose space.
At runtime, each patch of the input image votes on possible
pose hypotheses. We further show how to increase the accuracy
of the object poses from our discretized pose hypotheses.

Our experiments show that the proposed method can detect
and estimate poses of textureless and shiny objects accurately
and robustly within half a second.

I. INTRODUCTION

Detecting and localizing objects in three-dimensional
space is essential for robotic manipulation. One practical
task is known as “bin-picking”, where a robot manipulator
picks objects from a bin of parts without any assistance of
an operator. For such a task, vision-based object detection
and localization can be a cost-effective solution.

In practice, however, vision-based methods encounter
some technical challenges. Industrial parts are usually made
of metal and their surfaces are highly reflective. Due to this
reflection property, the object appearance becomes highly
dependent on the distribution of light, surface material,
camera viewing direction and pose of the object. Fig. 1
shows the drastic appearance changes of an object in a bin-
of-parts image. Because of the strong specular reflection in a
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Fig. 1. Image of shiny objects with their typical appearance variations

narrow range of viewing directions, the dynamic range of the
irradiance is large, and the intensity greatly changes with a
small pose change. In addition, the inter-reflection from the
nearby objects or even the object itself can not be neglected.

A. Related work

Sparse 2D-3D feature matching. A very popular ap-
proach to the pose estimation problem is to establish visual
feature matches between an input 2D image and a 3D
object model [1], [2], [3]. However, the drastic appearance
change of a shiny object makes it intractable to find the
corresponding visual features between images of the same
object in distinct poses. Additionally, visual feature matching
only works well for objects containing locally planar textures
[3], [4], [5], [6], which industrial parts rarely have.

Template matching. Another conventional way to esti-
mate an object pose is to match whole templates to an input
image [7], [8]. In this approach, object images in many poses
are captured in a database. The object pose can be estimated
by correlating image templates in the database with the input
image, and finding the best match. Though this approach is
simple, it has two major drawbacks: long computation time
and sensitivity to the local appearance change by occlusion,
inter-reflection, shadows or small pose changes.

Recent improvements on template matching focus on
solving these two issues. The computation time can be
significantly reduced by using image pyramids and adopting
divide-and-conquer strategy methods on the structured image
database [7]. The local appearance changes can be tackled
by developing more robust appearance descriptors [10], by
representing an image as a grid of patches [8], or by using
systems that produce more stable or rich features [18],
[9]. While this approach is suitable for pose estimation of
textureless objects, the usage of image pyramids to speed
up these methods assumes that few templates can cover all
object appearances. However, shiny objects are highly view-
dependent. Thus, many templates are necessary to represent



all the variations of a shiny object and guarantee detection
across all poses.

Vote-based pose estimation. Several methods attempt
to use Hough transform for detecting objects in higher
dimensional pose space [11], [12]. As in a conventional
generalized Hough transform, each edge point votes for all
possible poses. This is inefficient because the number of
possible poses for each edge point is too large. In addition, it
depends on the binarization, which is not so stable for a high-
dynamic range image of a shiny object. Recently, similar
voting approaches based on image patches, rather than on
edge images, have been proposed using random forests for
detecting and classifying objects [13], [14] and for matching
interest points [4], [5] in 2D images. We borrow some of
these ideas to our framework in 6D pose estimation.

B. Proposed approach and contributions
In this paper, we propose a practical pose estimation

system designed for the bin-picking of a textureless and
shiny object. Motivated by photometric stereo, we build a
multi-light imaging system where each image channel is
obtained under different lightning conditions. To solve the
problem of the appearance changes without resorting to the
complicated modeling of the imaging process, we use a
fully data-driven approach. Images of an object in many
different poses are captured in advance and, at runtime, the
algorithm generates pose hypotheses by selecting images
in the database. Instead of matching the database images
directly to the input image, we propose a voting approach
to generate bottom-up hypotheses from image patches. Our
multi-light imaging system provides object images with rich
clues about the object pose, enabling the generation of
reliable pose hypotheses from an image patch.

The key contributions of this work are:
• We build a multi-light imaging system where the image

color changes with surface normal, enabling efficient
pose estimation from patches.

• We develop a data-driven method for 6D pose estima-
tion, using random ferns to map the patch appearance
into pose hypotheses votes.

• Our 6D pose estimation system handles various tex-
tureless shiny objects without a need for object-specific
tuning of system parameters.

• We make an intense evaluation on sets of 100 sequential
picking tests involving the realistic effects of occlusions,
shadows, and inter-reflections.

II. IMAGING SYSTEM USING MULTIPLE LIGHTS

To have enough discrimination between images of objects
in different poses, we created an imaging system using
multiple lights motivated by the photometric stereo method
[15]. In this section, we briefly review the photometric stereo
method and discuss about its limitations in our case.

A. Photometric stereo and its limitations
Photometric stereo [15] is a method to reconstruct a

surface from its orientation estimated from its responses to
multiple lights. Assuming that the surface is Lambertian, and

there is no ambient light, the intensity I of a point is related
to its surface normal n and the light direction L as I = rn>L,
where r is an albedo of the point. For multiple light sources
at known positions, the equation can be stacked

⇥
I1 I2 I3

⇤
= rn> ⇥

L1 L2 L3
⇤
, (1)

and the surface normal n and its albedo r can be estimated
by solving the linear system. Once the surface normal for
every single point is estimated, the surface shape can be
reconstructed by integration.

The above algorithm is based on some assumptions which
are not appropriate for our case. First, the surface of shiny
objects is not Lambertian, and the imaging process can not be
described as simply as Eq. (1). To model the imaging process
for a shiny surface, an accurate bidirectional reflectance
distribution function (BRDF) is required, which is not trivial
to obtain. In addition, the above algorithm assumes that all
the light directions are known and, more importantly, each
intensity value is affected by only one light ray. In practice,
these assumptions are useful only when using point light
sources or parallel lights with accurate system calibration,
which are hard to achieve in a factory site.

Rather than trying to estimate the surface orientation by
modeling the imaging process accurately, we just collect the
images by switching lights one by one. We assume that
neither the surface reflectance property like a BRDF nor
the light distribution of multiple lights is known. Objects
can be complex, being composed by different materials or
having different finishings along the surface. The collection
of images implicitly encodes the surface orientation, and
discriminates between poses of the object. Our data-driven
classifier utilizes this discrimination without complex imag-
ing models and their calibration process.

B. System implementation and multi-light image
Fig. 2 shows the implemented imaging system. It has three

incandescent light bulbs, which are easily available from a
retail store. The lights are about 1 meter high from the object
and roughly located at vertices of a regular triangle. A B/W
camera is about 1.75 meters high from the object and aims to
the center of the bin. To minimize the effects of the ambient
light from fluorescent lights on a ceiling, a 720nm IR filter
is attached in front of the lens.

Because our system has three light sources, we collect the
images in three channels of a RGB image as shown in Fig. 3.
We call this a multi-light image, and each color encodes the
orientation of the surface. Because the light sources are not
far enough to be parallel, the color depends not only on the
surface orientation but also on the location of the surface,
being not possible to have a one-to-one mapping between
color and surface orientation.

C. Database collection
The proposed pose estimation method is data-driven.

Therefore, we need to collect images of an object in many
different poses, to make a database. In order to automate
the data collection, we built the rotation stage with three



Three incandescent light bulbs

A B/W camera with an IR filter

Fig. 2. Three light source system. Left: Conceptual diagram. Right: Real
implementation of the multi-light source imaging system with a rotation
stage for database collection.

Fig. 3. Multi-light image. Left: a gray image under the natural illumination.
Right: a multi-light image captured by the three light sources in Fig. 2. (Best
viewed in color)

rotation axes, shown in Fig. 2. We estimate the object pose
with respect to the camera using the checkerboard on the
rotation stage.

The number of images in the database determines the
resolution of the pose hypothesis. We uniformly sample the
3D rotation angles. If the object is two-sided as shown in Fig.
2, both sides should be collected independently. Typically,
we capture about 16600 images of an object for both sides,
and in this case, the orientation resolution is approximately
4-degree.

III. DATA-DRIVEN POSE ESTIMATION

Three-dimensional pose estimation includes detecting an
object and estimating its pose in the 3D space. We propose
a data-driven method based on random ferns to solve both
tasks simultaneously. Utilizing the distinctiveness of images
in various object poses, pose hypotheses can be generated
effectively. Each patch generates bottom-up proposals of
object poses, and all the information from image patches
are aggregated to create valid pose hypotheses.

A. Pose Estimation by Patch Voting
Given an input image I, our problem is to find a 6D object

pose p= (tx, ty, tz,r,q ,f) with position (tx, ty, tz) and rotation
angles (r,q ,f), which can be formulated as

argmax
p

P(p|I). (2)

Since in our context it is hard to write a realistic expression
for P(p|I), we propose a series of approximations.

We consider a discrete version of the problem by
performing the search on a set of interest poses pi =
(txi, tyi, tzi,ri,qi,fi), i = 1,2, ...,n:

argmax
i

P(pi|I). (3)

Defining the object position in the image plane as
(xi,yi) = (txi/tzi, tyi/tzi) and the remaining pose information
as ci = (tzi,ri,qi,fi), problem (3) becomes

argmax
i

P(xi,yi,ci|I). (4)

Inspired on a recent work in 2D object detection [13], our
subsequent idea is to use many small image patches to vote
for object poses. The votes for a pose (xi,yi,ci), from a set
of small image patches Mj(x j,y j), centered at (x j,y j), are
accumulated in a non-probabilistic way as

A(xi,yi,ci) = Â
j

P(xi,yi,ci|Mj(x j,y j)), (5)

In order to learn the patch votes P(xi,yi,ci|Mj(x j,y j)) at
the training stage, one would need to collect images of the
object across all possible poses (xi,yi,ci). However, under the
assumption of parallel light sources and orthographic camera,
the appearance of the object, as well as a patch centered at
a fixed point on the object, remains the same while varying
(xi,yi), with ci fixed. Under this assumption, the patch votes
in our system depend on the relative position between the
object and the patch, rather than their absolute positions. As
a result, the patch votes can be rewritten as P(xc,yc,ci|Mj),
where (xc,yc) = (xi �x j,yi �y j) is the position of the object
in the image, relative to the patch center.

At the training stage, each patch Mj(x j,y j) of a database
image with object pose (xi,yi,ci) contributes to the proba-
bility P(xc,yc,ci|Mj) of having the object at position (xc,yc)
from its center and at depth and orientation ci. Then, we use
this probability in the online stage to cast votes for the pose
of a part given the local appearance Mj of a patch. From
now on, we will refer to ci not as (tzi,ri,qi,fi) but as the
corresponding database image index, for convenience.

Two practical issues are 1) obtaining the object position
(xc,yc) in the database images, and 2) describing the local
appearance of a patch Mj.

1) Position of the object in the image: We define the
position of the object in each database image as the center
of the image region that the object occupies. In practice,
each database image has its 6D object pose data (xi,yi,ci),
estimated by the checkerboard pattern, as shown in Fig. 2.
Given the object pose and CAD model, the imaged region
of the object is obtained by projection and its mass center is
computed as a 2D centroid.

2) Describing the patch appearance: Describing the ap-
pearance of a patch is complex, given its gargantuan number
of possible appearances. To tackle this problem, we construct
a codebook of appearances using a large set of patches from
our image database, and associate each patch appearance Mj
with a cluster label. Then, the probability P(xc,yc,ci|Mj) is
computed for each patch label L in the codebook and not for
all possible patch appearances Mj. In the sequel, we explain
how we construct this codebook.

B. Clustering the local appearance using random ferns
In order to use the voting scheme in Eq. (5), we need the

voting information of database patches that are similar to the



ones in the input image. One possible approach is to search
exhaustively for the input patch in the entire database, and
then vote with the pose information of the database patch
found. However, the number of patches in the database is
huge, being more than 100 million for our experiments. The
dimension of n⇥ n patches is 3n2 when using three light
sources, which is also very large for our patch size n = 17.

Alternatively, we can use fast approximate nearest neigh-
bor (NN) search methods to query large databases. These
methods usually use KD-trees, hierarchical k-means trees or
ferns, where the querying time grows logarithmically with
the database size. Using trees, a basic search for a NN
candidate corresponds to traverse the tree, and upon reaching
a leaf node, perform exhaustive search on the data points in
that leaf. We point out that NN search requires all the data
to be in memory, which is intractable for our database size.
Additionally, the NN candidate might be the correct match
with low probability, due to the image noise, and we might
have multiple similar data points with useful information for
the voting step.

We construct a discriminative codebook where we store
just the data statistics at the leaf nodes, i.e., P(xc,yc,ci|L), not
raw data points Mj, avoiding the need of a colossal amount
of memory for the high-dimensional appearance data Mj. At
query time, we find the leaf node of each patch by traversing
the tree, and obtain the statistics for the leaf.

To construct the codebook, we have to choose the tree
questions at the training step. Given the large size of our
database, we need a tree that is easy to train, consumes low
memory, and has short retrieval time. Optimally designing
a hierarchical k-means tree or a KD-tree requires solving
large-sized optimization problems. In addition, for a tree with
m�levels, storing 2m questions consumes a large amount of
memory. Instead, we use a random fern, which is a binary
tree with one question per level. Its questions are designed
via an easy random process, described below. Having only
one question in each level of the m�level tree, independent
of the ancestors, a fern becomes easily parallelizable. More-
over, there are only m questions to store in memory.
C. Random fern with simple binary questions

Now, the problem is to design the m questions that
constitute a fern. We use simple binary questions

qi(M) =

⇢
1 if M(pi1)�M(pi2)< t
0 otherwise (6)

at each level i of the fern, which compares two intensity
values in the patch M at pi1 and pi2. In our case, the
image has multiple channels, so pi j = (xi j,yi j,ci j) includes
the channel c as well.

The number of possible binary questions for n⇥n three-
light image patches is 3n2 ⇥3n2, which makes the design of
the m questions a large optimization problem. We randomly
choose two points in each channel. Though the resulting
fern is not well balanced, similar patches are clustered
successfully.

In the training stage, each leaf of the fern collects the
centroid locations and pose indices of the patches which have

p2

p1

Fig. 4. Binary questions in a fern. For small t , the binary question defined
in (6), between p1 and p2 is stable for the given patch, but the one between
p2 and p3 is highly dependent on the camera noise. (Best viewed in color)
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Fig. 5. Training of the probability P(xc,yc,ci|L)

the same label. The probability P(xc,yc,ci|Mj) is computed
for all the possible labels as P(xc,yc,ci|L) = 1/q where q is
the number of database patches Mj assigned with the label
L. Fig. 5 shows the training procedure.

A few remarks are in order.
1) Level of the fern: As discussed before, each patch in

the database is assigned an m�bit binary sequence label.
For about 130 million patches in our database, we still use
27 levels of the fern so that we have 227 possible label.
Definitely, this over-segments the patch space. In practice,
only about 10% out of 227 labels are used, and based on this
statistics, we can reduce the number of levels by 4.

However, the oversegmentation of the patch space is
useful. The first reason is that the fern is not balanced.
Some of the labels are assigned to too many patches, and
the probability P(xc,yc,ci|L) becomes too small. By over-
segmentation, the number of useful labels becomes larger. On
the other hand, some similar patches happen to be scattered
into multiple leaves. This is not a problem because similar
patches in the input images should be one of the leaves and
vote for the correct pose hypothesis.

Some input image patches in the online stage may have
wrong labels due to image noise. In this case, by over-
segmentation, wrong votes are most likely to be scattered
randomly because the wrongly assigned label is randomly
selected by the image noise. Though the intentional overseg-
mentation works well, too much oversegmentation requires
a lot of memory. Thus, the available memory should be
considered when choosing the depth of the fern.

2) Dealing with multiple channels: The multi-light image
captured by our system in Fig. 2 implicitly encodes the
surface normal information in the form of color. However,
as we discussed, we define each question within a single
channel, but not across channels. This is mainly because the



light sources in our system are not far enough, which creates
different colors for the same oriented surface at different
locations. Therefore, the color can not be mapped into a
surface orientation. However, the local change in surface
orientation still produces local color change, and thus, the
question in the comparison form in Eq. (6) is meaningful in
each channel. To use all three channels equally, we use the
same number of questions for each channel.

If the light sources are far enough to be assumed parallel,
then the color can be mapped directly to the surface ori-
entation. In this case, the questions across channels can be
chosen at random.

3) Homogeneity and Threshold t in questions: The ques-
tions in Eq. (6) compare two intensity values. Thus, the
m�bit binary label of a fully homogeneous image region
is selected randomly by the image noise. We tackle this
problem in two different ways.

First, we choose only the patches which have large
gradient for the voting process, reducing the chance of
asking questions in homogeneous regions. This preprocess-
ing rejects a large amount of patches that have low in-
formation about pose, and greatly reduces the voting time
since repeated homogeneous patches appear frequently in the
database of a textureless object.

Second, we should set the threshold t in Eq. (6). Even
in the patches containing large gradients as in Fig. 4, some
patch questions are on the homogeneous region. By setting
t properly, the patch clusters become stable. The threshold t
is the noise level of the pixel intensity, which is not a fixed
number for every intensity level [16].

We tested two different strategies: using a fixed threshold
t =0, 5, or 10 for all questions, and randomly selecting t
for each question within a range [0,20]. In almost all the
cases there is no significant performance variation, with the
exception of t ⇡ 0, where the overall performance degrades
a little. This is mainly because the intentional oversegmen-
tation properly handles the wrong labeling by image noise.

D. Online algorithm
The online algorithm is straightforward. For each patch

Mj in the input image, we obtain its label L by asking the
m questions, and retrieve the list of votes (xc,yc,ci) in the
database. By accumulating all the votes from all the patches,
the best pose hypotheses are generated. As in the training
stage, homogeneous patches do not participate in this online
voting process. We discuss now the strategies for speed and
robustness of our algotithm.

1) Speeding-up: pose marginalization: Though the online
algorithm is simple, it requires a huge 3D accumulator of
(xi,yi,ci). For example, if the image size is 1024⇥768 and
the number of database images, i.e. possible poses, is 16600,
the number of the accumulator bins is more than 12 billion.
Searching for best hypotheses in this huge three-dimensional
accumulator takes a long time.

To accelerate the search, we propose a two-step search
method by marginalization of pose indices ci. In the initial
voting stage, a two-dimensional voting accumulator A(xi,yi)

Algorithm 1: Pose hypothesizing algorithm

Given a set of votes (xc,yc,ci) for each label L, and m
questions designed in the training
1. Compute the image gradient in the input image
2. Choose pixels (x j,y j) on large image gradients
3. Allocate memory for the voting accumulator A(xi,yi)
and the sparse accumulator for poses Api(xi,yi)
4. for each pixel (x j,y j) do

4.1 Label (L) the image patch at (x j,y j) by asking
the m questions
4.2 Retrieve the set S of votes (xcl ,ycl ,cl) of the
label L, with cardinality |S|
4.3 Compute P(xcl ,ycl ,cl |L) = 1/|S|
4.4 for each vote (xcl ,ycl ,cl) do

Add P(xcl ,ycl ,cl |L) to A(x j + xcl ,y j + ycl)
Concatenate to Api(xi,yi) the pose index and its
vote {cl , P(xcl ,ycl ,cl |L)}

5. Search for peaks (xp,yp) in A(xi,yi)
6. Retrieve the votes for all poses in the peaks (xp,yp)
from Api
7. Accumulate votes P(xc,yc,ci|L) for pose index ci
using neighbor poses
8. Search for the best pose hypotheses among (xp,yp,ci)

for object centroids (xi,yi) is considered by evaluating
A(xi,yi) = Â

i
P(xi,yi,ci)

= Â
i

Â
xc,yc

P(xc,yc,ci|L(M(xi � xc,yi � yc)))
(7)

where L(M(xi � xc,yi � yc)) is a label of the patch M at
(xi � xc,yi � yc). Peaks in the A(xi,yi) are most likely to
have the best hypotheses in 3D (xi,yi,ci) if wrong votes are
randomly scattered. This random scattering is achieved by
oversegmentation, as discussed in Sec. III-C.1. Eq. (7) is
simply achievable by labeling each patch and accumulating
its votes in the accumulator independently, as shown in
Algorithm 1.

Once the peaks in the 2D accumulator A(xi,yi) are picked
up, we search for the best pose hypotheses in the 3D
distribution P(xi,yi,ci) only in the selected peaks (xp,yp),
which is a simple one-dimensional search. For this search, we
have another accumulator Api(xi,yi) that contains the votes
for each pose at each pixel (xi,yi). Because only a few pose
indices are voted for each pixel, Api(xi,yi) is an array of lists
containing pose indices and votes for (xi,yi,ci) for efficient
memory usage and faster search.

Since the number of bins visited in the two-step
search process greatly reduces compared to the original 3-
dimensional search, that would have more than 12 million
bins in our setup, generating pose hypotheses becomes much
faster.

2) Neighboring poses: Similar poses tend to have very
similar patches in the object database. However after refor-
mulating the original 6D pose estimation into a 3D search



Fig. 6. Pose hypothesis by the proposed algorithm and refinement. Left: A
pose hypothesis in (xi,yi,ci) is misaligned. Right: After the pose refinement,
the model is aligned accurately. (Best viewed in color)

for (xi,yi,ci), the discretized pose index ci does not contain
information about the pose similarity anymore.

To alleviate this problem, we adopt another information
aggregation after marginalization. For each peak (xp,yp) in
A(xi,yi), patches contribute to the similar pose hypotheses
(xi,yi,ci). All the votes within a local neighborhood at
(xp,yp) accumulate their voting score to pose index ci as
well as their neighboring pose indices with a weight factor
representing the pose difference. The neighboring poses are
precomputed in the training stage. Each pose index has a
fixed number of neighboring poses.

This additional information aggregation improves the ro-
bustness to errors by pose quantization. The online pose
hypothesis generating algorithm is shown in Algorithm 1.

E. Pose Refinement

The generated pose hypothesis (xi,yi,ci) is in discretized
space. As the object pose of the input image in continuous
6D pose space may not be exactly the same as the discretized
pose of the database image, the pose hypothesis is not
accurate, as shown in Fig. 6. Denser sampling of the database
poses may alleviate this problem, but can not eventually solve
it. We describe how to upgrade the discretized pose into 6D
continuous space, and our criteria for rejection of wrong pose
hypotheses.

1) Procedure: To estimate a more accurate 6D pose,
we refine the object pose starting from the discrete pose
hypothesis. Assuming that the pose hypothesis is close to
the object pose in 6D, an incremental pose update is made
by using a visual servoing method. First, an object boundary
of the pose hypothesis is extracted by projecting the CAD
model in the image, and the corresponding 3D coordinates
are collected from the CAD model. Once the computed
object boundary is overlaid on the image, we search for
the correspondence of each boundary pixel in the image.
At each boundary pixel, we first compute the direction
of the projected boundary and then choose the strongest
gradient point along its perpendicular, within a small range,
as the correspondence. We validate this correspondence by
checking if the boundary pixel direction and the gradient
directions at the corresponding image point are similar. After
establishing all the correspondences between the input image
and the CAD model boundary, the 6D part pose is updated
by calculating the image Jacobians. This is a conventional
visual servoing based object pose refinement procedure[17].

TABLE I
DETECTION PERFORMANCE OF 100-PART PICKING TEST

Rank number of detections false alarm inaccurate pose
1 498 (99.6%) 1 (0.2%) 11 (2.2%)
2 447 4 (0.89%) 20 (4.47%)
3 341 1 (0.29%) 13 (3.81%)
4 218 4 (1.83%) 11 (5.04%)
5 96 1 (1.04%) 6 (6.25%)

Total 1600 11 (0.7%) 61 (3.8% )

2) Speeding-up: boundary precomputation: In practice,
extracting 3D boundary points by rendering the object in
a given pose takes a long time. To make it faster, we pre-
compute all the 3D boundary points in each database image
in advance. In the refinement process, only the precomputed
3D points are projected. This makes us to avoid the time-
consuming boundary point computation in the iteration loop.

3) Rejecting hypotheses: Pose estimation using random
ferns sometimes proposes wrong pose hypotheses, especially
when a small number of objects exist in the image. We use
the matching score of the pose refinement as an evidence of
the existence. In searching for the boundary correspondences,
we measure the ratio of valid matches out of all the points.
If the ratio is less than a certain threshold, we simply reject
the pose hypothesis.

IV. EXPERIMENTS

In this section, we show how the proposed method works
step by step, and analyze its performance in accuracy,
robustness, and computation time.

A. Pose estimation examples
Fig. 7 shows the intermediate results of the proposed

method searching for “bracket” objects. The multi-light im-
age shown in Fig. 7(a) is captured by the proposed imaging
system in Fig. 2. After voting from each image patch, there
exist a few peaks in the marginalized 2D voting image
A(xi,yi) as shown in Fig. 7(b). Fig. 7(c) shows the pose
hypotheses selected at the highest peak points, which are
fairly accurate. Note that several pose hypotheses can be
generated at a single (xi,yi) peak. The pose refinement and
rejection provided accurate pose estimation in 6D space as
shown in Fig. 7(d).

In Fig. 8, we show that the flexibility of the proposed
method. Fig. 8(a) is an input multi-light image which con-
tains two kinds of objects. Because the image has only four
“bracket” objects, some of the pose hypotheses from 10
peaks are wrong, as shown in Fig. 8(b). Fig. 8(c) shows
that the pose refinement successfully rejects all the wrong
hypotheses.

On the other hand, detecting the other objects is success-
fully done by just changing the object-specific database as
shown in Fig. 8(d). This flexibility is appreciated for handling
many different parts in a same system setup.

B. Detection performance
To test the detection performance of the proposed method,

we designed a “100-part picking” test. At first, we randomly
stacked 100 parts in the image field of view, and tried



(a) Input multi-light image (b) Voting in 2D (c) 50 pose hypotheses (d) Top 5 detections

Fig. 7. Step-by-step pose estimation procedure. We obtained the multi-light image (a) using the proposed imaging system with three lights in Fig. 2.
After voting, the candidate object locations are collected from the marginalized votes (b). Then, pose hypotheses (c) are at the candidate object locations,
which are close to the actual object poses. The final detection (d) is obtained through pose refinement. (Best viewed in color)

(a) Input multi-light Image (b) 50 pose hypotheses (c) Detection results (d) Detection of another object

Fig. 8. Object specific detection. The scene has two kinds of objects (a), and some of the pose hypotheses (b) are incorrect. The pose refinement
successfully rejects the incorrect hypotheses. The exactly same binary code can be used for other object (d) by changing the object-specific database. (Best
viewed in color)

detecting object poses using the proposed method. Once
the proposed algorithm detected object poses, we picked up
one object, and repeated the detection again. We conducted
the test five times, and processed 500 images in total. The
proposed method reports the matching score of the detected
poses, and Table I shows the statistics of the best 5 pose
hypotheses. The method failed to detect object poses only in
two images out of 500. In total, 1600 poses were detected and
the overall false alarm rate is 0.7%. For the best pose, only
one false alarm happened out of 500. The pose estimation
never failed for an image with less than 5 objects.

Sometimes, pose refinement is trapped by the nearby
strong image gradient. It happened 3.8% in total and 2.2%
for the best pose detected.

C. Accuracy
As we discussed in Section II-B, the light sources in the

system are not far enough to be parallel, and surfaces in
the same orientation at different position may have different
colors. Because of the position dependency, the database
image is not identical to the input object image, even though
the object orientation is the same.

To test the accuracy depending on the position, we con-
ducted experiments by changing the orientation and position
of the object. We located an object right under the camera
at first, and moved it using a rotation stage and a linear
guide in each direction. At each position, we collected 100
multi-light images to check the repeatability. Fig. 9 shows
the result statistics.

Because the camera is located at 1750 mm high, which
is much longer than the object size, rotation in X and Y
axes and translation in Z direction is less accurate than the

TABLE II
PROCESSING TIME FOR DETECTING UP TO 5 POSES WITH 50 POSE

HYPOTHESES

Process Average [ms] St. Dev. [ms]
Choosing voting points 69.1 6.7

Labeling and Voting 136 41.7
Generate pose hypotheses 75.4 21.6
Testing pose hypotheses 164 35.6

Total 445 76.5
HALCON [-30�,30�] 839 101
HALCON [-50�,50�] 2446 243

others. We noticed that the X, Y location and the rotation in
Z axis is very accurate even though the multi-light images are
position-dependent. This is because our method does not use
the absolute intensity, but only rely on the intensity difference
in each channel, as discussed in Section III-C.2.

In addition, the pose refinement improves the performance
significantly. A pose hypothesis is one of the discretized
poses in the object database. Fig. 9 shows that the pose
refinement corrects the error by the discretization. Rotation
estimations in X and Y axes are also stabilized well. In
estimating a depth (Z position), one can note that all the
pose hypotheses have the same depth, because the database
images were collected with the same depth (around 1750
mm). The pose refinement successfully estimates the depth.

D. Speed
Table II shows the computation time in each online

process for detecting up to 5 poses. We used a 3.2GHz Intel
QuadCore processor with 3GB memory for this test. In this
case, at most 50 pose hypotheses were tested after picking up
10 peaks in the marginalized 2D voting image A(xi,yi). We



(a) Experimental setup.
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Fig. 9. Accuracy analysis in various poses. The camera was located about 1750mm high from the object and the axis is set as shown in (a). Under
rotations in each axis, the proposed method accurately estimate the rotations (b,c,d). Translations in each axis were also well-estimated after the pose
refinement (e,f,g). For each pose, 100 trials were made.

used a set of 100-picking test data for this analysis. Speed
of the labeling process depends on the number of voting
points, which are determined by the complexity of the input
image. In average, the whole process is done in about 500
ms per image. Testing hypotheses by pose refinement takes
a longest time, and it is linearly proportional to the number
of pose hypotheses. If a user wants to detect just one pose,
the number of hypotheses can be reduced. Compared to a
commercial implementation HALCON by MVTec [7], the
proposed method runs faster. The processing time of the
HALCON system using template matching depends on the
pose coverage. For similar pose coverage of [-50�,50�], the
proposed method runs about 6 times faster.

V. CONCLUSIONS
We proposed a practical method for detecting and local-

izing 3D shiny objects. The appearance of a metal surface
greatly changes with the illumination direction, the viewpoint
and its orientation, making it hard to detect.

By using our data-driven method for pose estimation, the
large appearance variation becomes useful, since patches are
very informative about pose. We build a inexpensive multi-
light imaging system where the image color changes with the
surface normal, making the patches even more distinctive.
The detection and localization problem is reformulated as
a database search problem, and the large diversity of the
appearance helps the search. The database search is achieved
by aggregating observations of image patches. Specifically,
each input image patch corresponds to one cluster of patches
in the database, and votes for possible locations and poses.
The corresponding cluster is indexed by m binary questions
which are selected randomly. Pose hypotheses with most
votes are tested using the subsequent pose refinement.

Experiments show that the proposed detection and lo-
calization is successfully done in about 500 milliseconds.
Additionally, applying it to another object is done by just
changing the object database, without the need for any code
or parameter modification.
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