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Abstract This paper describes novel algorithms for recov-
ering the 3D shape and motion of deformable and articu-
lated objects purely from uncalibrated 2D image measure-
ments using a factorisation approach. Most approaches to
deformable and articulated structure from motion require to
upgrade an initial affine solution to Euclidean space by im-
posing metric constraints on the motion matrix. While in the
case of rigid structure the metric upgrade step is simple since
the constraints can be formulated as linear, deformabilityin
the shape introduces non-linearities. In this paper we pro-
pose an alternating bilinear approach to solve for non-rigid
3D shape and motion, associated with a globally optimal
projection step of the motion matrices onto the manifold of
metric constraints. Our novel optimal projection step com-
bines into a single optimisation the computation of the or-
thographic projection matrix and the configuration weights
that give the closest motion matrix that satisfies the correct
block structure with the additional constraint that the projec-
tion matrix is guaranteed to have orthonormal rows (i.e. its
transpose lies on the Stiefel manifold). This constraint turns
out to be non-convex. The key contribution of this work is to
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Marko Stošić E-mail: mstosic@isr.ist.utl.pt
ISR - Instituto Superior Técnico, Lisboa, Portugal.
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introduce an efficient convex relaxation for the non-convex
projection step. Efficient in the sense that, for both the cases
of deformable and articulated motion, the proposed relax-
ations turned out to be exact (i.e. tight) in all our numer-
ical experiments. The convex relaxations are semi-definite
(SDP) or second-order cone (SOCP) programs which can be
readily tackled by popular solvers. An important advantage
of these new algorithms is their ability to handle missing
data which becomes crucial when dealing with real video
sequences with self-occlusions. We show successful results
of our algorithms on synthetic and real sequences of both
deformable and articulated data. We also show comparative
results with state of the art algorithms which reveal that our
new methods outperform existing ones.

1 Introduction and Previous Work

The combined inference of the motion of a camera and the
3D geometry of an unconstrained scene viewed solely from
a sequence of images is a longstanding challenge for the
Computer Vision community. The fundamental assumption
which has allowed robust solutions to the problem is that of
scene rigidity. However, when dealing with image objects
that vary their 3D shape, the Structure From Motion (SfM)
problem becomes inherently ambiguous and non-linear. The
seminal work of (Bregleret al., 2000) was the first to deal
with the case of deformable objects viewed by a single cam-
era. Their key insight was to use a low-rank shape model
to represent the deforming shape as a linear combination of
k basis shapes which encode its main modes of deforma-
tion. This model not only provided an elegant extension of
the rigid factorisation framework (Tomasi & Kanade, 1992)
but has also opened up new computational and theoretical
challenges in the field.
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Although this low-rank shape model has proved a suc-
cessful representation, the Non-Rigid Structure from Motion
(NRSfM) problem is inherently under-constrained. Most ap-
proaches formulate the problem as an optimisation problem
where the objective function to minimise is the image repro-
jection error. Recent methods focus on overcoming the prob-
lems caused by ambiguities and degeneracies by proposing
different optimisation schemes and the use of generic pri-
ors. Prior knowledge that the reconstructed shape does not
vary much from frame to frame was used in (Aanæs & Kahl,
2002) while in (Del Bueet al., 2006) the constraint imposed
was that some of the points on the object are rigid. Both
approaches use bundle adjustment to refine all the parame-
ters of the model together. A coarse to fine shape model was
introduced in (Bartoliet al., 2008) where new deformation
modes are added iteratively to capture as much of the vari-
ance left unexplained by previous modes as possible. Other
authors (Torresaniet al., 2008) have also argued that sim-
ple linear subspace shape models are extremely sensitive to
noise and missing data so statistical priors should be used
to constrain the parameter space. Torresaniet al. introduced
priors as a Gaussian distribution on the deformation weights
which represents an explicit assumption that these will be
similar to each other for each pose. They then generalise the
model to represent linear dynamics in the deformations. All
these approaches impose orthonormality constraints on the
rotation matrices through parameterisation.

One advantage of the linear subspace model is that it has
allowed closed form solutions for the cases of both affine (Xiao
et al., 2006) and perspective (Xiao & Kanade, 2005; Hart-
ley & Vidal, 2008) viewing conditions. In the affine case
Xiao et al. proved that orthogonality constraints were insuf-
ficient to disambiguate rigid motion and deformations (Xiao
et al., 2006). They identified a new set of constraints on the
shape bases which, when used in addition to the rotation
constraints, provide a closed form solution to the problem
of NRSfM. Later they extended the approach to the perspec-
tive case (Xiao & Kanade, 2005). Similarly, Wang and Wu
propose a new camera model approximating a full perspec-
tive camera and enforcing basis constraints when estimating
NRSfM (Wang & Wu, 2009). However, every solution em-
ploying basis constraints is known to be very sensitive to
noise (Brand, 2005; Torresaniet al., 2008) and to the se-
lection of the basis constraints. Brand describes a modified
version of this algorithm using weaker constraints on the
basis and nonlinear optimisation which improves the solu-
tion (Brand, 2005). Interestingly, Akhteret al. have recently
argued that the use of the basis constraints is not necessaryto
compute a valid solution for the NRSfM problem. An exact
3D reconstruction can be obtained by solving the problem
with the appropriate structure when upgrading for the met-
ric constraints (Akhteret al., 2009). However, their theoreti-
cal insight is not followed by a closed-form solution and the

authors revert to non-linear optimisation in order to find the
correct solution. Recently Hartley and Vidal have proposed
a new closed form linear solution for the perspective camera
case (Hartley & Vidal, 2008). This algorithm requires the
initial estimation of a multifocal tensor, for which a linear
method exists. The tensor is then factorised into the projec-
tion matrices and then simple linear algebraic techniques are
used to enforce constraints on the projection matrices and
estimate explicitly the corrective transformation. Although
the entire approach is linear, the authors report that the initial
tensor estimation and factorisation is very sensitive to noise.
Moreover, none of the closed form solutions proposed so
far can deal with missing data which becomes crucial when
dealing with real video sequences.

Recently, a set of new approaches have departed from
the low-rank linear shape model. Rabaud and Belongie as-
sume that only small neighbourhoods of shapes are well
modelled with a linear subspace (Rabaud & Belongie, 2008).
They then adopt a manifold learning framework tailored to
the NRSfM problem to constrain the degrees of freedom of
the deforming object. A dual formulation of NRSfM has
been proposed by Akhteret al. who describe the evolving
3D structure of a non-rigid body in trajectory space as a lin-
ear combination of basis trajectories (Akhteret al., 2008).
The obvious advantage of using trajectory rather than shape
space is that there is no need to estimate an object dependant
basis. Instead the trajectory bases are object independent
and only the coefficients need to be computed. The authors
use the Discrete Cosine Transform, therefore low frequency
bases model smooth deformations while higher frequency
bases model more complex deformations. Quadratic models
for NRSfM have been proposed by Fayadet al. to describe
more accurately deformations which involve strong bend-
ing motions, stretching or twists. The increased descriptive
power of this model is paid with increased complexity and
non-linearities in the parameter space (Fayadet al., 2009).

Articulated motion has also been recently formulated us-
ing a structure from motion approach (Tresadern & Reid,
2005; Yan & Pollefeys, 2008) modelling the articulated mo-
tion space as a set of intersecting motion subspaces — the
intersection of two motion subspaces implies the existence
of a link between the parts. Articulation constraints can then
be imposed during factorisation to recover the location of
joints and axes. While Yan and Pollefeys only compute the
location of joints and axes on the image plane and do not
perform a 3D reconstruction, Tresadern and Reid go further
and compute the metric upgrade, but only recover a linear
approximation of the correcting transformation (Tresadern
& Reid, 2005). Both approaches require full data and there-
fore cannot deal with missing tracks, a situation that com-
monly occurs for instance when tracking humans.
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1.1 Related Work and Contributions

In this paper we present a new unified approach to perform
the metric upgrade in the cases of articulated and deformable
structure viewed by an orthographic camera in the presence
of missing data.

In the non-rigid case our approach is most closely related
to Torresaniet al.’s and Wanget al.’s trilinear schemes (Tor-
resaniet al., 2001; Wanget al., 2008). Both approaches
use an identical alternating least squares framework to es-
timate the configuration weights, basis shapes and ortho-
graphic camera matrices, solving iteratively for each of the
unknowns leaving the others fixed. The only difference be-
tween these two approaches is in the way that the ortho-
graphic camera matrices are updated and the metric con-
straints imposed – the other two steps in the alternation are
identical.

While Torresaniet al. enforce the exact metric constraints
through an exponential map parametrisation of the rotation
matrices, the update of the camera matrix is only an approx-
imation — the camera matrix cannot be updated in closed
form and instead they perform a single Gauss-Newton step.
Alternatively, in their Rotation Constrained Powerfactoriza-
tion algorithm (RCPF) Wanget al. first update the ortho-
graphic camera matrix via least squares and an additional
step is incorporated to project it onto the Stiefel manifoldvia
its SVD decomposition. This simple projector is in fact al-
most identical to the one proposed by (Marques & Costeira,
2008) for the case of rigid structure. Finally, in order to deal
with missing data the above trilinear approaches (Torresani
et al., 2001; Wanget al., 2008) resort to using only the avail-
able image tracks in their alternating scheme.

Similarly to Torresaniet al. and Wanget al. we also pro-
pose an iterative alternating scheme to solve the non-rigid
structure from motion problem. However, our optimisation
scheme is bilinear, alternating between the estimation of the
motion and the shape matrices, with an additional projec-
tion step of the motion matrices onto the manifold of metric
constraints. At the expense of solving a more complex op-
timisation problem, our efficient convex relaxation provides
an optimal minimiser to solve simultaneously for the ortho-
graphic camera matrix and configuration weights that give a
motion matrix that satisfies the appropriate block structure
while also ensuring that the orthographic camera matrix sat-
isfies the constraint of having orthonormal rows (its trans-
pose lies on the Stiefel manifold1). Here and throughout the
paper, the optimal projection of a matrix onto a given set of
matrices, denotes the closest point on that set from the given
matrix with respect to the Frobenius norm. Extensive tests

1 The Stiefel manifoldVk,m may be viewed as the collection of all
m × k matrices whose columns form an orthonormal set. More pre-
cisely, the (real) Stiefel manifoldVk,m is the collection of all ordered
sets ofk orthonormal vectors in Euclidean spaceR

m.

carried out on motion capture sequences with ground truth
3D data, reported in Section 5, show that adding a projection
step (Wanget al.’s or ours) improves greatly the results ob-
tained in the case of missing data with respect to other meth-
ods. However, even better improvements are achieved when
using our bilinear algorithm associated with the proposed
metric projection instead of Wanget al.’s trilinear scheme
and simpler projector (Wanget al., 2008)

In order to deal with missing data, our algorithm per-
forms an outer iterative loop in which, at each step of the
iteration, we run our non-rigid factorisation algorithm and
we use the new estimates of the rotations, translations, ba-
sis shapes and coefficients to provide a new estimate of the
missing data. Our experimental tests shown in Section 5 re-
veal that dealing with incomplete tracks using this outer loop
allows to cope with much higher percentages of missing data
than the trilinear approaches (Torresaniet al., 2001; Wang
et al., 2008) that only use the available data.

In summary, we see three substantial contributions in our
approach. First, in contrast to their trilinear schemes, our op-
timisation scheme is bilinear, alternating between the esti-
mation of the motion and the shape matrices. Secondly, our
novel optimal projection step combines into a single optimi-
sation the computation of the camera matrix and the configu-
ration weights that give the closest motion matrix that lieson
the non-rigidmotion manifoldwith the additional constraint
that the camera matrix is guaranteed to have orthonormal
rows (i.e. its transpose lies on the Stiefel manifold). Finally,
our experiments reveal that dealing with missing data us-
ing an iterative outer loop to re-estimate the missing entries
greatly improves the results with missing data.

This notion ofmotion manifoldswas recently introduced
in the case of rigid shapes by (Marques & Costeira, 2009).
Notably, constraining the motion matrices to lie on the exact
motion manifold leads to robust solutions for the problem
of estimating rigid 3D structure in the case of high ratios
of missing data or degenerate configurations. Our work ex-
tends and generalises Marques and Costeira’s to the case of
deformable and articulated shapes therefore we provide a
general framework which allows us to deal with high ratios
of missing data and different types of shape. In particular,we
impose that the camera matrix must have orthonormal rows,
therefore its transpose lies on theV2,3 Stiefel manifold.

This constraint is non-convex,but in the case of deformable
structure we show that an efficient convex relaxation can be
obtained which results in the constraint set being defined
only by a set of linear matrix inequalities (LMI). Therefore
we relax the problem of imposing the camera matrices met-
ric constraints into a Semi-Definite-Program which can be
solved with popular solvers such as SeDuMi. In the case
of articulated structure, we also propose an efficient convex
relaxation which in most cases consists of a semi-definite
program(SDP) and of a second order cone program (SOCP)
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in the remaining cases. While we do have a theoretical proof
of the tightness of the convex relaxations for certain special
cases (Dodiget al., 2009), we do not yet have a proof for
every case. However, all the aforementioned convex relax-
ations turned out to be exact in the totality of our numerical
simulations.

The result is an algorithm where the recovered motion
matrices have the exact structure and the exact orthogonal-
ity constraints imposed. One of the main advantages of our
approach is that it can be extended naturally to deal with
missing data in a similar way to (Marques & Costeira, 2009).
An earlier version of our work appeared in (Paladiniet al.,
2009). There are two important new contributions in this pa-
per:

– We have proposed a new efficient convex relaxation for
the articulated case, while in our previous work we used
an exhaustive search over the cost function constrained
to the unit circle. This results in a unified approach to
solve the metric projection problem in the deformable
and articulated cases using convex optimisation techniques.
This new efficient convex relaxation is shown in Ap-
pendix B.

– We propose an alternative optimisation algorithm for the
deformable case which performs130 times faster than
our original convex relaxation solution. In Section 3.2
we present a new iterative Newton-like optimisation al-
gorithm on the Stiefel manifold which constrains the so-
lution to lie on the correct manifold. Although we lose
the optimality given by the convex solution in all our
experiments with ground truth data the algorithm con-
verged to the same global minimum.

As a final observation we should stress that, while most
NRSfM algorithms proposed to date need to rely on the use
of priors to solve for the 3D shape and the camera mo-
tion (Bartoli et al., 2008; Torresaniet al., 2008) avoiding
ambiguities, our new algorithms can obtain reliable solu-
tions without having to impose priors such as smoothness
on the camera motion or the deformations.

2 Factorisation for Structure from Motion

Consider the set of 2D image trajectories obtained when the
points lying on the surface of a 3D object are viewed by a
moving camera. Defining the non-homogeneouscoordinates
of a pointj in framei as the vectorwij = (uijvij)

⊤ we may
write the measurement matrixW that gathers the coordinates
of all the points in all the views as:

W =







w11 . . . w1p

...
. . .

...
wf1 . . . wfp






=







W1

...
Wf






(1)

wheref is the number of frames andp the number of points.
The measurement matrix can be factorised into the prod-

uct of two low-rank matrices asW = M2f×r Sr×p, where
M andS correspond to the motion and shape subspaces re-
spectively. As a result, the rank ofW is constrained to be
rank{W} ≤ r wherer ≪ min{2f, p}. The rank of these
subspaces is dictated by the properties of the camera pro-
jection and the nature of the shape of the object being ob-
served (rigid, deformable, articulated, etc.). This rank con-
straint forms the basis of the factorisation method for the
estimation of 3D structure and motion.

MatricesM andS can be expressed asM =
[

M⊤1 · · · M⊤f
]⊤

andS = [S1 · · ·Sp] whereMi is the2 × r camera matrix
that projects the 3D shape onto the image framei andSj

encodes the 3D coordinates of pointj.

2.1 Rigid Shape

In the case of a rigid object viewed by an orthographic cam-
era, if we assume the measurements inW are registered to
the image centroid, the camera motion matricesMi and the

3D pointsSj can be expressed as:Mi =

[

ri1 ri2 ri3

ri4 ri5 ri6

]

= Ri

andSj =
[

XjYjZj

]⊤
whereRi is a 2 × 3 matrix whose

transpose lies on the Stiefel manifold (i.e. a3 × 2 Stiefel
matrix), sinceRi contains the first two rows of a rotation
matrix (i.e.RiR

⊤
i = I2×2) andSj is a 3-vector containing

the metric coordinates of the 3D point. Therefore the rank
of the measurement matrix isr ≤ 3. The rigidmotion man-
ifold corresponds to the manifold of matrices with pairwise
orthogonal rows.

2.2 Deformable Shape Model

In the case of deformable objects the observed 3D points
change as a function of time. In this paper we use the low-
rank shape model defined in (Bregleret al., 2000) in which
the 3D points deform as a linear combination of a fixed
set ofk rigid shape bases according to time varying coef-
ficients. In this way,Si =

∑k
d=1 lidBd where the matrix

Si = [Si1, · · ·Sip] is the 3D shape of the object at frame
i, the3 × p matricesBd are the shape bases andlid are the
coefficient weights. If we assume an orthographic projec-
tion model the coordinates of the 2D image points observed
at each framei are then given by:

Wi = Ri

(

k
∑

d=1

lidBd

)

+ Ti (2)

where the matrixRi is 2 × 3 with orthonormal rows, such
that R⊤i is a Stiefel matrixand the2 × p matrix Ti aligns
the image coordinates to the image centroid. The aligning
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matrixTi is such thatTi = ti1
⊤
p where the2-vectorti is the

2D image centroid and1p a vector of ones. When the image
coordinates are registered to the centroid of the object and
we consider all the frames in the sequence, we may write the
measurement matrix as:

W =







l11R1 . . . l1kR1

...
. . .

...
lf1Rf . . . lfkRf













B1

...
Bk






=







M1

...
Mf













B1

...
Bk






=MS (3)

SinceM is a 2f × 3k matrix andS is a 3k × p matrix in
the case of deformable structure the rank ofW is constrained
to be at most3k. The motion matrices now have the form
Mi = [Mi1 . . .Mik] = [li1Ri . . . likRi]. Therefore, in the de-
formablemotion manifoldthe motion matrices have a dis-
tinct repetitive structure and every2 × 3 Mik sub-block is
composed of the transpose of aStiefel matrixmultiplied by
a scalar.

2.3 Articulated Shape Model

In the case of articulated structure, the relative motions of
the segments that form an articulated body are dependent
and this results in a drop in the dimensionality of the mea-
surement matrixW =

[

W(1) W(2)
]

that contains the 2D image
points of the two segments. In the case of auniversal joint
the two shapes share a common translation (i.e. the distance
between the centres of mass of the shapes is constant) while
in the case of ahinge joint the shapes also share a com-
mon rotation axis (Tresadern & Reid, 2005; Yan & Polle-
feys, 2008). Naturally, this approach requires that an initial
segmentation stage has taken place to assign the trajectories
in W to the respective shapes for which a solution was re-
cently provided in (Yan & Pollefeys, 2008).

In a universal joint(Tresadern & Reid, 2005) the dis-
tance between the centres of the two shapes is constrained
to be constant (for instance, the head and the torso of a hu-
man body) but with independent rotation components. At
each frame the shapes connected by a joint satisfy:

t(1) + R
(1)d(1) = t(2) + R

(2)d(2) (4)

wheret(1) andt(2) are the 2D image centroid of the two
objects,R(1) andR(2) the2×3 orthographic camera matrices
andd(1) andd(2) the 3D displacement vectors of each shape
from the joint. The relation in equation (4) gives the reduced
dimensionality in the motion and shape subspaces. Thus, the
shape matrixS can be written as:

S =





S(1) d(1)

0 S(2) − d(2)

1 1



 (5)

whereS is a full rank-7 matrix. The motion for a framei has
to be accordingly arranged to satisfy equation (4) as:

Mi =
[

R
(1)
i R

(2)
i t

(1)
i

]

. (6)

In the case of ahinge joint, if we assume the image co-
ordinates to be registered to the centroid of each segment,
then the motion matricesMi that lie on the articulatedmo-
tion manifoldcan be written as:

Mi =
[

ui Ai Bi

]

(7)

whereu is the common rotation axis for both objects,Ai

andBi are2 × 2 matrices such that
[

uiAi

]

and
[

uiBi

]

are
the2 × 3 camera matrices (with orthonormal rows) associ-
ated with the first and second shape respectively. The metric
constraints in the case of a hinge can therefore be expressed
as:

[ui Ai]

[

u⊤
i

A⊤i

]

= I2×2

[ui Bi]

[

u⊤
i

B⊤i

]

= I2×2

(8)

where, without loss of generality, we have implicitly as-
sumed that the axis of rotation is aligned with the x-axis
of the first object. Thus we can writeS as:

S =















x
(1)
1 · · · x

(1)
p1

x
(2)
1 · · · x

(2)
p2

y
(1)
1 · · · y

(1)
p1

0 · · · 0

z
(1)
1 · · · z

(1)
p1

0 · · · 0

0 · · · 0 y
(2)
1 · · · y

(2)
p2

0 · · · 0 z
(2)
1 · · · z

(2)
p2















(9)

where nowS is a5 × p matrix andp = p1 + p2 (we assume
the shapes have been registered to the respective object cen-
troids). Therefore, in the case of a hinge joint the rank of the
measurement matrix is at most5.

3 Metric Upgrade

The classic approach in factorisation is to exploit the rank
constraint to factorise the measurement matrix into an ini-
tial affine solution with a motion matrix~M and a shape ma-
trix ~S by truncating the SVD ofW to the rankr specific to the
problem. However, this factorisation is not unique since any
invertibler×r matrixQ can be inserted, leading to the alter-
native factorisation:W = (~MQ)(Q−1~S). The problem is to find
the transformation matrixQ that removes the affine ambigu-
ity, upgrading the reconstruction to metric and constraining
the motion matrices to lie on the appropriatemotion mani-
fold.

While in the rigid case the matrixQ can be explicitly
computed linearly by imposing orthonormality constraints
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on the rows of the motion matrix (Tomasi & Kanade, 1992),
in the non-rigid and articulated cases the metric constraints
on the motion matrices are non-linear. Although some closed-
form solutions have been recently proposed (Xiao & Kanade,
2005; Xiaoet al., 2006; Hartley & Vidal, 2008) these al-
gorithms perform poorly in the presence of noise and can-
not cope with missing data. Iterative solutions provide a vi-
able alternative in the presence of noise and missing data
and this procedure will be adopted in our proposed algo-
rithm. The factorisation ofW is solved with an alternating
least-squares problem where at each stept the motionM(t)

and shapeS(t) matrices are optimised separately keeping the
other one fixed as shown in Algorithm 1. This strategy is not
uncommon in optimisation problems for SfM (Buchanan &
Fitzgibbon, 2005) however it is important to notice is that,
differently from previous optimisation schemes, we use a
projection step which computes a solution that satisfies the
metric constraints exactly. The metric constraints consist of
two parts: imposing the correct block structure to the motion
matrix and constraining the transpose of the orthographic
camera matrices to lie on the Stiefel manifold. In our ap-
proach, we impose both constraints simultaneously project-
ing the motion matrix optimally onto the appropriate mo-
tion manifold. As already noticed by (Marques & Costeira,
2008) for the rigid case, these projections not only provide
camera matrices which exactly comply with the projection
model but also are generally robust to missing and degener-
ate data.

Algorithm 1 Iterative metric upgrade via alternation for de-
formable and articulated shape. At each step of the iteration,
the motion matrix estimated via least squares is projected
onto the motion manifold.
Require: An initial estimateM(0).
Ensure: A factorisation ofW that satisfies the given metric constraints.
1: Project each frame ofM(t) onto themotion manifoldof the motion

matrices (See Section 3.1 for the deformable case and Section 3.3
for the articulated case).

2: EstimateS(t) from the projectedM(t) as:S(t) = M(t)†W (where the
symbol† indicates the MoorePenrose pseudo-inverse.

3: EstimateM(t+1) such that:M(t+1) = WS(t)†.
4: Repeat until convergence.

Crucially, Step 1 represents the real and novel contribution
of this algorithm: an optimisation method which computes
the projection of the affine motion components onto themo-
tion manifoldin which the exact metric constraints are sat-
isfied. Although this problem is non-convex we propose ef-
ficient convex relaxations (in the sense that the relaxations
turned out to be exact, in our numerical simulations) that
transform the problems into semi-definite (SDP) or second-
order cone (SOCP) programs. Steps2 and 3 alternate the
estimation ofM(t)andS(t) assuming the other one known.

Fig. 1 Iterative scheme: at each step of the iteration, the motion matrix
computed via least squares is projected onto the motion manifold of
metric constraints. The process is iterated until convergence

Previous approaches have also used iterative methods to
perform the metric upgrade in the case of non-rigid structure
including the trilinear alternating least-squares methods de-
scribed in (Torresaniet al., 2001) and in (Wanget al., 2008).
However, even though Torresaniet al.’s method imposes ex-
act metric constraints on the camera matrices by parametri-
sation, the update of the camera matrix relies on the assump-
tion that the current estimate differs from the next one only
by small rotations. Moreover, the recovery of camera matri-
ces is not optimal. In our case we have an optimal solution
to the projection step, which re-estimates the camera ma-
trices and the coefficients to obtain the closest matrix that
satisfies the metric constraints. The metric projection step
can be visualised in Figure 1. Also Wanget al. (Wanget al.,
2008) adopt a trilinear approach where the constraints on the
orthographic camera matrices at each frame are imposed us-
ing a projection. Their projector is in fact equivalent to the
one developed in parallel by (Marques & Costeira, 2008) for
rigid shape in the scaled orthographic case. The projection
is computed as:Mi 7→ Ri = αUV⊤ whereα is given by the

mean of the two singular values
σ1(Mi) + σ2(Mi)

2
obtained

from the SVD ofMi (i.e. Mi = UDV⊤). In order to extend
such procedure to non-rigid shapes, we first need to define
themotion manifoldfor the deformable and articulated cases
and to provide the computational tools to project the motion
matrices exactly from affine to metric space.

While other papers have chosen to use priors on the shape
to constrain the solution to the optimisation problem and
obtain the metric upgrade (Bartoliet al., 2008; Torresani
et al., 2008; Del Bue, 2008), in this paper we provide a met-
ric upgrade step that solves an unconstrained least-squares
problem and optimally projects the solution onto themo-
tion manifold(i.e, computes the closest matrix in the mo-
tion manifold with respect to the Frobenius norm). In such
regard, we postulate that reliable solutions to the NRSfM
problem can be obtained without the use of prior informa-



7

tion about the motion of the object or the smoothness of its
deformations. In the case of articulated structure, we solve
globally for both the motion components related to the bod-
ies and the joint axis with a similar procedure. We now give
details on how these projections are computed and the the-
oretical insights for themotion manifoldof deformable and
articulated shapes.

3.1 Metric Projection: Deformable Case

The projection is carried out on each2 × 3k sub-matrixMi

as defined in Section 2 and it corresponds to solving the fol-
lowing minimisation problem at each frame:

min
Ri,li1...lik

‖Mi − [li1Ri|...|likRi]‖2
F (10)

with the added constraint thatRi be a2 × 3 matrix with
orthonormal rows (i.e.RiR

⊤
i = I2×2). This is equivalent to

minimising separately all the2 × 3 blocks ofMi giving:

min
Ri

k
∑

d=1

min
li1...lik

‖Mid − lidRi‖2
F (11)

which is equivalent to:

min
Ri,li1...lik

k
∑

d=1

‖Mid‖2
F + l2id ‖Ri‖2

F − 2lid Tr[M⊤idRi]. (12)

We can then reformulate the problem by computing the min-
imum first for ld (i.e. solving for the zeros of the deriva-
tive of eq. (11)) givenR. This resolves in computing the
minimum of the quadratic function inld given byf(ld) =

a l2d − 2 b ld + c. Such minimum is found inld = b/a giving
in our case that:

lid =
Tr[M⊤idRi]

‖Ri‖2
F

=
1

2
Tr[M⊤idRi]. (13)

Putting this value back in eq. (11) and following with the
simplification, the minimisation can be written as:

minRi
r⊤i

[

−∑k
d=1 midm

⊤
id

]

ri

such that RiR
⊤
i = I2×2

(14)

whereri = vec(R⊤i ) andmid = vec(M⊤id). Therefore, this
quadratic minimisation problem presents a non-convex con-
straint given byRi. In Appendix A we show that it is possible
to derive an efficient convex relaxation of the constraint set.
This set is defined only by linear matrix inequalities (LMI).
Therefore the optimisation problem is a Semi-Definite Pro-
gram (SDP) which can be solved using SeDuMi (Sturm,
1999). Further details, including a proof of the relaxation
can be found in (Dodiget al., 2009).

The computedStiefel matrixR⊤i is then used to recover
the weightslid, obtaining a full non-rigid motion matrix that

satisfies the metric constraints. This allows us to solve it-
eratively for the motion and shape as described in Algo-
rithm 1. This optimal metric projection step was first intro-
duced in (Paladiniet al., 2009). The disadvantage of this
approach is that the computational complexity of solving a
quadratic minimisation problem for each frame in the se-
quence is too onerous. Each minimisation takes about2 sec-
onds using SeDuMi toolbox (on a Athlon X2 processor run-
ning at2.6GHz), therefore a sequence of120 frames would
take around4 minutes to process. While this computation
time is not unreasonable for a batch process, in Section 3.2
we present a new algorithm based on a Newton optimisation
method on the Stiefel manifold to speed up the computation
by a factor of around130. First we describe the initialisation
to the minimisation.

3.1.1 Initialisation for the deformable case

Algorithm 1 requires an initial estimate of the motion matrix
Mi at each frame. This in turn requires initial estimates for
the camera matrices̄Ri and the configuration weights̄lid.
The rigid motion̄Ri and the first basis shapeS̄1 are estimated
from a rank3 rigid factorisation of the measurement matrix.
The second component of the shape bases is estimated from
the residual

Wr = W− M̄S̄1 (15)

A new rank3 factorisation is performed onWr and the new
configuration weightsli2 can be estimated solving forli2R̄i =
Mi2 keeping the rotations fixed. This can be solved in a sim-
ple way by taking advantage of the orthonormality ofR:

vec(Ri)lij = vec(Mij)

vec(Ri)
⊤vec(Ri)lij = vec(Ri)

⊤vec(Mij)

||R||2F lij = vec(Ri)
⊤vec(Mij)

2lij = vec(Ri)
⊤vec(Mij)

This process is repeated to obtain allk deformation modes.
The first rigid factorisation needs full data to give a solu-
tion, so we use Marques and Costeira’s rigid factorisation
algorithm (Marques & Costeira, 2009) if missing data are
present.

3.2 Newton method on the Stiefel manifold

The approach described in the previous section will pro-
vide an optimal projection onto themotion manifoldof de-
formable structure. The first observation we made is that
the motion matrix for one frame is not unrelated to the next
one. For most common image sequences the motion of the
camera is smooth, thus each motion matrixMi will not vary
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much from frame to frame. Therefore, it is not unrealistic
to assume that the camera pose at framei is a good initiali-
sation for an iterative algorithm which tries to compute the
pose in the next framei + 1. Thiswarm-startstrategy is not
explicitly designed for standard solvers for convex optimi-
sation problems ((Sturm, 1999)). Instead, we have adopted
a Newton-like iterative optimisation algorithm based on the
work of (Edelmanet al., 1999). We perform iterative optimi-
sation directly on the Stiefel manifold which, for the case of
smoothly varying camera poses, will converge locally to the
minimum. Of course we lose the optimality of the convex
relaxation algorithm. However, empirically we found that in
all our experiments with ground truth data both algorithms
converged to the same minimum.

We now provide additional details on how to compute
the Newton step update for themotion manifoldof deform-
ing shapes. To adhere to the notation in (Edelmanet al.,
1999) we define the problem as that of minimising a func-
tion F(Y), whereY is constrained to the set of matrices such
thatY⊤Y = I i.e. it is aStiefel matrix. The current estimate
of the Stiefel matrix is updated in the Newton direction∆

using the geodesic formula for a unit stept = 1

Y(t) = YM(t) + QN(t) (16)

whereQR is the compact QR-decomposition of(I−YY⊤)∆,
with the Newton direction∆ given by

∆ = −Hessian−1(FY − YF
⊤
Y Y) (17)

(whereFY is the first derivative with respect toY) and, fi-
nally, the matricesM(t) andN(t) are given by the matrix ex-
ponential

(

M(t)

N(t)

)

= exp t

(

A −R⊤

R 0

)(

Ip

0

)

(18)

with A = Y⊤∆.
We apply the iterative Newton method (more theoreti-

cal insights can be found in (Edelmanet al., 1999)) to the
cost function given by equation (14), using the solution to
the previous frame as an initialisation. Evidently, the first
frame has to be solved with the previously proposed convex
relaxation. In our experiments this new solution provided a
remarkable speedup, solving the whole factorisation prob-
lem about130 times faster than the original method, with-
out losing optimality as observed in the experimental trials.
Notice that in this case the assumption that the camera pose
varies smoothly is just an initialisation strategy and not a
prior term in our minimisation. Our smoothness assumption
does not add an explicit penalty term to the cost function
to penalise strong deformations or camera motions as other
authors do (Bartoliet al., 2008; Torresaniet al., 2008).

3.3 Metric Projection: Articulated Case

Projection onto themotion manifoldof the universal joint
can be simply solved by performing two separate rigid fac-
torisations for each of the parts of the articulated object fol-
lowed by an estimation of the joint location as presented
in (Tresadern & Reid, 2005). The hinge joint is far more in-
teresting given the non-linear relations between the motion
subspaces. Here the problem is to find the closest matrix that
satisfies the metric constraints given a rotation axis between
two objects. Following eq. (6) the projection problem for the
hingemotion manifoldcan be written at each frame as the
following minimisation:

min
u,A,B

J(u, A, B) = ‖u − x‖2
+ ‖A − Y‖2

F + ‖B− Z‖2
F , (19)

subject to the constraints defined in eq. (8). Herex, Y and
Z are obtained directly from the affine motion matrixM̃i =

[x|Y|Z], recovered through SVD. Equation (19) can be re-
formulated (Paladiniet al., 2009) as the minimisation of
J(u, A, B) only as a function of the common axisu such
that:

min
u,A,B

J(u, A, B) = min
u

J(u). (20)

This is possible as we will show that, once the optimalu is
estimated, it is straightforward to obtainA andB in closed
form. The equivalent cost functionJ(u) can be written as:

min
u

J(u) = min
u

{

‖u − x‖2
+ φY (u) + φZ(u)

}

. (21)

Thus now we will show how to transform the minimisation
of ‖A− Y‖2

F into the minimisation ofφY (u) (the same rea-
soning can be replicated forφZ(u)). First, we use the polar
decomposition to change variables asA = PQ whereP � 0
(i.e. P is a semidefinite matrix) andQ is orthogonal (both
P andQ are2 × 2). Moreover, given the metric constraints
in eq. (8), it follows thatP2 = I − uu⊤. Thus, the matrix
I − uu⊤ must be positive definite, restricting the vectoru

to be inside the unitary circle. Then, for a chosenu we can
write φY (u) as:

φY (u)= min
QQ⊤=I

∥

∥

∥
(I−uu⊤)1/2

Q−Y

∥

∥

∥

2

F

=min
QQ⊤=I

{

∥

∥

∥
(I − uu⊤)1/2

∥

∥

∥

2

F
+ ‖Y‖2

F

− 2 Tr
(

Y
⊤
(

I− uu⊤
)1/2

Q

)

}

.

Minimising this cost function over the orthogonal matrixQ
equals to maximising the trace in the previous expression.

Using the property:

max
QQ⊤=I

{Tr (XQ)} = σ1(X) + σ2(X) + · · · + σn(X) = ‖X‖N

(22)
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where‖X‖N denotes thenuclear normof X (i.e. the sum of
its singular values), we can write that:

φY (u) = 2 − ‖u‖2
+ ‖Y‖2

F − 2
∥

∥

∥

(

I− uu⊤
)1/2

Y

∥

∥

∥

N
(23)

The same reasoning can be replicated forφZ(u) giving the
final optimisation problem to be solved as:

min −‖u‖2 − 2u⊤x − 2
∥

∥

∥

(

I− uu⊤
)1/2

Y

∥

∥

∥

N

‖u‖ ≤ 1 −2
∥

∥

∥

(

I− uu⊤
)1/2

Z

∥

∥

∥

N

(24)

Once the optimalu∗ is found we substitute back in order
to recover the solution forA (and similarly forB). First we
obtainQ from the SVD ofY⊤(I−u∗u∗⊤)1/2 7→ UDV⊤ lead-
ing to Q = VU⊤. The matrixP is simply given knowing that
P2 = I − u∗u∗⊤. This will result in the matrix that exactly
satisfies the metric structure of a hinge joint. The optimisa-
tion of the cost function in eq. (24) is not trivial since the
cost function is non-convex and non-smooth. However the
domain in which the function resides is very constrained (i.e.
the unitary circle) and the value of eq. (24) for an arbitrary
u can be computed efficiently without the need of calculat-
ing the nuclear norm at each sample. The optimisation can
be then solved with a simple exhaustive search algorithm
in which the function samples can be computed in a small
amount of time (details on this computation can be found in
(Paladiniet al., 2009)).

3.3.1 Convex relaxation for the articulated case

Although the cost function in equation (24) is non-convex, in
Appendix B we propose an efficient convex relaxation. Dif-
ferently from the deformable case, the reformulation leads
to two cases. As shown in Appendix B, in one case the
problem becomes a semi-definite program (SDP) and in the
other a second order cone program (SOCP) both of which
can be efficiently solved with standard convex optimisation
tools (Sturm, 1999). In all of our numerical experiments
we found that the proposed convex relaxations were exact,
thereby solving indeed (24). Compared to the full search
method presented in (Paladiniet al., 2009), this convex op-
timisation speeds up the computation by a factor of around
ten. A second advantage is that we avoid the problem of
the accuracy of the solution depending on the density of the
interval grid in the parameter space as in the full-search al-
gorithm. The full details of the proposed convex relaxation
can be found in Appendix B.

3.3.2 Initialisation for the articulated case

We first consider the two bodies separately and then perform
a rigid factorisation for each shape. Given this factorisation,
we can then obtain an initial closed form solution for the
metric upgrade in the case of a hinge using the linear ap-
proximation of (Tresadern & Reid, 2005).

4 Reconstruction with Missing Data

Incomplete image tracks are a common occurrence in SfM
tasks and several algorithms have been proposed in order to
cope with the missing data problem within the factorisation
framework (Buchanan & Fitzgibbon, 2005). Our new fac-
torisation approach presented in the previous section can be
modified to account for missing entries inW. The strength of
our approach lies in the fact that themotion manifoldcon-
strains the estimated motion of the missing 2D image points
since we only allow trajectories that satisfy the metric con-
straints exactly.

Instead of using only the known image tracks to solve
for the camera matrices, basis shapes and deformation co-
efficients as the trilinear least-squares approaches do (Tor-
resaniet al., 2001; Wanget al., 2008), we opt for an iter-
ative scheme. At each step of the iteration we re-compute
the missing entries in the measurement matrixW using the
current estimates of the motion and shape matrices that have
been projected onto the correctmotion manifold. In our ex-
perimental validation, reported in Section 5, we have found
that dealing with missing data using the iterative scheme de-
scribed here allows to deal with higher percentages of miss-
ing data than using only the available data as Wanget al. do
in their RCPF approach (Wanget al., 2008). The steps of
this method are summarised in Algorithm 2.

Algorithm 2 Metric Projections algorithm in the presence
of missing data.
Require: An initial estimateW(0) of the missing data inW.
Ensure: A factorisation ofW that satisfies the given metric constraints.

1: Remove the 2D centroidT(t) from W(t), i.e. Ŵ(t)
= W(t)

− T(t).
2: FactorisêW(t)

= M(t)S(t) using Algorithm 1.
3: Estimate the missing data entries ofW asW(t+1) = M(t)S(t) + T(t)

4: Repeat until convergence.

The algorithm requires an initial estimate of the missing
entries in the measurement matrixW. For this purpose, we
have used the rigid factorisation algorithm of (Marques &
Costeira, 2009) to obtain an initial rigid fit of the missing
entries. In the case of articulated structure we apply the al-
gorithm independently to each of the bodies. The iterations
are stopped when the distance||W(t+1) − W(t)||F falls below
a user-defined threshold, that is, when the new estimate does
not modify the previous values much.

5 Experiments

First we show results for the recovery of deformable struc-
ture, followed by results for articulated structure. We evalu-
ate the performance of our algorithms quantitatively on var-
ious motion capture sequences, for which ground truth was
available, and we compare our results with some current
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Fig. 2 Missing data tests on theFace1Motion Capture sequence. Plots show the average 3D error over 100 tests for increasing levels of randomly
generated missing data. We compare the results obtained with: Metric Projections (MP), EMPPCA, Bundle Adjustment (BA), Rotation Constrained
Powerfactorization (RCPF) and MP with a Simple Projector (MP-SP). The plots on the left column show the average 3D errorsin the noise-less
case (top) and with added Gaussian noise (bottom) ofσ = 1%. The plots on the right show a zoomed-in version of the three best performing
algorithms (MP, RCPF and MP-SP). The performance of MP and MP-SP is similar although MP outperforms MP-SP.
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Fig. 3 Noise test for theFace1Motion Capture sequence in the cases of full data case (left)and30% missing data (right). We show 3D errors
versus percentage of added Gaussian noise. In the full data case (left), EMPPCA performs marginally better while in the missing data case (right)
MP is the best performing algorithm.

state of the art NRSfM algorithms (Torresaniet al., 2008;
Del Bueet al., 2007; Wanget al., 2008). In the case of the
articulated Metric Projections (MP) algorithm we evaluated
against (Tresadern & Reid, 2005). Notice that we do not
compare with Yan and Pollefeys’ approach (Yan & Polle-
feys, 2008) since their proposed method does not perform
a 3D metric reconstruction of the shape and joint axes –
only the 2D projection of the axes in the image is com-
puted. Finally we demonstrate our algorithms on real image

sequences. We have made our code and sequences available
for download on our website2.

2 http://www.dcs.qmul.ac.uk/ ˜ lourdes/code.
html
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Images from MOCAP session
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EM-PPCA (Torresaniet al., 2008) - Average13.1% 3D error

RCPF (Wanget al., 2008) - Average9.0% 3D error
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Fig. 4 3D reconstruction results for a single run of the theFace1motion capture sequence with40% missing data. The points that were missing
in each frame of the sequence are highlighted in red. Top row:Some frames of the original motion capture take (note that the images do not
correspond exactly to the reconstructed frames shown below). Second, third and fourth rows: side and front views for some frames of the 3D
reconstruction for our Metric Projection method, Torresani et al.’s EM-PPCA and Rotation Constrained Power Factorisation.We show ground
truth (green circles) and reconstructed points (dots/ blueif visible red if not). The wire-frame lines are only shown for visualisation purposes.

5.1 Deformable Structure

Synthetic Experiments – Motion capture data

In our synthetic experiments we used two different 3D mo-
tion capture sequences, both showing faces. The first se-
quence,Face1, was captured in our own laboratory using a
VICON system tracking a subject wearing37 markers on the
face. The 3D points were then projected synthetically onto
an image sequence74 frames long using an orthographic
camera model. The second sequence,CMU face sequence3,
is motion capture data made available by (Torresaniet al.,
2008). The subject wore40 markers tracked by a motion
capture system and the orthographic projection is performed
by simply discarding the third coordinate of each 3D point.
Note that although the projection of the ground truth 3D
data on the images is synthetic the deformations are real-
istic since they come from real motion capture sequences.
The 2D image data is therefore not synthetic and it contains
some noise due to the motion capture estimation errors.

Our proposed Metric Projection algorithm (MP) is tested
against various state of the art algorithms: EMPPCA (Torre-
saniet al., 2008), which is currently perceived to be the state

3 http://www.cs.dartmouth.edu/ ˜ lorenzo/nrsfm.
html

of the art/baseline algorithm and for which code has been
made available online; Rotation Constrained Power Factori-
sation (RCPF) (Wanget al., 2008), which is the most closely
related approach to our new MP algorithm since it also per-
forms a (rigid) projection of the camera matrices as we de-
scribed in Section 1.1, and a Bundle Adjustment algorithm
(BA) designed for NRSfM (Del Bueet al., 2007) where
the orthonormality constraint on the rotation matrices is im-
posed through parameterisation.

In the case of missing data we also report results with a
modified version of our Algorithm 2. We are interested in as-
sessing (in the case of missing data) the gain in performance
achieved by using our bilinear scheme followed by our new
optimal metric projector instead of Wanget al.’s trilinear
scheme followed by their simpler projector of the camera
matrices onto the motion manifold (Wanget al., 2008). In
order to do this we have designed a new algorithm that we
call MP-SP:Metric Projection with Simple Projection. The
idea is to use our outer loop to deal with the missing data and
substitute Step 2 in Algorithm 2 with Wanget al.’s RCPF al-
gorithm. In this way we can test an algorithm with the same
initialisation, the same iterative outer loop to deal with miss-
ing data but using Wanget al.’s trilinear approach with the
simpler projection step to perform factorisation. Note that
this new scheme (MP-SP) is not Wanget al.’s RCPF algo-
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Fig. 5 3D reconstruction results for the “CMU” face motion capturesequence. First row shows the input image data. Second and third rows
show the results with full data obtained with our Metric Projection algorithm and Torresaniet al.’s EM-PPCA respectively. The 3D reconstruction
results (blue dots) are compared with ground truth data (green circles). Fourth, fifth and sixth rows show comparative results for30% missing data
(missing data points are highlighted in red). Our MP algorithm can recover the 3D shape accurately even with a high percentage of missing data
points, while Torresaniet al.’s algorithm gives poor results. The RCPF method also obtains a good reconstruction (2% 3D error) in both cases of
full and missing data.
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rithm: the missing data is dealt with in a different way. Ef-
fectively, our Algorithm 2 (MP in the case of missing data)
and the new MP-SP have exactly the same structure. They
only differ in the factorisation algorithm used in Step 2: in
the case of Algorithm 2 it is our MP algorithm for full data
(Algorithm 1) while in the case of MP-SP it is Wanget al.’s
RCPF algorithm.

To test the performance of the algorithms we computed
the 3D error, which we defined as the Frobenius norm of the
difference between the recovered 3D shapeS and the ground
truth 3D shapeSGT . The error is normalised against the
Frobenius norm of the ground truth shape||S−SGT ||F /||SGT ||F .
We subtract the centroid of each shape and align them with
Procrustes analysis. In the noise tests zero mean additive
Gaussian noise was applied with standard deviationσ =
n × s/100 where n is the noise percentage and s is defined
asmax(W) in pixels.

Initialisation: Each of the algorithms we tested requires a
slightly different initialisation for the optimisation routine.
This is dictated by the fact that each method starts the itera-
tions from a different set of parameters. Therefore, evaluat-
ing each approach with exactly the same initialisation is not
feasible. All the algorithms require an initial estimate ofthe
camera matricesRi and the mean shape. In order to make
the initialisations as uniform as possible we have used the
rigid factorization algorithm of (Marques & Costeira, 2009)
to estimate them (except EMPPCA where we used the code
provided by the authors). Here is a detailed description of
the initialisation used for each algorithm.

– EMPPCA: requires initial estimates for the camera ma-
tricesRi, shape basesBd and configuration weightslij .
We used the initialisation provided by the authors in their
implementation (Torresaniet al., 2008): (camera matri-
ces and mean shape come from rigid factorisation (Tomasi
& Kanade, 1992) while deformation basis and coeffi-
cients are estimated through iterative PCA of the shape
residuals).

– BA: requires initial values for the same parameters as
EMPPCA and was initialised in the same way, except (Mar-
ques & Costeira, 2009) was used as the rigid factoriza-
tion algorithm.

– RCPF: needs an initialisation for the camera matrices
Ri and shape basesBd. We used the initialisation pro-
posed by the authors (Wanget al., 2008): camera matri-
ces and mean shape were estimated from rigid factoriza-
tion (Marques & Costeira, 2009) and the shape basesBd

were initialised to small random values.
– MP and MP-SP: require initial values for the camera ma-

tricesRi, configuration weightslij and the missing data.
Camera matrices and missing data were initialised from
rigid factorization (Marques & Costeira, 2009) and the
shape coefficients were were initialised through iterative

PCA of the residuals of the measurement matrixW as
explained in Section 3.1.1.

Note that only our algorithm, MP, uses the missing en-
tries explicitly in the outer loop proposed in Algorithm 2,
while EMPPCA, BA and RCPF only use the known data in
the estimation.

Missing data and noise tests

In Figure 2 we compare the performance of our new algo-
rithm MP with EMPPCA, RCPF, BA and MP-SP for the
Face1sequence in the case of increasing levels of missing
data ranging from10% to 80%, generated by deleting en-
tries from the measurement matrix randomly. For each level
of missing data we averaged the results of100 runs vary-
ing the missing data mask. Tests in which the 3D error was
higher than100% were considered as outliers and were not
used to compute the average. In all experiments the number
of basis shapes was fixed tok = 5.

The top row of Figure 2 shows the results in the noise-
less case, while the bottom row shows the results in the more
realistic case of1% image noise. The plots in the left col-
umn show the 3D error of all the algorithms (MP, EMPPCA,
RCPF, BA and MP-SP) while the plots on the right column
show a zoomed-in version for the algorithms showing the
best performance (MP, MP-SP and RCPF), which interest-
ingly, enforce orthonormality constraints on the camera ma-
trices through projection. The left plots in the noiseless (top)
and1% noise case (bottom) show that EMPPCA and BA are
the worse performing algorithms in the presence of missing
data. EMPPCA can cope with up to20% missing data before
the error starts to grow steadily. BA gives the highest 3D er-
rors for low ratios of missing data but appears to show more
resilience to higher ratios of missing data than EMPPCA.
However, it also breaks down after50% missing data.

It is important to record the number of reconstructions
that ended up with a 3D error higher than100% (those that
we classified as outliers and did not enter the statistics). Our
proposed methods MP and MP-SP did not have any outliers.
In the noiseless experiments (Figure 2 (top)) the number of
outliers for RCPF and EMPPCA were60 and1 respectively
over the800 trials (each method was run100 times for8 lev-
els of missing data). In the experiments with1% noise (Fig-
ure 2 (bottom)), RCPF had59 outliers and EM-PPCA had
1. Most of the RCPF outliers were in the80% case which is
the highest level of occlusions in our tests.

The plots in the right column of Figure 2 show a zoomed-
in view of the best performing algorithms. Our new MP al-
gorithm achieves the smallest overall 3D errors both in the
noiseless case (right-top) and more clearly in the1% noise
test (right-bottom). RCPF (Wanget al., 2008) shows good
performance until levels of around50% missing data but the
errors grow quickly after that. The second best performing
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algorithm is MP-SP which uses our outer loop to deal with
missing data and RCPF internally to perform factorisation.
Although its performance is comparable to MP, the 3D error
curve for MP lies below – for instance in the1% noise case
(bottom-right)the 3D reconstructions obtained with MP are
on average around1% better than with MP-SP.

It is worth discussing three interesting facts revealed by
the results of these tests for increasing levels of missing
data. First, the top three performing algorithms (MP, MP-
SP and RCPF) include a projection step of the camera ma-
trices to deal with metric constraints. BA and EMPPCA,
on the other hand, impose the orthonormality constraints
through parameterisation (quaternions in the case of BA and
exponential map in the case of EMPPCA). Secondly, while
RCPF, MP-SP and MP show very similar performance for
missing data ratios of up to50%, for higher ratios MP-SP
and MP greatly outperform RCPF. The only difference be-
tween MP-SP and RCPF is the way in which they deal with
missing data: RCPF uses only the known 2D image tracks
while MP-SP uses an outer loop to re-estimate the missing
data at each step of the iteration. Note that they were both
initialised in the same way as MP. Finally, the performance
of MP is about1% better than MP-SP. However, MP-SP runs
around25% faster (see Figure 6 for algorithm run-times).
Therefore if run-time is an issue MP-SP could be used in-
stead of MP without compromising performance too much
but of course improved results would be achieved with MP.

In Figure 3 we show comparative noise tests for EMP-
PCA, BA, RCPF and MP in the case of full data (left) and
30% missing data (right). We show results for noise levels
of up to4% meaning that the value of the varianceσ is up to
4% of the size of the object in the image. It is clear that BA,
is the most vulnerable algorithm to noise in the image co-
ordinates. Note also that EMPPCA, RCPF and MP perform
very similarly with EMPPCA performing slightly better in
the full data case and MP in the30% missing data case. The
results were averaged over100 runs. None of these tests re-
sulted in outliers.
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Fig. 6 Comparison of run-times (in seconds) averaged over 100 tests,
versus percentage of missing data. Tests were performed using a 4-core
Xeon processor running at 2.8GHz, with 24GB of RAM.

Figure 4 shows front and side views of the 3D recon-
struction results for one of the runs of theFace1sequence
with no noise and40% missing data. The top row shows
some frames of the motion capture session (which do not
correspond to the reconstructed ones below), the second,
third and fourth rows show ground truth values and 3D re-
construction results obtained with our method MP, EM-PPCA
and RCPF respectively. Our reconstruction is closer to the
ground truth shape. The average 3D reconstruction error over
all the frames of this sequence was4.7% with MP, 13.1%

with EMPPCA and9.0% with RCPF.
Figure 5 compares ground truth with the results obtained

with MP, EMPPCA and RCPF for theCMU face sequence
with full data and with30% missing data. In the full data
case all algorithms perform similarly. However, in the miss-
ing data case, our algorithm recovers the 3D shape correctly
and outperforms Torresaniet al.’s. The 3D errors against
ground truth motion capture data were the same for RCPF
and MP (2%), both for full data and30% missing data, while
for EMPPCA the 3D error is low (1.8%) in the full data case,
but very high (35%) in the missing data case.

Figure 6 shows the mean run-times expressed in sec-
onds, for the experiment in Figure 2, for EMPPCA, BA,
RCPF and MP for different ratios of missing data. Tests
were performed using a 4-core Xeon processor running at
2.8GHz, with 24GB of RAM. All implementations are in
MATLAB. The fastest algorithms are BA and EMPPCA.
However the code for BA and EMPPCA provided by the
authors contains some parts of optimised MEX code. At the
expense of losing some accuracy, as we saw in Figure 2, MP-
SP runs around30% faster than MP since the projection step
is much more simple. Note that RCPF requires a large num-
ber of iterations in order to achieve convergence after30%

missing data. Therefore, adding the outer loop to RCPF to
deal with missing data as we did in MP-SP improves the
convergence in this case.

Synthetic Experiments – Structured occlusions

While it is important to conduct experiments with randomly
generated missing data to control its percentage in the sim-
ulation, we also performed a test with a missing data mask
where points are occluded in a structured way, as it would
happen for instance due to self-occlusions.

In order to generate a more realistic missing data pat-
tern we have computed surface normals from the sparse 3D
motion capture data using thetaglut algorithm4.The com-
puted angles between surface normal and camera viewing
direction for all frames have been thresholded at60 degrees,
marking large angles as occluded. Although the knowledge
of surface normals allows to simulate self-occlusions, the
strong sparseness of the measured points does not permit

4 http://jmfavreau.info/?q=en/taglut
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Fig. 7 Structured missing data mask used for the experiment described
in Section 5.1. Each column is a point track, points in black are marked
as visible, points in white are marked as occluded.

to simulate realistic self-occlusions. However, the resulting
occlusion pattern is structured and not random as in the pre-
vious tests. The resulting occlusion mask is shown in Fig-
ure 7 – the amount of missing data resulting from this com-
putation was32%. The resulting visibility matrix captures
well the structured disappearance of image features. We then
ran our MP Algorithm 2 on the input 2D data, obtaining
a 3D reconstruction error of5.4%. A visual comparison of
the reconstructed 3D against ground truth motion capture
data is given in Figure 8. We also compare this result with
other techniques, and show that MP outperforms other meth-
ods in this case. In particular, EMPPCA (Torresaniet al.,
2008) obtains8.6% 3D reconstruction error, and Wanget
al.’s RCPF (Wanget al., 2008) achieves8.4% error.

Real Sequences

Cushion Sequence

In our first experiment we tested our algorithm on an image
sequence of a cushion bending and stretching, in which 90
points were tracked manually. The results are shown in Fig-
ure 9. Our algorithm reconstructs successfully the 3D point
cloud and its deformations. We used this data to generate
a texture-mapped view of the reconstructed object. We also
performed a quantitative evaluation by comparing the 3D re-
construction obtained with full data to those obtained with
different percentages of missing data – generated by delet-
ing randomly entries on the measurement matrix. The dif-
ference (computed in the same way as we compute the 3D
error) between the 3D shape reconstructed with full data and
the shapes obtained with10%, 20% and30% missing data
are3.8%, 5.7% and5.9% respectively . We also measured
the average image reprojection error which was0.1 pixels
with full data, and1.1, 1.2 and1.4 pixels for the10%,20%

and30% missing data cases respectively.

In Figure 10 we show the 3D reconstruction results on
the cushion sequence with10% missing data generated ran-
domly.

Franck Sequence

We also used the Franck sequence5 taken from a video of
a person engaged in conversation. We selected 700 frames
from the 5000 frame sequence. An Active Appearance Model
(AAM) was used to track 68 features on the face. Figure
11 shows three frames of the original images and a view
of the resulting 3D reconstruction in the cases of complete
2D data (second row) and20% missing data (third row). We
also show the 3D reconstruction achieved with EMPPCA
for the full data case as a baseline (fourth row). However,
we could not show the results for EMPPCA for20% miss-
ing data since already for that value, the errors were too high
and the reconstruction was meaningless6. The last two rows
(fifth and sixth) show the results achieved with the RCPF
algorithm in the cases of full data and20% missing data.
The number of basis shapes was chosen to be6 in this ex-
periment. Our algorithm appears to achieve the best 3D re-
constructions in this real sequence with and without missing
data.

5.2 Articulated Structure

Synthetic sequence

In the articulated case our synthetic data simulated two 3D
boxes coupled by a hinge joint. The 3D ground truth is pro-
jected on the input images via orthographic projection. The
sequence contained global rotation and translation as well
opening and closing of the hinge. Each box contains231

points, and the sequence is63 frames long. We tested the
algorithm in the case of full data for noise levels ranging
from 0% to 4%. Figure 12 shows the absolute error in the
recovered relative angle between the two boxes (averaged
over all frames) and the 3D error of recovered 3D structure.
The plots in Figure 12 show comparative results between the
performance of (Tresadern & Reid, 2005) (TR) and our new
approach (MP). Slightly superior results are achieved with
our algorithm.

Real Sequence

We tested our algorithm on a sequence of 815 frames of two
boxes linked by a hinge joint. The number of tracked points
on the upper box was21 and47 on the lower box. Figure

5 www-prima.inrialpes.fr/FGnet/data/01-
TalkingFace/talkingface.html

6 We have provided this result in our additional material
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Input 2D Data

3D reconstruction with our method, front view5.4% 3D error

3D reconstruction with our method, side view

3D reconstruction using EMPPCA, front view8.6% 3D error

3D reconstruction using EMPPCA, side view

3D reconstruction using RCPF, front view8.4% 3D error

3D reconstruction using RCPF, side view

Frame 1 Frame 20 Frame 38 Frame 56 frame 74

Fig. 8 3D reconstruction results obtained for theFace1motion capture sequence with the structured missing data mask shown in Figure 7. Top
row: 2D input data with missing data points highlighted witha red circle. Front and side views of the 3D reconstruction results (dots: blue if visible,
red if not) are shown together with ground truth 3D data points (green circles) for three different algorithms: our MP algorithm (second and third
rows), Torresaniet al.’s EMPPCA (fourth and fifth rows), Wanget al.’s RCPF (sixth and seventh rows). The wire-frame lines are for visualisation
purposes only.
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Input 2D Data

3D reconstruction, Front View

3D reconstruction, Side View

2D data and reprojections

Textured mesh, Front View

Textured mesh, Side View

Frame 1 Frame 12 Frame 23 Frame 34 Frame 44

Fig. 9 3D reconstruction results for the “cushion” real sequence.We show texture-mapped 3D reconstructions and use them to generate a virtual
view of the object in 3D. First row: Input images and trackingdata. Second and third rows: 3D reconstruction results withthe proposed method.
Fourth row: reprojection of reconstructed points (crosses) together with 2D input data (circles). Bottom rows: Texture-mapping rendered view of
the 3D reconstruction.
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2D data and reprojections,10% missing data

3D reconstruction using our method, front view

3D reconstruction using our method, side view

EMPPCA reconstruction, front view

EMPPCA reconstruction, side view

Fig. 10 Reconstruction results on the “cushion” real sequence with10% missing data. Points were marked as not visible randomly. First row:
Input 2D tracks (green circles) and reprojections calculated with our method (blue crosses). Missing 2D points (not used for reconstruction) are
shown as red circles. Second and Third rows: 3D reconstruction with our method. Fourth and Fifth: 3D reconstruction using EMPPCA. note that
although the frontal view matches the input data, the reconstruction suffers from bad depth estimation, visible in the side view.

13 shows two frames of the image sequence showing the
tracked points and the recovered joint axis projected onto the
images. The 3D reconstruction of the articulated structure
together with the common hinge axis is also shown in Figure
13. In this case there was no missing data.

Finally we show results using a motion capture sequence
of a person kicking a football. The motion capture system
tracked 333 markers on the whole body. We selected the
tracks on the leg, and projected the 3D coordinates on 2D
images via orthographic projection. The viewing direction
of the synthetic camera starts at the back of the leg and per-
forms a random rotation around the body, resulting in the

image sequence used for reconstruction. Some frames can
be seen in Figure 15, first row. From the 2D images we can
recover the rotation axis of the joint, and the 3D structure of
the leg, as shown in Figure 15. The reconstructed 3D points
and axis have been aligned to the MOCAP data to show the
full body pose. Two closeup of the reconstruction and axis
are shown. In Figure 14 we also show a comparison of the
recovered rotation angle between our method and the linear
method by Tresadern and Reid (Tresadern & Reid, 2005).
We can see that although this sequence does not have ground
truth information on the joint angle in the knee, we recover
a smooth movement (purely from the data, without impos-
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Input images and 2D tracking data

3D reconstruction using Metric Projection

3D reconstruction,20% missing data, MP

3D reconstruction using EMPPCA

3D reconstruction using RCPF

3D reconstruction using RCPF,20% missing data

Frame 200 Frame 400 Frame 500

Fig. 11 First row shows frames200, 400 and500 of the Franck sequence. We show front and side views of the 3D reconstructions in the case of
full data and20% missing data in the input tracks (randomly generated) achieved with our MP algorithm (second and third rows) EMPPCA (fourth
row) and RCPF (fifth and sixth rows). Note that we do not show the reconstruction obtained for EMPPCA with missing data as itwas of very poor
quality. Missing points not visible in the corresponding frame are highlighted with a red circle.

ing smoothness constraints) while the linear solution obtains
similar values with some discontinuities.

6 Conclusions

We have described a new bilinear alternating approach as-
sociated with a globally optimal projection step onto the
manifold of metric constraints. At each step of the min-
imisation we project the motion matrices onto the correct
deformable or articulated metricmotion manifoldsrespec-

tively. Although the constraints result in non-convex prob-
lems we introduced efficient convex relaxations in the form
of semi-definite (SDP) or second-order cone (SOCP) pro-
grams. These relaxations revealed themselves to be exact in
all our numerical experiments.

We have carried out experiments to compare the perfor-
mance of our new Metric Projection algorithm with com-
peting NRSfM methods. These have revealed that there are
two main factors that make our Metric Projection (MP) al-
gorithm more robust to missing data. The first strength is in
the projector. It was first observed in (Marques & Costeira,
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Fig. 12 Quantitative results on the synthetic articulated sequence. Top:
Error on relative rotation angle between the two boxes in thesynthetic
experiment compared with Tresadern and Reid’s linear approach. Bot-
tom: 3D error of recovered structure. In both cases the Metric Pro-
jection method results more robust to noise and can recover rotation
angles reliably.

2009), in the case of rigid SFM, that projecting the rotation
matrices onto the Stiefel manifold allowed to cope with high
percentages of missing data and degeneracies. Our experi-
mental results show that, in the non-rigid case, the two al-
gorithms that project the orthographic camera matrices onto
the Stiefel manifold: our own MP and the simpler rotation
constrained powerfactorization (RCPF) (Wanget al., 2008)
can cope with higher levels of missing data tracks than the
two other baseline methods that do not (EMPPCA (Torre-
saniet al., 2001) and Bundle Adjustment (Del Bueet al.,
2007)). However, MP consistently outperforms RCPF (Wang
et al., 2008) for percentages of missing data above50%.

This is due to the second strength of our MP algorithm:
it simultaneously estimates the unknown entries of the mea-
surement matrixW, given the current estimates of the model
parameters, within an iterative outer loop. Differently, RCPF,
BA and EMPPCA estimate the model parameters using only
the known data. This can have a very negative effect on the
minimisation when few data are known. We also observed
that, when included within our outer iterative loop to deal
with missing data, the simple projector used by (Wanget al.,
2008) improved its performance significantly for percent-
ages of missing data higher than50%.

To conclude, imposing the metric constraints on the mo-
tion matrices provides reliable results without the need to
impose additional smoothness priors on the camera pose or

the deformations as most other NRSfM approaches to avoid
ambiguous solutions. In the articulated case, we efficiently
compute the joints given the non-linear constraints on the
motion of the two bodies. In general, even though our meth-
ods were designed to solve SfM problems, themotion man-
ifolds and the related optimal projections could be used for
different tasks such as registration (where the shapeS is
known), image point matching and motion segmentation.
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Fig. 14 Recovered rotation angle between two object: knee joint in
the “football” sequence. Although this sequence does not have ground
truth information on the joint angle in the knee, we recover asmooth
movement (purely from the data, without imposing smoothness con-
straints) while the linear solution obtains similar valueswith some dis-
continuities

Appendix A: Convex relaxation – deformable case

ForE ∈ R
6×6, our aim is to compute

min
q=vec(Q)

q⊤
Eq, (25)

whereQ ∈ R
3×2 runs through Stiefel matrices, i.e.Q⊤Q =

I2×2. We rewrite (25) as

min
q=vec(Q)

Tr(Eqq⊤) = min
X∈S

Tr(EX), (26)

whereS is the set of all real symmetric6 × 6 matricesX =
[

A B

B⊤ C

]

, with A ∈ R
3×3, satisfying

X < 0, (27)

Tr(A) = Tr(C) = 1, Tr(B) = 0, (28)

rank X = 1. (29)

This problem, has a non-convex constraint (rank X = 1).
Since the cost function is linear we have

min
X∈S

Tr(EX) = min
X∈co(S)

Tr(EX), (30)

whereco(S) is the convex hull of the setS. Here, we ap-
proximate the convex hullco(S) by the set of real symmetric
6 × 6 matricesX that satisfy

X < 0, (31)

Tr(A) = Tr(C) = 1, Tr(B) = 0, (32)
[

I3×3 − A− C w

w⊤ 1

]

< 0, (33)

with w given by

w =





b23 − b32

b31 − b13

b12 − b21



 (34)

whereB = [bij ]. Moreover, this set is defined only by linear
matrix inequalities (LMI). Hence, we have that our prob-
lem (25) is relaxed into finding the minimum of a linear
function (Tr(EX)) on a convex set described by the LMIs
(31)-(33). Thus, the optimisation problem in the right-hand
side of (30) is a Semi-Definite Program (SDP). By using Se-
DuMi (Sturm, 1999), we quickly obtain the optimal matrix
X for (30). In 100% of experiments that we ran, the optimal
matrixX was always of rank 1. By factorisingX = qq⊤, we
obtain the optimalStiefel matrixasQ = vec−1(q). For more
details the reader can refer to (Dodiget al., 2009).

Appendix B: Convex relaxation – Articulated Case

Problem statement

We consider the following optimisation problem which solves
for the cost function as presented in eq. (24)

maximisef(u)

subject to‖u‖ ≤ 1

(35)

where the variable to optimise isu ∈ R
2, the common joint

axes for the two bodies. The objective function is

f(u) = ‖u‖2
+ 2u⊤x + 2

∥

∥

∥

(

I− uu⊤
)1/2

Y

∥

∥

∥

N

+ 2
∥

∥

∥

(

I− uu⊤
)1/2

Z

∥

∥

∥

N

(36)

where the unknowns are the data triple

(x, Y, Z) ∈ R
2 × R

2×2 × R
2×2.

Notice that for ann × n matrix X, the symbol‖X‖
N

=

σ1(X) + · · · + σn(X) denotes its nuclear norm.
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2D input data

3D reconstruction and axis, together with MOCAP data

3D reconstruction and axis, close view

3D reconstruction and axis, close view from different viewpoint

Frame 1 Frame 10 Frame 25 Frame 35 Frame 50

Fig. 15 Recovery of the knee joint in the “football” sequence. Top row: Input image points. Second row: 3D Reconstruction of the leg (magenta
and cyan dots) and axis of rotation shown with the 3D ground truth motion capture sequence (green circles). Third row: Reconstructed 3D points
(dots) with ground truth MOCAP data (green circles). Fourthrow: 3D reconstruction imaged from a different angle.

Problem reformulation

We start by noting that (35) is equivalent to maximising

g(u) = ‖u‖2
+ 2|u⊤x| + 2

∥

∥

∥

(

I− uu⊤
)1/2

Y

∥

∥

∥

N

+ (37)

+2
∥

∥

∥

(

I− uu⊤
)1/2

Z

∥

∥

∥

N

. (38)

Note thatf(u) ≤ g(u) for all feasibleu. However, at a
global maximiser of (35), sayu⋆, we must have(u⋆)⊤x ≥
0. Thus,(u⋆)⊤x = |(u⋆)⊤x| andf(u⋆) = g(u⋆).

We rewriteg(u) as

g(u) = ‖u‖2
+ 2

√
u⊤xx⊤u + 2

∥

∥

∥

(

I− uu⊤
)1/2

Y

∥

∥

∥

N

+(39)

+2
∥

∥

∥

(

I− uu⊤
)1/2

Z

∥

∥

∥

N

. (40)

Moreover, for a2 × 2 matrixX, there holds

‖X‖
N

=

√

‖X‖2
+ 2| det(X)| (41)
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where‖X‖ =
√

tr (XX⊤) denotes the Frobenius norm ofX.
Using (41) in (40) gives

g(u) = ‖u‖2
+ 2

√
u⊤xx⊤u +

+2

√

‖Y‖2 − u⊤YY⊤u + 2| det(Y)|
√

1 − u⊤u +

+2

√

‖Z‖2 − u⊤ZZ⊤u + 2| det(Z)|
√

1 − u⊤u. (42)

Now, we distinguish the following two cases which lead
to two different optimisation strategies:

1. The matrices{I2, YY
⊤, ZZ⊤} are linearly independent

2. The matrices{I2, YY
⊤, ZZ⊤} are linearly dependent

Case1 is the one that most frequently occurs in practice and
it will be solved with a semi-definite program (SDP). In our
experiments, we almost did not observe any occurrences of
Case2. In any case, we provide the solution to Case2 by
means of a2nd order cone program (SOCP).

Case 1:{I2, YY
⊤, ZZ⊤} are linearly independent

In this case, the matrices{I2, YY
⊤, ZZ⊤} form a basis for the

three-dimensional vector space of2×2 symmetric matrices.
This means that there existsα, β, γ ∈ R such that

xx⊤ = αI2 + βYY⊤ + γZZ⊤. (43)

Using (43) in (42) yields

g(u) = ‖u‖2
+ 2
√

αu⊤u + βu⊤YY⊤u + γu⊤ZZ⊤u +

+2

√

‖Y‖2 − u⊤YY⊤u + 2| det(Y)|
√

1 − u⊤u +

+2

√

‖Z‖2 − u⊤ZZ⊤u + 2| det(Z)|
√

1 − u⊤u.(44)

Our optimisation problem is

maximiseg(u)

subject to‖u‖ ≤ 1

(45)

with g(u) as in (44). In (45), the variable to optimise isu ∈
R

2. Problem (45) can be rewritten as

maximiseφ(a, b, c)

subject to(a, b, c) ∈ S
a ≤ 1

(46)

where

S := {(a, b, c) : ∃u : a = u⊤u, b = u⊤
YY

⊤u, c = u⊤
ZZ

⊤u},

and

φ(a, b, c) := a + 2
√

αa + βb + γc +

+2

√

‖Y‖2 − b + 2| det(Y)|
√

1 − a +

+2

√

‖Z‖2 − c + 2| det(Z)|
√

1 − a

is a concave function.

It is also given that we have the inclusionS ⊂ T where

T := {(a, b, c) : ∃U�0 : a = tr(U), b = tr

(

YY⊤U
)

,

c = tr

(

ZZ⊤U
)

}
UsingT instead ofS in (46) gives the convex problem

maximiseφ(a, b, c)
subject toa = tr(U)

b = tr

(

YY⊤U
)

c = tr(ZZ⊤U)

U � 0
a ≤ 1

. (47)

Let U⋆ be a solution of (47) and let

U
⋆ =

[

u1 u2

]

[

λ1 0

0 λ2

] [

u⊤
1

u⊤
2

]

be an eigenvalue decomposition, whereλ1 ≥ λ2. A subop-
timal solution for (35) isu⋆ = ±

√
λ1u1, where the sign is

chosen such thatx⊤u⋆ ≥ 0.

Case 2:{I2, YY
⊤, ZZ⊤} are linearly dependent

We assume thatZZ⊤ can be written as a linear combination
of I2 andYY⊤, i.e.

ZZ
⊤ = αI2 + βYY⊤,

for someα, β ∈ R. Our problem becomes

maximiseφ(a, b, c)

subject to(a, b, c) ∈ S
a ≤ 1

(48)

where

S :=
{

(a, b, c) : ∃u : a = u⊤u, b = u⊤
YY

⊤, c = u⊤xx⊤u
}

,

and

φ(a, b, c) := a + 2
√

c + 2

√

‖Y‖2 − b + 2| det(Y)|
√

1 − a +

+2

√

‖Z‖2 − αa − βb + 2| det(Z)|
√

1 − a

is a concave function. Similarly as the previous case, we
have the following inclusionS ⊂ T where

T := {(a, b, c) : ∃U�0 : a = tr(U), b = tr

(

YY⊤U
)

,

c = tr

(

xx⊤U
)

}
UsingT instead ofS in (48) gives the convex problem

maximiseφ(a, b, c)

subject toa = tr(U)

b = tr

(

YY⊤U
)

c = tr(xx⊤U)

U � 0
a ≤ 1

. (49)
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It can be shown that (49) can be rewritten as a SOCP. LetU⋆

be a solution of (49). Let

U
⋆ =

[

u1 u2

]

[

λ1 0

0 λ2

] [

u⊤
1

u⊤
2

]

be an eigenvalue decomposition, whereλ1 ≥ λ2. A subop-
timal solution for (35) isu⋆ = ±

√
λ1u1, where the sign is

chosen such thatx⊤u⋆ ≥ 0.


