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Abstract This paper describes novel algorithms for recov-introduce an efficient convex relaxation for the non-convex
ering the 3D shape and motion of deformable and articuprojection step. Efficient in the sense that, for both thesas
lated objects purely from uncalibrated 2D image measureaf deformable and articulated motion, the proposed relax-
ments using a factorisation approach. Most approaches tions turned out to be exadtd. tight) in all our numer-
deformable and articulated structure from motion require t ical experiments. The convex relaxations are semi-definite
upgrade an initial affine solution to Euclidean space by im{SDP) or second-order cone (SOCP) programs which can be
posing metric constraints on the motion matrix. While in thereadily tackled by popular solvers. An important advantage
case of rigid structure the metric upgrade step is simplesin of these new algorithms is their ability to handle missing
the constraints can be formulated as linear, deformaliility data which becomes crucial when dealing with real video
the shape introduces non-linearities. In this paper we proesequences with self-occlusions. We show successful sesult
pose an alternating bilinear approach to solve for nordrigi of our algorithms on synthetic and real sequences of both
3D shape and motion, associated with a globally optimatieformable and articulated data. We also show comparative
projection step of the motion matrices onto the manifold ofresults with state of the art algorithms which reveal that ou
metric constraints. Our novel optimal projection step com-new methods outperform existing ones.

bines into a single optimisation the computation of the or-

thographic projection matrix and the configuration weights

that give the closest motion matrix that satisfies the correc

block structure with the additional constraint that thej@ce 1 Introduction and Previous Work

tion matrix is guaranteed to have orthonormal rows. (ts

transpose lies on the Stiefel manifold). This constraimsu  The combined inference of the motion of a camera and the
out to be non-convex. The key contribution of this work is tO3D geometry of an unconstrained scene viewed So|e|y from
a sequence of images is a longstanding challenge for the
Computer Vision community. The fundamental assumption
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which has allowed robust solutions to the problem is that of
scene rigidity. However, when dealing with image objects
that vary their 3D shape, the Structure From Motion (SfM)
problem becomes inherently ambiguous and non-linear. The
seminal work of (Bregleet al, 2000) was the first to deal
with the case of deformable objects viewed by a single cam-
era. Their key insight was to use a low-rank shape model
to represent the deforming shape as a linear combination of
k basis shapes which encode its main modes of deforma-
tion. This model not only provided an elegant extension of
the rigid factorisation framework (Tomasi & Kanade, 1992)
but has also opened up new computational and theoretical
challenges in the field.



Although this low-rank shape model has proved a sucauthors revert to non-linear optimisation in order to find th
cessful representation, the Non-Rigid Structure from bloti  correct solution. Recently Hartley and Vidal have proposed
(NRSfM) problem is inherently under-constrained. Most ap-a new closed form linear solution for the perspective camera
proaches formulate the problem as an optimisation problercase (Hartley & Vidal, 2008). This algorithm requires the
where the objective function to minimise is the image repro4nitial estimation of a multifocal tensor, for which a lirrea
jection error. Recent methods focus on overcoming the prolmethod exists. The tensor is then factorised into the projec
lems caused by ambiguities and degeneracies by propositign matrices and then simple linear algebraic techniqtess a
different optimisation schemes and the use of generic prised to enforce constraints on the projection matrices and
ors. Prior knowledge that the reconstructed shape does nestimate explicitly the corrective transformation. Altigh
vary much from frame to frame was used in (Aanaes & Kahlthe entire approachis linear, the authors report that ftialin
2002) while in (Del Bueet al, 2006) the constraint imposed tensor estimation and factorisation is very sensitive iseo
was that some of the points on the object are rigid. BotiMoreover, none of the closed form solutions proposed so
approaches use bundle adjustment to refine all the paramiar can deal with missing data which becomes crucial when
ters of the model together. A coarse to fine shape model waiealing with real video sequences.
introduced in (Bartoliet al,, 2008) where new deformation

modes are added iteratively to capture as much of the vari- Recently, a set of new approaches have departed from
ance left unexplained by previous modes as possible. Othgfe |ow-rank linear shape model. Rabaud and Belongie as-
authors (Torresargt al, 2008) have also argued that sim- syme that only small neighbourhoods of shapes are well
ple linear subspace shape models are extremely sensitive ighdelled with a linear subspace (Rabaud & Belongie, 2008).
noise and missing data so statistical priors should be usefhey then adopt a manifold learning framework tailored to
to constrain the parameter space. Torresaal. introduced  the NRSfM problem to constrain the degrees of freedom of
priors as a Gaussian distribution on the deformation weightthe deforming object. A dual formulation of NRSfM has
which represents an explicit assumption that these will b@een proposed by Akhtat al. who describe the evolving
similar to each other for each pose. They then generalise thgp structure of a non-rigid body in trajectory space as a lin-
model to represent linear dynamics in the deformations. Albay combination of basis trajectories (Akhegral, 2008).
these approaches impose orthonormality constraints on thee obvious advantage of using trajectory rather than shape
rotation matrices through parameterisation. space is that there is no need to estimate an object dependant

One advantage of the linear subspace model is that it h&asis. Instead the trajectory bases are object independent
allowed closed form solutions for the cases of both affinagxi@nd only the coefficients need to be computed. The authors
et al, 2006) and perspective (Xiao & Kanade, 2005; Hart-Use the Discrete Cosine Transform, therefore low frequency
ley & Vidal, 2008) viewing conditions. In the affine case bases model smooth deformations while higher frequency
Xiao et al. proved that orthogonality constraints were insuf-Pases model more complex deformations. Quadratic models
ficient to disambiguate rigid motion and deformations (Xiaofor NRSfM have been proposed by Fayetchl. to describe
et al, 2006). They identified a new set of constraints on thenore accurately deformations which involve strong bend-
shape bases which, when used in addition to the rotatioffd motions, stretching or twists. The increased desempti
constraints, provide a closed form solution to the problenPower of this model is paid with increased complexity and
of NRSfM. Later they extended the approach to the perspecdion-linearities in the parameter space (Fagtal., 2009).
tive case (Xiao & Kanade, 2005). Similarly, Wang and Wu
propose a new camera model approximating a full perspec- Articulated motion has also been recently formulated us-
tive camera and enforcing basis constraints when estigatiring a structure from motion approach (Tresadern & Reid,
NRSfM (Wang & Wu, 2009). However, every solution em- 2005; Yan & Pollefeys, 2008) modelling the articulated mo-
ploying basis constraints is known to be very sensitive tdion space as a set of intersecting motion subspaces — the
noise (Brand, 2005; Torresaat al, 2008) and to the se- intersection of two motion subspaces implies the existence
lection of the basis constraints. Brand describes a modifiedf a link between the parts. Articulation constraints camth
version of this algorithm using weaker constraints on thébe imposed during factorisation to recover the location of
basis and nonlinear optimisation which improves the solujoints and axes. While Yan and Pollefeys only compute the
tion (Brand, 2005). Interestingly, Akhtet al. have recently location of joints and axes on the image plane and do not
argued that the use of the basis constraints is not necdssaryperform a 3D reconstruction, Tresadern and Reid go further
compute a valid solution for the NRSfM problem. An exactand compute the metric upgrade, but only recover a linear
3D reconstruction can be obtained by solving the problenapproximation of the correcting transformation (Tresader
with the appropriate structure when upgrading for the met& Reid, 2005). Both approaches require full data and there-
ric constraints (Akhteet al,, 2009). However, their theoreti- fore cannot deal with missing tracks, a situation that com-
cal insight is not followed by a closed-form solution and themonly occurs for instance when tracking humans.



1.1 Related Work and Contributions carried out on motion capture sequences with ground truth
3D data, reported in Section 5, show that adding a projection
In this paper we present a new unified approach to performstep (Wanget al’s or ours) improves greatly the results ob-
the metric upgrade in the cases of articulated and defoemabtained in the case of missing data with respect to other meth-
structure viewed by an orthographic camera in the presenagls. However, even better improvements are achieved when
of missing data. using our bilinear algorithm associated with the proposed
In the non-rigid case our approach is most closely relatedhetric projection instead of Wanef al’s trilinear scheme
to Torresanet al’s and Wanggt al’s trilinear schemes (Tor- and simpler projector (Wanef al., 2008)
resaniet al, 2001; Wanget al, 2008). Both approaches In order to deal with missing data, our algorithm per-
use an identical alternating least squares framework to e$arms an outer iterative loop in which, at each step of the
timate the configuration weights, basis shapes and orthdteration, we run our non-rigid factorisation algorithmdan
graphic camera matrices, solving iteratively for each ef th we use the new estimates of the rotations, translations, ba-
unknowns leaving the others fixed. The only difference besis shapes and coefficients to provide a new estimate of the
tween these two approaches is in the way that the orthamissing data. Our experimental tests shown in Section 5 re-
graphic camera matrices are updated and the metric comeal that dealing with incomplete tracks using this outeplo
straints imposed — the other two steps in the alternation arallows to cope with much higher percentages of missing data
identical. than the trilinear approaches (Torresanhial, 2001; Wang
While Torresanet al. enforce the exact metric constraintset al,, 2008) that only use the available data.
through an exponential map parametrisation of the rotation In summary, we see three substantial contributions in our
matrices, the update of the camera matrix is only an approxapproach. First, in contrast to their trilinear schemesppd
imation — the camera matrix cannot be updated in close@misation scheme is bilinear, alternating between the est
form and instead they perform a single Gauss-Newton stepnation of the motion and the shape matrices. Secondly, our
Alternatively, in their Rotation Constrained Powerfactar  novel optimal projection step combines into a single optimi
tion algorithm (RCPF) Wanet al. first update the ortho- sation the computation of the camera matrix and the configu-
graphic camera matrix via least squares and an additionghtion weights that give the closest motion matrix thatdies
step is incorporated to project it onto the Stiefel manifold  the non-rigidmotion manifoldwith the additional constraint
its SVD decomposition. This simple projector is in fact al- that the camera matrix is guaranteed to have orthonormal
most identical to the one proposed by (Marques & Costeirarows (.e. its transpose lies on the Stiefel manifold). Finally,
2008) for the case of rigid structure. Finally, in order t@ade our experiments reveal that dealing with missing data us-
with missing data the above trilinear approaches (Toriesaling an iterative outer loop to re-estimate the missing estri
etal, 2001; Wanget al,, 2008) resort to using only the avail- greatly improves the results with missing data.
able image tracks in their alternating scheme. This notion ofmotion manifoldsvas recently introduced
Similarly to Torresanet al. and Wanget al. we also pro-  in the case of rigid shapes by (Marques & Costeira, 2009).
pose an iterative alternating scheme to solve the non-rigifjotably, constraining the motion matrices to lie on the éxac
structure from motion problem. However, our optimisationmotion manifold leads to robust solutions for the problem
scheme is bilinear, alternating between the estimatioheft of estimating rigid 3D structure in the case of high ratios
motion and the shape matrices, with an additional projecof missing data or degenerate configurations. Our work ex-
tion step of the motion matrices onto the manifold of metrictends and generalises Marques and Costeira’s to the case of
constraints. At the expense of solving a more complex opdeformable and articulated shapes therefore we provide a
timisation problem, our efficient convex relaxation prasd general framework which allows us to deal with high ratios
an optimal minimiser to solve simultaneously for the ortho-of missing data and different types of shape. In particwiar,
graphic camera matrix and configuration weights that give @npose that the camera matrix must have orthonormal rows,
motion matrix that satisfies the appropriate block struetur therefore its transpose lies on the; Stiefel manifold.
while also ensuring that the orthographic camera matrix sat  Thjs constraint is non-convex, butin the case of deformable
isfies the constraint of having orthonormal rows (its transzyycture we show that an efficient convex relaxation can be
pose lies on the Stiefel manifd)d Here and throughoutthe gpained which results in the constraint set being defined
paper, the optimal projection of a matrix onto a given set 0|y py a set of linear matrix inequalities (LMI). Therefore
matrices, denotes the closest point on that set from th@givgye relax the problem of imposing the camera matrices met-
matrix with respect to the Frobenius norm. Extensive test$i: constraints into a Semi-Definite-Program which can be
T - - - - solveq with popular solvers such as SeDuMi.. I.n the case
The Stiefel manifold/y. ,, may be viewed as the collection of all ¢ o iy |ated structure, we also propose an efficient conve
m X k matrices whose columns form an orthonormal set. More pre- . ) . . . .
cisely, the (real) Stiefel manifold, ,,, is the collection of all ordered  'eélaxation which in most cases consists of a semi-definite
sets ofk orthonormal vectors in Euclidean spage. program(SDP) and of a second order cone program (SOCP)




in the remaining cases. While we do have a theoretical prooiheref is the number of frames andhe number of points.

of the tightness of the convex relaxations for certain sgeci The measurement matrix can be factorised into the prod-

cases (Dodiget al., 2009), we do not yet have a proof for uct of two low-rank matrices a8 = Masx, S,x,, Where

every case. However, all the aforementioned convex relax4 ands correspond to the motion and shape subspaces re-

ations turned out to be exact in the totality of our numericakpectively. As a result, the rank @fis constrained to be

simulations. rank{W} < r wherer < min{2f, p}. The rank of these
The result is an algorithm where the recovered motiorsubspaces is dictated by the properties of the camera pro-

matrices have the exact structure and the exact orthogongéction and the nature of the shape of the object being ob-

ity constraints imposed. One of the main advantages of owerved (rigid, deformable, articulated, etc.). This rank-c

approach is that it can be extended naturally to deal witlstraint forms the basis of the factorisation method for the

missing data in a similar way to (Marques & Costeira, 2009)estimation of 3D structure and motion. .

An earlier version of our work appeared in (Paladinhil,, MatricesM ands can be expressed Hs— [MlT . MH

2009). There are two important new contributions in this pa

ands = [S;---S,] where; is the2 x » camera matrix
per:

that projects the 3D shape onto the image franaadS ;

— We have proposed a new efficient convex relaxation foencodes the 3D coordinates of pojnt
the articulated case, while in our previous work we used
an exhaustive search over the cost function constraineﬁl 1 Rigid Shape
to the unit circle. This results in a unified approach to™

solve the metric prOJect_|on problem m the Qeformab_leln the case of a rigid object viewed by an orthographic cam-
and articulated cases using convex optimisation techmqg?a, if we assume the measurements iare registered to

EZLSdiT(eEV;V efficient convex relaxation is shown in Ap- the image centroid, the camera motion matrigeand the

— We propose an alternative optimisation algorithm for the3D pointsS; can be expressed a: = [
deformable case which perform80 times faster than . )
our original convex relaxation solution. In Section 3_2and S;j = [_XJ'YJ'ZJ' WhereRi IS _6‘2 X 3 matrix Whose
we present a new iterative Newton-like optimisation al-'anspose lies on the Stiefel manifold (i.e3a« 2 Stiefel
gorithm on the Stiefel manifold which constrains the so-Matrx). SiNCeR; contains the first two rows of a rotation

0 T - . .
lution to lie on the correct manifold. Although we lose Matrix (i-e.R:R; = Iz.2) andS; is a3-vector containing
the optimality given by the convex solution in all our the metric coordinates of the 3D point. Therefore the rank

experiments with ground truth data the algorithm con-_Of the measurement matrlst_g 3. The r|g'|dmot|.on man-
verged to the same global minimum. ifold corresponds to the manifold of matrices with pairwise
orthogonal rows.
As a final observation we should stress that, while most
NRSfM algorithms proposed to date need to rely on the use
of priors to solve for the 3D shape and the camera mo2-2 Deformable Shape Model
tion (Bartoli et al,, 2008; Torresanet al., 2008) avoiding . _
ambiguities, our new algorithms can obtain reliable solu!" the case of deformable objects the observed 3D points

tions without having to impose priors such as smoothnes§hange as a function of time. In this paper we use the low-
on the camera motion or the deformations. rank shape model defined in (Bregkdral., 2000) in which

the 3D points deform as a linear combination of a fixed
set of k rigid shape bases according to time varying coef-
ficients. In this way,s; = 25:1 li4gBq Where the matrix
S; = [Si1,---S;p] is the 3D shape of the object at frame
Consider the set of 2D image trajectories obtained when this t€3 x p matrices, are the shape bases ahgare the
points lying on the surface of a 3D object are viewed by &-0€fficient weights. If we assume an orthographic projec-
moving camera. Defining the non-homogeneous coordinatd@" Model the coordinates of the 2D image points observed
of a pointj in framei as the vectow;; = (u;;v;;)T wemay & each frame are then given by:
write the measurement matrixthat gathers the coordinates ( k )

W, =R, +T;

Ti1 T2 T43
Ti4 Ti5 Ti6

}T

2 Factorisation for Structure from Motion

of all the points in all the views as: Z l;aBa
d=1

(2)
Wi1 ... W1 W1 . . .
P where the matripg; is 2 x 3 with orthonormal rows, such
W= & =] (1)  thatRr; is a Stiefel matrixand the2 x p matrix T; aligns
Wi ... Wep Wy the image coordinates to the image centroid. The aligning



matrix T; is such that; = tilg where the2-vectort; isthe  wheres is a full ranks matrix. The motion for a framehas
2D image centroid antl, a vector of ones. When the image to be accordingly arranged to satisfy equation (4) as:
coordinates are registered to the centroid of the object and

we consider all the frames in the sequence, we may write thié = Rgl) REQ) tgl) . (6)

measurement matrix as: _ o _
In the case of &inge joint if we assume the image co-

111R1 ... L1xR1] [B1 M| [B1 ordinates to be registered to the centroid of each segment,
W= Do =] | =ms 3) then the'motion matric_emi that lie on the articulatecho-
ks kg B 1] (B tion manifoldcan be written as:
) ) ) ) o M; = [ui A; Bi} (7)
SinceM is a2f x 3k matrix ands is a3k x p matrix in
the case of deformable structure the ranki &f constrained whereu is the common rotation axis for both objects,
to be at mosBk. The motion matrices now have the form andB; are2 x 2 matrices such thgtu;A; | and[u;B; | are
M; = [Mj1...Mig] = [laaRs ... lixRi]. Therefore, in the de- the2 x 3 camera matrices (with orthonormal rows) associ-
formablemotion manifoldthe motion matrices have a dis- ated with the first and second shape respectively. The metric
tinct repetitive structure and eveByx 3 M;; sub-block is  constraints in the case of a hinge can therefore be expressed
composed of the transpose oS#efel matrixmultiplied by  as:
a scalar.

.
[u; 4] “\lfr} = Iax2

o (8)
2.3 Articulated Shape Model [u; B;] {B%} = Ioyo

In the case of articulated structure, the relative motiohns owhere, without loss of generality, we have implicitly as-
the segments that form an articulated body are dependegtimed that the axis of rotation is aligned with the x-axis
and this results in a drop in the dimensionality of the meapf the first object. Thus we can wrigeas:

surement matrix = [W(})[W(?) ] that contains the 2D image

points of the two segments. In the case afraversal joint x?) xz(,ll) x§2> x,&?
the two shapes share a common translation (i.e. the distance | (V... ;U o ... ¢
between the centres of mass of the shapes is constant) whie_ Z§1) . Z;(ﬁ) 0 --- 0 9)
in the case of d&inge jointthe shapes also share a com- 0 0 y(z) y(z)
mon rotation axis (Tresadern & Reid, 2005; Yan & Polle- 0 o Zb) Z’(’S)
1 P2

feys, 2008). Naturally, this approach requires that arainit
segmentation stage has taken place to assign the tragtoriyhere nows is a5 x p matrix andp = p; + p» (We assume
in W to the respective shapes for which a solution was rethe shapes have been registered to the respective object cen
cently provided in (Yan & Pollefeys, 2008). troids). Therefore, in the case of a hinge joint the rank ef th
In a universal joint(Tresadern & Reid, 2005) the dis- measurement matrix is at mdst
tance between the centres of the two shapes is constrained
to be constant (for instance, the head and the torso of a hu-
man body) but with independent rotation components. AB Metric Upgrade

each frame the shapes connected by a joint satisfy:
The classic approach in factorisation is to exploit the rank

tM L rOAD = @ L r@g® (4)  constraint to factorise the measurement matrix into an ini-
tial affine solution with a motion matri and a shape ma-
wheret) andt(®) are the 2D image centroid of the two trix § by truncating the SVD of to the rank- specific to the
objectsR(M) andr(?) the2 x 3 orthographic camera matrices Problem. However, this factorisation is not unique sincg an
andd™ andd(® the 3D displacement vectors of each shapdnvertibler x » matrixQ can be inserted, leading to the alter-
from the joint. The relation in equation (4) gives the rediice native factorisationii = (Q)(Q~'§). The problemis to find
dimensionality in the motion and shape subspaces. Thus, tfilee transformation matrig that removes the affine ambigu-

shape matri can be written as: ity, upgrading the reconstruction to metric and constrajni
the motion matrices to lie on the appropriatetion mani-
s am fold.
s=1lo s®@ _qgq® (5) While in the rigid case the matri® can be explicitly

1 1 computed linearly by imposing orthonormality constraints



on the rows of the motion matrix (Tomasi & Kanade, 1992), Affine Solution
in the non-rigid and articulated cases the metric condsain
on the motion matrices are non-linear. Although some closed
form solutions have been recently proposed (Xiao & Kanade,
2005; Xiaoet al, 2006; Hartley & Vidal, 2008) these al-
gorithms perform poorly in the presence of noise and can-
not cope with missing data. Iterative solutions provide-a vi
able alternative in the presence of noise and missing data
and this procedure will be adopted in our proposed algo-
rithm. The factorisation oW is solved with an alternating
least-squares problem where at each stépe motionM(*)

and shaps(®*) matrices are optimised separately keeping the
other one flx.ed aS.ShOW.n in Algorithm 1. This strategy is nocomputed via least squares is projected onto the motionfoidrof
uncommon in optimisation problems for StM (Buchanan & metric constraints. The process is iterated until converge
Fitzgibbon, 2005) however it is important to notice is that,

differently from previous optimisation schemes, we use a

projection step which computes a solution that satisfies the

metric constraints exactly. The metric constraints cdrfis X ) o
two parts: imposing the correct block structure to the mrotio Perform the metric upgrade in the case of non-rigid strectur

matrix and constraining the transpose of the orthographificluding the trilinear alternating least-squares meshaek

camera matrices to lie on the Stiefel manifold. In our ap-ScriPedin (Torresaretal, 2001) and in (Wangt al, 2008).

proach, we impose both constraints simultaneously project10WeVer, even though Torresatial’s method imposes ex-
ing the motion matrix optimally onto the appropriate mo- 2Ct Metric constraints on the camera matrices by parametri-

tion manifold. As already noticed by (Marques & Costeira, Sation. the update of the camera matrix relies on the assump-
2008) for the rigid case, these projections not only providé'on that the c_urrent estimate differs from the next one only
camera matrices which exactly comply with the projectionby small rotations. Moreover, the recovery of camera matri-

model but also are generally robust to missing and degenef€S IS not optimal. In our case we have an optimal solution
ate data to the projection step, which re-estimates the camera ma-

trices and the coefficients to obtain the closest matrix that

satisfies the metric constraints. The metric projectiop ste
Algorithm 1 Iterative metric upgrade via alternation for de- can be visualised in Figure 1. Also Waagal. (Wanget al.,
formable and articulated shape. At each step of the iteratio 2008) adopt a trilinear approach where the constraintsen th
the motion matrix estimated via least squares is projectedrthographic camera matrices at each frame are imposed us-
onto the motion manifold. ing a projection. Their projector is in fact equivalent te th
Require: An initial estimatem(®). one developed in parallel by (Marques & Costeira, 2008) for

Ensure: A factorisation ofi that satisfies the given metric constraints. rigid shape in the scaled orthographic case. The projection
1: Project each fi t) onto themoti ifoldof th ti . o
roject each frame of*) onto themotion manifoldof the motion is computed ast; — R; — aUVT wherea is given by the

ig. 1 Iterative scheme: at each step of the iteration, the motiatmir

Previous approaches have also used iterative methods to

matrices (See Section 3.1 for the deformable case and 8&:80

for the articulated case). mean of the two singular valu G (M) + o2 (M) obtained
2: Estimates(*) from the projectedi(*) as:s(®) = u(® 'y (where the _ 2

symbol indicates the MoorePenrose pseudo-inverse. from the SVD ofV¥; (i.e.M; = UDV'). In order to extend
3- Estimatet(t+1) such thatM(t+1) — ys(® T such procedure to non-rigid shapes, we first need to define
4: Repeat until convergence. themotion manifoldor the deformable and articulated cases

and to provide the computational tools to project the motion

matrices exactly from affine to metric space.
Crucially, Step 1 represents the real and novel contributio ~ While other papers have chosen to use priors on the shape
of this algorithm: an optimisation method which computesto constrain the solution to the optimisation problem and
the projection of the affine motion components ontortiee  obtain the metric upgrade (Bartadt al, 2008; Torresani
tion manifoldin which the exact metric constraints are sat-et al,, 2008; Del Bue, 2008), in this paper we provide a met-
isfied. Although this problem is non-convex we propose ef+ic upgrade step that solves an unconstrained least-sjuare
ficient convex relaxations (in the sense that the relaxationproblem and optimally projects the solution onto the-
turned out to be exact, in our numerical simulations) thation manifold(i.e, computes the closest matrix in the mo-
transform the problems into semi-definite (SDP) or secondtion manifold with respect to the Frobenius norm). In such
order cone (SOCP) programs. Stepand 3 alternate the regard, we postulate that reliable solutions to the NRSfM
estimation ot1(¥ands(*) assuming the other one known.  problem can be obtained without the use of prior informa-



tion about the motion of the object or the smoothness of itsatisfies the metric constraints. This allows us to solve it-
deformations. In the case of articulated structure, weesolveratively for the motion and shape as described in Algo-
globally for both the motion components related to the bodfithm 1. This optimal metric projection step was first intro-
ies and the joint axis with a similar procedure. We now giveduced in (Paladinet al., 2009). The disadvantage of this
details on how these projections are computed and the thepproach is that the computational complexity of solving a
oretical insights for thenotion manifoldof deformable and quadratic minimisation problem for each frame in the se-
articulated shapes. guence is too onerous. Each minimisation takes absat-
onds using SeDuMi toolbox (on a Athlon X2 processor run-
ning at2.6GHz), therefore a sequence 16f0 frames would
3.1 Metric Projection: Deformable Case take around! minutes to process. While this computation
S ) ) time is not unreasonable for a batch process, in Section 3.2
The projection is carried out on eaghx 3k sub-matrix; ;e hresent a new algorithm based on a Newton optimisation
as (_jeflne_d _|n _Sec_tlon 2 and it corresponds to solving the fo'r"nethod on the Stiefel manifold to speed up the computation
lowing minimisation problem at each frame: by a factor of around30. First we describe the initialisation
min  [[M; — [lilRi|~~~|likRi]H§7 (10) to the minimisation.
Riliv..lik
with the added constraint th&; be a2 x 3 matrix with ~ 3.1.1 Initialisation for the deformable case

orthonormal rows (i.eRiR;r = Isx2). Thisis equivalent to
minimising separately all th2 x 3 blocks ofM; giving: Algorithm 1 requires an initial estimate of the motion matri

M; at each frame. This in turn requires initial estimates for

k — . . . —
. . 2 the camera matrice®; and the configuration weights,.
Mi — bidhvg 11 .. .= . . — .

TR ; lrlm?k [Msa = liakil[ (11) The rigid motiorr; and the first basis shape are estimated

. '_' _ from a rank3 rigid factorisation of the measurement matrix.
which is equivalent to: The second component of the shape bases is estimated from

k the residual
. 2 2 2 T

min M; + Uy [IRill 7 — 2Lig Tr[M;4R:]- 12 __

Jmin 3 Wl + 8y Il = 2ha DR (D) e s

We can then reformulate the problem by computing the minA new rank3 factorisation is performed om. and the new

imum first for [, (i.e. solving for the zeros of the deriva- configuration weightg, can be estimated solving fosR; =

tive of eq. (11)) giverr. This resolves in computing the M;, keeping the rotations fixed. This can be solved in a sim-

minimum of the quadratic function ify given by f(l5) =  ple way by taking advantage of the orthonormalityrof
12-20bl . Such minimum is found ity = b/a givin

aly ate ity = b/a giving vedR,)l;; — vedM,,)

in our case that: . -
vedR;) vedR,;)l;; = vedR;) vedl;,
TR 1 o) TvedR)ly; = ved,) T ved;)
id = RS = 5 TrMiqRi]- (13) |IR[[7li; = vedR,)  veqM;;)
HE 2[1']' = VedRi)TvedMij)
Putting this value back in eq. (11) and following with the
simplification, the minimisation can be written as:

This process is repeated to obtainfalieformation modes.

ming, r; [— ijzl midm;} r; (14) The first rigid factorisation needs full data to give a solu-
suchthat R;R] = Iy tion, so we use Marques and Costeira’s rigid factorisation

algorithm (Marques & Costeira, 2009) if missing data are

wherer; = veqR;) andm,; = vedM;;). Therefore, this present.
quadratic minimisation problem presents a non-convex con-
straint given byr;. In Appendix A we show that it is possible
to derive an efficient convex relaxation of the constraimt se 3.2 Newton method on the Stiefel manifold
This set is defined only by linear matrix inequalities (LMI).
Therefore the optimisation problem is a Semi-Definite Pro-The approach described in the previous section will pro-
gram (SDP) which can be solved using SeDuMi (Sturmyide an optimal projection onto thmotion manifoldof de-
1999). Further details, including a proof of the relaxationformable structure. The first observation we made is that
can be found in (Dodigt al., 2009). the motion matrix for one frame is not unrelated to the next

The computedtiefel matrix®, is then used to recover one. For most common image sequences the motion of the
the weightd,, obtaining a full non-rigid motion matrix that camera is smooth, thus each motion matixvill not vary



much from frame to frame. Therefore, it is not unrealistic3.3 Metric Projection: Articulated Case

to assume that the camera pose at fransea good initiali-

sation for an iterative algorithm which tries to compute theProjection onto thenotion manifoldof the universal joint
pose in the next frame+ 1. Thiswarm-startstrategy is not  can be simply solved by performing two separate rigid fac-
explicitly designed for standard solvers for convex optimi torisations for each of the parts of the articulated objekt f
sation problems ((Sturm, 1999)). Instead, we have adoptd@wed by an estimation of the joint location as presented
a Newton-like iterative optimisation algorithm based oa th in (Tresadern & Reid, 2005). The hinge joint is far more in-
work of (Edelmaret al,, 1999). We perform iterative optimi- teresting given the non-linear relations between the motio
sation directly on the Stiefel manifold which, for the cage o subspaces. Here the problemiis to find the closest matrix that
smoothly varying camera poses, will converge locally to thesatisfies the metric constraints given a rotation axis betwe
minimum. Of course we lose the optimality of the convextwo objects. Following eq. (6) the projection problem foe th
relaxation algorithm. However, empirically we found thati hingemotion manifoldcan be written at each frame as the
all our experiments with ground truth data both algorithmgfollowing minimisation:

converged to the same minimum. in J(u,A,B) — | ”2+ A YHQ 4B Z||2 (19)
. ", . u = ||lu— — —
We now provide additional details on how to computeﬂ% o * E o

the Newton step update for timeotion manifoldof deform- subject to the constraints defined in eq. (8). Here and

ngghapez. 1]-0 a}[(;l]here LOI the nc:;at;or; |n. (I'Ed'el.ream; Z are obtained directly from the affine motion mat¥ix =
) ) we define he problem as that of minimising a unC'[x|Y|Z], recovered through SVD. Equation (19) can be re-
tion F(Y), whereY is constrained to the set of matrices such

T S . i ) formulated (Paladinet al, 2009) as the minimisation of
thaty 'Y = I i.e. itis aStiefel matrix The current estimate

of the Stiefel matrix is updated in the Newton directidn f[]hgf[’ A,B) only as a function of the common axis such
using the geodesic formula for a unit steg- 1

min J(u, A,B) = min J(u). (20)
Y(t) = YM(t) + QN(¢) ey WP "

This is possible as we will show that, once the optiméas
whereqr is the compact QR-decomposition@—YY ')A,  estimated, it is straightforward to obtainandB in closed

with the Newton directiomA given by form. The equivalent cost functiof(u) can be written as:

A = —Hessian! (Fy — YFy Y) (17) ~minJ(u) = min { [ = x||* + ¢y () + ¢Z(u)} - (21

Thus now we will show how to transform the minimisation
of |A — Y||%. into the minimisation ofsy (u) (the same rea-
soning can be replicated fgr; (u)). First, we use the polar
decomposition to change variablessas- PQ whereP > 0

0 A _RT I (i.e. P is a semidefinite matrix) an@ is orthogonal (both
=expt v

(whereFy is the first derivative with respect t9) and, fi-
nally, the matrice#l(¢) andN(¢) are given by the matrix ex-
ponential

R 0 0 (18) P andQ are2 x 2). Moreover, given the metric constraints
in eq. (8), it follows that? = I — uu'. Thus, the matrix
I — uu' must be positive definite, restricting the vector

H _ vy
with A =Y A. ) ) _to be inside the unitary circle. Then, for a chosewe can
We apply the iterative Newton method (more theoreti-

g k write ¢y (u) as:
cal insights can be found in (Edelmanal, 1999)) to the

2
cost function given by equation (14), using the solution t0g, (u)= min (I_uuT)1/2Q_YH
F

the previous frame as an initialisation. Evidently, thetfirs ’=r

: ; 2
frame has to be solved Wlth the prewously prpposed convex —min {H(I -~ uuT)l/QH i |\Y||iﬂ
relaxation. In our experiments this new solution provided a Q7= F
remarkable speedup, solving the whole factorisation prob- 0Ty (v7 (1 T 1/2
lem about130 times faster than the original method, with- el ( (I—uwu')""Q) .

out losing optimality as observed in the experimentalgrial . . . . . . .

. A : Minimising this cost function over the orthogonal matgix
Notice that in this case the assumption that the camera pose o . . .

. L S equals to maximising the trace in the previous expression.
varies smoothly is just an initialisation strategy and not a . ]

) . T . Using the property:
prior term in our minimisation. Our smoothness assumption
does not add an explicit penalty term to the cost function

: i . max {Ir(XQ)} = 01(X) + 02(X) + - - - + 0, (X) = ||X

to penalise strong deformations or camera motions as Otherl’T:I{ (xQ)} 1(®) 2(X) n(®) = X/l

authors do (Bartolet al,, 2008; Torresarét al, 2008). (22)



where||X|| denotes theuclear normof X (i.e. the sum of 4 Reconstruction with Missing Data

its singular values), we can write that:
Incomplete image tracks are a common occurrence in SfM

dy(w) =2 — [[ul* + Y] — 2 H (1- “uT)1/2 YHN (23)  tasks and several algorithms have been proposed in order to
cope with the missing data problem within the factorisation
framework (Buchanan & Fitzgibbon, 2005). Our new fac-
torisation approach presented in the previous section ean b

The same reasoning can be replicateddgfu) giving the
final optimisation problem to be solved as:

min  — |Jul? - 2uTx -2 H (I—uu') 12 YH (24)  modified to account for missing entriesWnThe strength of
N . . . .
) <1 9 H(I _ uuT)l/Q ZH our approach lies in the fact that theotion manifoldcon-
- N strains the estimated motion of the missing 2D image points

Once the optimah* is found we substitute back in order since we only allow trajectories that satisfy the metriccon
to recover the solution fak (and similarly for). First we  straints exactly.

obtainQ from the SVD OfYT(I—u*u*T)l/z — UDV ' lead- Instead of using only the known image tracks to solve
ingtoQ = VU'. The matrixP is simply given knowing that for the camera matrices, basis shapes and deformation co-
P2 = I — u*u* . This will result in the matrix that exactly efficients as the trilinear least-squares approaches de (To
satisfies the metric structure of a hinge joint. The optimisaresaniet al, 2001; Wanget al, 2008), we opt for an iter-

tion of the cost function in eq. (24) is not trivial since the ative scheme. At each step of the iteration we re-compute
cost function is non-convex and non-smooth. However théhe missing entries in the measurement mairixsing the
domain in which the function resides is very constrainesd (i. current estimates of the motion and shape matrices that have
the unitary circle) and the value of eq. (24) for an arbitrarybeen projected onto the correnbtion manifoldIn our ex-

u can be computed efficiently without the need of calculatyperimental validation, reported in Section 5, we have found
ing the nuclear norm at each sample. The optimisation caihat dealing with missing data using the iterative scheme de
be then solved with a simple exhaustive search algorithracribed here allows to deal with higher percentages of miss-
in which the function samples can be computed in a smaling data than using only the available data as Wetra). do
amount of time (details on this computation can be found irin their RCPF approach (Wargf al, 2008). The steps of
(Paladiniet al.,, 2009)). this method are summarised in Algorithm 2.

3.3.1 Convex relaxation for the articulated case Algorithm 2 Metric Projections algorithm in the presence

L . . _ of missing data.
Although the cost function in equation (24) is non-convex, i - — - — -
Require: An initial estimatew(®) of the missing data im.

Appendix B we propose an efficient convex relaxation. DIf'Ensure: A factorisation ofw that satisfies the given metric constraints.
ferently from the deformable case, the reformulation leads;. remove the 2D centroi® fromu(®, i.e.w® = w(® — 1(*).

to two cases. As shown in Appendix B, in one case the2: Factorisei® = u®*s(® using Algorithm 1.

problem becomes a semi-definite program (SDP) and in the3: Estimate the missing data entriesicisw(**1) = u(®s® 4 1(*)
other a second order cone program (SOCP) both of whict:_Repeat until convergence.

can be efficiently solved with standard convex optimisation

tools (Sturm, 1999). In all of our numerical experimentsThe algorithm requires an initial estimate of the missing
we found that the proposed convex relaxations were exacéntries in the measurement matiix For this purpose, we
thereby solving indeed (24). Compared to the full searchhave used the rigid factorisation algorithm of (Marques &
method presented in (Paladetial, 2009), this convex op-  Costeira, 2009) to obtain an initial rigid fit of the missing
timisation speeds up the computation by a factor of aroun@ntries. In the case of articulated structure we apply the al
ten. A second advantage is that we avoid the problem oforithm independently to each of the bodies. The iterations
the accuracy of the solution depending on the density of thare stopped when the distarigie!t1) — w(®) || » falls below
interval grid in the parameter space as in the full-seareh aly user-defined threshold, that is, when the new estimate does
gorithm. The full details of the proposed convex relaxatiomot modify the previous values much.

can be found in Appendix B.

3.3.2 Initialisation for the articulated case 5 Experiments

We first consider the two bodies separately and then perforairst we show results for the recovery of deformable struc-
arigid factorisation for each shape. Given this factorisgt ture, followed by results for articulated structure. Welava
we can then obtain an initial closed form solution for theate the performance of our algorithms quantitatively on var
metric upgrade in the case of a hinge using the linear ageus motion capture sequences, for which ground truth was
proximation of (Tresadern & Reid, 2005). available, and we compare our results with some current
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Fig. 2 Missing data tests on tHeace1Motion Capture sequence. Plots show the average 3D errorn 09¢ests for increasing levels of randomly
generated missing data. We compare the results obtainkeoMetric Projections (MP), EMPPCA, Bundle Adjustment (BRptation Constrained
Powerfactorization (RCPF) and MP with a Simple ProjectoP¢8P). The plots on the left column show the average 3D eimdie noise-less
case (top) and with added Gaussian noise (botton) ef 1%. The plots on the right show a zoomed-in version of the thesst performing
algorithms (MP, RCPF and MP-SP). The performance of MP aneBRRs similar although MP outperforms MP-SP.

0.2 I
=—F— Metric Projections £ Metric Projections - 30% Missing Data
0181 = Wang etal. 0.4 Wang et.al. - 30% Missing Data
0.16[ + Bundle Adjustment VBund\e Adjustment - 30% Missing Data
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Fig. 3 Noise test for thd=acelMotion Capture sequence in the cases of full data case 8eétB0% missing data (right). We show 3D errors
versus percentage of added Gaussian noise. In the full ds¢a(teft), EMPPCA performs marginally better while in thissing data case (right)
MP is the best performing algorithm.

state of the art NRSfM algorithms (Torresagtial, 2008; sequences. We have made our code and sequences available

Del Bueet al, 2007; Wanget al., 2008). In the case of the for download on our website

articulated Metric Projections (MP) algorithm we evaluhte

against (Tresadern & Reid, 2005). Notice that we do not

compare with Yan and Pollefeys’ approach (Yan & Polle-

feys, 2008) since their proposed method does not perform

a 3D metric reconstruction of the shape and joint axes —

only the 2D projection of the axes in the image is com-

puted. Finally we demonstrate our algorithms on real image http:/fwww.dcs.gmul.ac.uk/ - lourdes/code.
html
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Images from MOCAP session

—— Ground Truth

——e— Reconstruction

® Missing Data

Frame 10 Frame 45 Frame 70

Fig. 4 3D reconstruction results for a single run of the BEaeelmotion capture sequence with% missing data. The points that were missing
in each frame of the sequence are highlighted in red. Top 8mme frames of the original motion capture take (note thatiifreges do not
correspond exactly to the reconstructed frames shown hel@cond, third and fourth rows: side and front views for edrames of the 3D
reconstruction for our Metric Projection method, Torrésa al's EM-PPCA and Rotation Constrained Power Factorisatiga.show ground
truth (green circles) and reconstructed points (dots/ ibivisible red if not). The wire-frame lines are only shown fosualisation purposes.

5.1 Deformable Structure of the art/baseline algorithm and for which code has been
made available online; Rotation Constrained Power Factori
Synthetic Experiments — Motion capture data sation (RCPF) (Wangt al., 2008), which is the most closely

related approach to our new MP algorithm since it also per-
In our synthetic experiments we used two different 3D moforms a (rigid) projection of the camera matrices as we de-
tion capture sequences, both showing faces. The first sgeribed in Section 1.1, and a Bundle Adjustment algorithm
qguencefacel was captured in our own laboratory using a(BA) designed for NRSfM (Del Buest al, 2007) where
VICON system tracking a subject wearidgmarkersonthe the orthonormality constraint on the rotation matricesnis i
face. The 3D points were then projected synthetically ontgosed through parameterisation.
an image sequencel frames long using an orthographic

camera model. The second seque@idU face sequende In the case of missing data we also report results with a
is motion capture data made available by (Torresral. modified version of our Algorithm 2. We are interested in as-

2008). The subject woré0 markers tracked by a motion ses_sing (in the case of mi_ssing data) the gain in performance
capture system and the orthographic projection is perfdrme@chieved by using our bilinear scheme followed by our new
by simply discarding the third coordinate of each 3D point.CPtimal metric projector instead of Wareg al’s trilinear
Note that although the projection of the ground truth 3Dsche.me followed by thelr S|mpler projector of the camera
data on the images is synthetic the deformations are redf?alrices onto the motion manifold (Warg al, 2008). In

istic since they come from real motion capture sequence8der to do this we have designed a new algorithm that we

The 2D image data is therefore not synthetic and it contain§2!l MP-SP:Metric Projection with Simple ProjectiorThe
some noise due to the motion capture estimation errors. idea is to use our outer loop to deal with the missing data and

Our proposed Metric Projection algorithm (MP) is testedSUbStitUte Step 2 in Algorithm 2 with Wareg al's RCPF al-

against various state of the art algorithms: EMPPCA (Torregor'thm' In this way we can test an algorithm with the same

saniet al, 2008), which is currently perceived to be the State!nitialisation, th? same iterative c?l_Jter loop to deal with;sn
ing data but using Wanet al’s trilinear approach with the

3 http://www.cs.dartmouth.edu/ ~ lorenzo/nrsfm. simpler projection step to perform factorisation. Notettha
html this new scheme (MP-SP) is not Waagal's RCPF algo-
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Fig. 5 3D reconstruction results for the “CMU” face motion captsexjuence. First row shows the input image data. Second addrdlvs
show the results with full data obtained with our Metric Rajon algorithm and Torresaat al’s EM-PPCA respectively. The 3D reconstruction
results (blue dots) are compared with ground truth data(go@cles). Fourth, fifth and sixth rows show comparativilts for30% missing data
(missing data points are highlighted in red). Our MP aldponitcan recover the 3D shape accurately even with a high gageief missing data
points, while Torresanét al’s algorithm gives poor results. The RCPF method also nbtaigood reconstructior% 3D error) in both cases of
full and missing data.
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rithm: the missing data is dealt with in a different way. Ef-  PCA of the residuals of the measurement matrias
fectively, our Algorithm 2 (MP in the case of missing data)  explained in Section 3.1.1.

and the new MP-SP have exactly the same structure. They
only differ in the factorisation algorithm used in Step 2: in
the case of Algorithm 2 it is our MP algorithm for full data
(Algorithm 1) while in the case of MP-SP it is Wargal’s
RCPF algorithm.

To test the performance of the algorithms we computec,{/IiSSing data and noise tests
the 3D error, which we defined as the Frobenius norm of the
difference between the recovered 3D shaped the ground |, Figure 2 we compare the performance of our new algo-
truth 3D shapessr. The error is normalised against the rithm MP with EMPPCA. RCPF. BA and MP-SP for the
Frobenius norm of the ground truth shayse-Scr || /|[Sc7 || F-Face1sequence in the case of increasing levels of missing
We subtract the ce_ntr0|d of eac_h shape and align them V\_n_tgata ranging from 0% to 80%, generated by deleting en-
Procrustes analysis. In the noise tests zero mean additifgeg from the measurement matrix randomly. For each level
Gaussian noise was applied with standard deviaiior ot missing data we averaged the resultsiof runs vary-
n x §/100 where n is the noise percentage and s is definef,q the missing data mask. Tests in which the 3D error was
asmax(W) in pixels. higher than100% were considered as outliers and were not

Initialisation: Each of the algorithms we tested requires aysed to compute the average. In all experiments the number
Sllghtly different initialisation for the Optimisation ubine. of basis shapes was fixed ko= 5.

This is dictated by the fact that each method starts the-itera  The top row of Figure 2 shows the results in the noise-

tions from a different set of parameters. Therefore, ealuajess case, while the bottom row shows the results in the more
ing each approach with exactly the same initialisation is norealistic case o1% image noise. The plots in the left col-
feasible. All the algorithms require an initial estimatetoé |y mn show the 3D error of all the algorithms (MP, EMPPCA,
camera matriceB; and the mean shape. In order to makeRCPF, BA and MP-SP) while the plots on the right column
the initialisations as uniform as pOSSibIe we have used thghow a zoomed-in version for the a|gorithms Showing the
rigid factorization algorithm of (Marques & Costeira, 2009 pest performance (MP, MP-SP and RCPF), which interest-
to estimate them (except EMPPCA where we used the cod@gly, enforce orthonormality constraints on the camera ma
provided by the authors). Here is a detailed description ofrices through projection. The left plots in the noiselésp)
the initialisation used for each algorithm. and1% noise case (bottom) show that EMPPCA and BA are
the worse performing algorithms in the presence of missing
— EMPPCA: requires initial estimates for the camera ma-data. EMPPCA can cope with up20% missing data before
tricesR;, shape base®,; and configuration weights;.  the error starts to grow steadily. BA gives the highest 3D er-
We used the initialisation provided by the authors in theirrors for low ratios of missing data but appears to show more
implementation (Torresamit al, 2008): (camera matri- resilience to higher ratios of missing data than EMPPCA.
ces and mean shape come fromrigid factorisation (Toméa#dwever, it also breaks down aftéd% missing data.
& Kanade, 1992) while deformation basis and coeffi- It is important to record the number of reconstructions
cients are estimated through iterative PCA of the shapthat ended up with a 3D error higher tha®0% (those that
residuals). we classified as outliers and did not enter the statistias). O
— BA: requires initial values for the same parameters aproposed methods MP and MP-SP did not have any outliers.
EMPPCA and was initialised in the same way, except (MbBrthe noiseless experiments (Figure 2 (top)) the number of
ques & Costeira, 2009) was used as the rigid factorizaeutliers for RCPF and EMPPCA we6® and1 respectively
tion algorithm. over the800 trials (each method was ruin0 times for8 lev-
— RCPF: needs an initialisation for the camera matrice®ls of missing data). In the experiments with noise (Fig-
R, and shape basas;. We used the initialisation pro- ure 2 (bottom)), RCPF hagb outliers and EM-PPCA had
posed by the authors (Wamrgal, 2008): camera matri- 1. Most of the RCPF outliers were in tl88% case which is
ces and mean shape were estimated from rigid factorizahe highest level of occlusions in our tests.
tion (Marques & Costeira, 2009) and the shape bages The plots in the right column of Figure 2 show a zoomed-
were initialised to small random values. in view of the best performing algorithms. Our new MP al-
— MP and MP-SP: require initial values for the camera ma-gorithm achieves the smallest overall 3D errors both in the
tricesR;, configuration weightg;; and the missing data. noiseless case (right-top) and more clearly in Ifienoise
Camera matrices and missing data were initialised frontest (right-bottom). RCPF (Wanet al., 2008) shows good
rigid factorization (Marques & Costeira, 2009) and theperformance until levels of arours®% missing data but the
shape coefficients were were initialised through iterativeerrors grow quickly after that. The second best performing

Note that only our algorithm, MP, uses the missing en-
tries explicitly in the outer loop proposed in Algorithm 2,
while EMPPCA, BA and RCPF only use the known data in
the estimation.
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algorithm is MP-SP which uses our outer loop to deal with  Figure 4 shows front and side views of the 3D recon-
missing data and RCPF internally to perform factorisationstruction results for one of the runs of tRacelsequence
Although its performance is comparable to MP, the 3D errowith no noise andi0% missing data. The top row shows
curve for MP lies below — for instance in th& noise case some frames of the motion capture session (which do not
(bottom-right)the 3D reconstructions obtained with MP arecorrespond to the reconstructed ones below), the second,
on average arount; better than with MP-SP. third and fourth rows show ground truth values and 3D re-
It is worth discussing three interesting facts revealed bygonstruction results obtained with our method MP, EM-PPCA
the results of these tests for increasing levels of missingnd RCPF respectively. Our reconstruction is closer to the
data. First, the top three performing algorithms (MP, MP-ground truth shape. The average 3D reconstruction error ove
SP and RCPF) include a projection step of the camera m&!l the frames of this sequence wasg% with MP, 13.1%
trices to deal with metric constraints. BA and EMPPCA,with EMPPCA and.0% with RCPF.
on the other hand, impose the orthonormality constraints Figure 5 compares ground truth with the results obtained
through parameterisation (quaternions in the case of BA and¢ith MP, EMPPCA and RCPF for theMU face sequence
exponential map in the case of EMPPCA). Secondly, whilewith full data and with30% missing data. In the full data
RCPF, MP-SP and MP show very similar performance forcase all algorithms perform similarly. However, in the miss
missing data ratios of up t80%, for higher ratios MP-SP  ing data case, our algorithm recovers the 3D shape correctly
and MP greatly outperform RCPF. The only difference be-and outperforms Torresaei al's. The 3D errors against
tween MP-SP and RCPF is the way in which they deal witrground truth motion capture data were the same for RCPF
missing data: RCPF uses only the known 2D image trackand MP %), both for full data an@0% missing data, while
while MP-SP uses an outer loop to re-estimate the missintPr EMPPCA the 3D error is lowl(8%) in the full data case,
data at each step of the iteration. Note that they were bothut very high §5%) in the missing data case.
initialised in the same way as MP. Finally, the performance Figure 6 shows the mean run-times expressed in sec-
of MP is aboutl % better than MP-SP. However, MP-SP runsonds, for the experiment in Figure 2, for EMPPCA, BA,
around25% faster (see Figure 6 for algorithm run-times). RCPF and MP for different ratios of missing data. Tests
Therefore if run-time is an issue MP-SP could be used inwere performed using a 4-core Xeon processor running at
stead of MP without compromising performance too much2.8GHz, with 24GB of RAM. All implementations are in
but of course improved results would be achieved with MP.MATLAB. The fastest algorithms are BA and EMPPCA.
In Figure 3 we show comparative noise tests for EMp-However the code for BA and EMPPCA provided by the
PCA, BA, RCPF and MP in the case of full data (left) andauthors contains some parts of optimised MEX code. At the
30% missing data (right). We show results for noise levels€xPense of losing some accuracy, as we saw in Figure 2, MP-
of up t04% meaning that the value of the variancés upto ~ SP runs aroung0’% faster than MP since the projection step
4% of the size of the object in the image. It is clear that BA, 1S much more simple. Note that RCPF requires a large num-
is the most vulnerable algorithm to noise in the image coPer of iterations in order to achieve convergence aftét
ordinates. Note also that EMPPCA, RCPF and MP perfornifissing data. Therefore, adding the outer loop to RCPF to
very similarly with EMPPCA performing slightly better in d€al with missing data as we did in MP-SP improves the
the full data case and MP in t8% missing data case. The Convergence in this case.

results were averaged ovHI0 runs. None of these tests re-
sulted in outliers. Synthetic Experiments — Structured occlusions

While it is important to conduct experiments with randomly
generated missing data to control its percentage in the sim-
= ulation, we also performed a test with a missing data mask
80 :z:zi"m";"‘:,ifﬁ?ff;;ﬁf:e where point_s are occluded in a structL_Jred way, as it would
") e emppca - 0% noise happen for instance due to self-occlusions.

In order to generate a more realistic missing data pat-
tern we have computed surface normals from the sparse 3D
motion capture data using thaglut algorithnf.The com-
puted angles between surface normal and camera viewing
direction for all frames have been thresholde@atiegrees,
marking large angles as occluded. Although the knowledge
of surface normals allows to simulate self-occlusions, the

Fig. 6 Comparison of run-times (in seconds) averaged over 10@,teststrong sparseness of the measured points does not permit
versus percentage of missing data. Tests were performed agi-core

Xeon processor running at 2.8GHz, with 24GB of RAM. 4 http://jmfavreau.info/?q=en/taglut

Time (seconds)

30 40 50
Percentage of Missing Data
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In Figure 10 we show the 3D reconstruction results on
the cushion sequence witld% missing data generated ran-
domly.

Franck Sequence

We also used the Franck sequehtaken from a video of
a person engaged in conversation. We selected 700 frames
from the 5000 frame sequence. An Active Appearance Model
(AAM) was used to track 68 features on the face. Figure
11 shows three frames of the original images and a view
of the resulting 3D reconstruction in the cases of complete
2D data (second row) arzd% missing data (third row). We
Fig. 7 Structured missing data mask used for the experiment descri  also show the 3D reconstruction achieved with EMPPCA
in Section 5.1. Each column is a point track, points in blaekmarked  for the full data case as a baseline (fourth row). However,
as visible, points in white are marked as occluded. we could not show the results for EMPPCA 0% miss-

ing data since already for that value, the errors were tolo hig
to simulate realistic self-occlusions. However, the réisgl ~ and the reconstruction was meaningfe3#e last two rows
occlusion pattern is structured and not random as in the préfifth and sixth) show the results achieved with the RCPF
vious tests. The resulting occlusion mask is shown in Figalgorithm in the cases of full data a8% missing data.
ure 7 — the amount of missing data resulting from this comThe number of basis shapes was chosen 6 ivethis ex-
putation was32%. The resulting visibility matrix captures Periment. Our algorithm appears to achieve the best 3D re-
well the structured disappearance of image features. We th&onstructions in this real sequence with and without mgssin
ran our MP Algorithm 2 on the input 2D data, obtaining data.
a 3D reconstruction error &f.4%. A visual comparison of
the reconstructed 3D against ground truth motion capture
data is given in Figure 8. We also compare this result wittP-2 Articulated Structure
other techniques, and show that MP outperforms other meth-

ods in this case. In particular, EMPPCA (Torresanial, ~ Synthetic sequence
2008) obtains’.6% 3D reconstruction error, and Warej . . .
al’s RCPF (Wanget al, 2008) achieves.4% error. In the articulated case our synthetic data simulated two 3D

boxes coupled by a hinge joint. The 3D ground truth is pro-

jected on the input images via orthographic projection. The

sequence contained global rotation and translation as well

opening and closing of the hinge. Each box cont&igis

points, and the sequenced8 frames long. We tested the

In our first experiment we tested our algorithm on an imag glgorithm in the case of full data for noise levels rgnging
om 0% to 4%. Figure 12 shows the absolute error in the

sequence of a cushion bending and stretching, in which 9 .
) . _. recovered relative angle between the two boxes (averaged
points were tracked manually. The results are shown in Fig-
ver all frames) and the 3D error of recovered 3D structure.

ure 9. Our algorithm reconstructs successfully the 3D poin he blots in Fiaure 12 show comparative results between the
cloud and its deformations. We used this data to generate P 9 P

a texture-mapped view of the reconstructed object. We als erformance of (Tresadern & Reid, 2005) (TR) and our new

performed a quantitative evaluation by comparing the 3D regpproach (MP). Slightly superior results are achieved with

construction obtained with full data to those obtained with”"" algorithm.

different percentages of missing data — generated by delet-

ing randomly entries on the measurement matrix. The difReal Sequence

ference (computed in the same way as we compute the 3D _

error) between the 3D shape reconstructed with full data anf/e tested our algorithm on a sequence of 815 frames of two
the shapes obtained witld%, 20% and30% missing data boxes linked by a hinge joint. The number of tracked points
are3.8%, 5.7% and5.9% respectively . We also measured ©n the upper box wagl and47 on the lower box. Figure
the average image reprojection error which Wak pixels 5 www-prima.inrialpes. fr/FGnet/data/01-

with full data, andl.1, 1.2 and1.4 piXGlS for the10%,20% TalkingFace/talkingface.html

and30% missing data cases respectively. 6 We have provided this result in our additional material

Real Sequences

Cushion Sequence
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Input 2D Data
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3D reconstruction with our method, side view
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3D reconstruction using EMPPCA, side view
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3D reconstruction using RCPF, front viesni% 3D error
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Fig. 8 3D reconstruction results obtained for th@celmotion capture sequence with the structured missing dask steown in Figure 7. Top
row: 2D input data with missing data points highlighted vatred circle. Front and side views of the 3D reconstructisnlts (dots: blue if visible,
red if not) are shown together with ground truth 3D data o{gteen circles) for three different algorithms: our MPaaithm (second and third
rows), Torresanet al's EMPPCA (fourth and fifth rows), Wanet al’'s RCPF (sixth and seventh rows). The wire-frame lines areiualisation

purposes only.
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Input 2D Data

3D reconstruction, Front View
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Fig. 9 3D reconstruction results for the “cushion” real sequeiiée show texture-mapped 3D reconstructions and use thermerage a virtual
view of the object in 3D. First row: Input images and trackdea. Second and third rows: 3D reconstruction results thigfproposed method.
Fourth row: reprojection of reconstructed points (cropsegether with 2D input data (circles). Bottom rows: Tertumapping rendered view of
the 3D reconstruction.
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2D data and reprojection$0% missing data
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Fig. 10 Reconstruction results on the “cushion” real sequence With missing data. Points were marked as not visible randomigt Fow:
Input 2D tracks (green circles) and reprojections caledatith our method (blue crosses). Missing 2D points (notldse reconstruction) are
shown as red circles. Second and Third rows: 3D reconsbrugtith our method. Fourth and Fifth: 3D reconstruction gdiMPPCA. note that
although the frontal view matches the input data, the reicactson suffers from bad depth estimation, visible in thies/iew.

13 shows two frames of the image sequence showing thenage sequence used for reconstruction. Some frames can
tracked points and the recovered joint axis projected dr@o t be seen in Figure 15, first row. From the 2D images we can
images. The 3D reconstruction of the articulated structureecover the rotation axis of the joint, and the 3D structdre o
together with the common hinge axis is also shown in Figurghe leg, as shown in Figure 15. The reconstructed 3D points
13. In this case there was no missing data. and axis have been aligned to the MOCAP data to show the
Finally we show results using a motion capture sequenctull body pose. Two closeup of the reconstruction and axis
of a person kicking a football. The motion capture systenare shown. In Figure 14 we also show a comparison of the
tracked 333 markers on the whole body. We selected theecovered rotation angle between our method and the linear
tracks on the leg, and projected the 3D coordinates on 2nethod by Tresadern and Reid (Tresadern & Reid, 2005).
images via orthographic projection. The viewing directionWe can see that although this sequence does not have ground
of the synthetic camera starts at the back of the leg and petruth information on the joint angle in the knee, we recover
forms a random rotation around the body, resulting in thex smooth movement (purely from the data, without impos-
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Input images and 2D tracking data

3D reconstruction using Metric Projection
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Fig. 11 First row shows frameg00, 400 and500 of the Franck sequence. We show front and side views of theeBBnstructions in the case of
full data and20% missing data in the input tracks (randomly generated) aeli@vith our MP algorithm (second and third rows) EMPPCA (tbu
row) and RCPF (fifth and sixth rows). Note that we do not shaew#itonstruction obtained for EMPPCA with missing data a&# of very poor
quality. Missing points not visible in the correspondingrire are highlighted with a red circle.

ing smoothness constraints) while the linear solutioniobta tively. Although the constraints result in non-convex prob
similar values with some discontinuities. lems we introduced efficient convex relaxations in the form

of semi-definite (SDP) or second-order cone (SOCP) pro-

grams. These relaxations revealed themselves to be exact in
6 Conclusions all our numerical experiments.

We have carried out experiments to compare the perfor-

We have described a new bilinear alternating approach asaance of our new Metric Projection algorithm with com-
sociated with a globally optimal projection step onto thepeting NRSfM methods. These have revealed that there are
manifold of metric constraints. At each step of the min-two main factors that make our Metric Projection (MP) al-
imisation we project the motion matrices onto the correcgorithm more robust to missing data. The first strength is in
deformable or articulated metrimotion manifoldgespec- the projector. It was first observed in (Marques & Costeira,
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the deformations as most other NRSfM approaches to avoid

0.5 Metric Projection ambiguous solutions. In the articulated case, we effigientl
i=] -e-Tresadern—Reid . . . .
804 compute the joints given the non-linear constraints on the
5 motion of the two bodies. In general, even though our meth-
503 ods were designed to solve SfM problems, thetion man-
20.2 ifolds and the related optimal projections could be used for
go 1 e o different tasks such as registration (where the sh&pe
T P G o known), image point matching and motion segmentation.
T 1 2 3 4
. Noise (%)
:i'i- 0-15 o Metric Projection 7 Acknowledgements
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Fig. 12 Quantitative results on the synthetic articulated seqelefmp: ¢, insightful discussions and for providing the code ofithe
Error on relative rotation angle between the two boxes irsimthetic

experiment compared with Tresadern and Reid’s linear agprdot- approach.
tom: 3D error of recovered structure. In both cases the ®I&rb-
jection method results more robust to noise and can recotation
angles reliably.
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whereB = [b;;]. Moreover, this set is defined only by linear
matrix inequalities (LMI). Hence, we have that our prob-
lem (25) is relaxed into finding the minimum of a linear
function (Tr(EX)) on a convex set described by the LMIs
(31)-(33). Thus, the optimisation problem in the right-tan
side of (30) is a Semi-Definite Program (SDP). By using Se-
DuMi (Sturm, 1999), we quickly obtain the optimal matrix
X for (30). In 100% of experiments that we ran, the optimal
matrixX was always of rank 1. By factorising= qq ', we

Fig. 14 Recovered rotation angle between two object: knee joint inpbtain the optima$btiefel matrixasQ = vecq(q). For more

the “football” sequence. Although this sequence does ne¢ eound
truth information on the joint angle in the knee, we recoveneoth

movement (purely from the data, without imposing smoothrees-

straints) while the linear solution obtains similar valueth some dis-

continuities

Appendix A: Convex relaxation — deformable case

ForE € R%*6, our aim is to compute

min q'Eq, (25)
q=vec(Q)

whereQ € R3*2 runs through Stiefel matrices, i.@/Q =
Iox2. We rewrite (25) as

min Tr(Eqq') = min Tr(EX), 26
i (Eqq ") = min Tr(EX) (26)

whereS is the set of all real symmetrit x 6 matricesx =

{BAT ]g] , With A € R3*3, satisfying

X =0, (27)
Tr(A) =Tr(C) =1, Tr(B)=0, (28)
rankX = 1. (29)

details the reader can refer to (Dodipal., 2009).

Appendix B: Convex relaxation — Articulated Case
Problem statement

We consider the following optimisation problem which s@ve
for the cost function as presented in eq. (24)

maximisef(u) (35)
subject toflu| < 1

where the variable to optimiseis € R?, the common joint

axes for the two bodies. The objective function is

fu) = |lul*+2u"x +2 H (1-— uuT)l/2

1/2
"

e

+2H(I—uu—r) \

where the unknowns are the data triple
(x,Y,Z) € R? x R?*? x R?*2,

Notice that for ann x n matrix X, the symbol||X||, =
o1(X) + - - - 4+ 0,(X) denotes its nuclear norm.
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3D reconstruction and axis, ¢

ose view

® ®
a ® ®
& @ @ B | @
3D reconstruction and axis, close view from different view
®
Ca0

Frame 1

We start by noting that (35) is equivalent to maximising

9(w) = [jul +2u"x| + 2 (1~ uu”)
e,

Note thatf(u) < g(u) for all feasibleu. However, at a

< 2

Frame 10

MYHU (37)

(38)

global maximiser of (35), say*, we must havéu*) "z >
0. Thus,(u*) "z = |(u*) Tz| and f (u*) = g(u*)

X[l =

Frame 25

We rewriteg(u) as

g(u) = |lu® + 2vVuTxxTu+2 H (1- uuT)l/2 YHN 39)
+2 H (I - uuT)

1/2
P2 .
N

Frame 50

Moreover, for & x 2 matrix X, there holds

IX[I* + 2| det(x)|

(41)

Frame 35
Fig. 15 Recovery of the knee joint in the “football” sequence. Top:rtnput image points. Second row: 3D Reconstruction of dge(magenta
and cyan dots) and axis of rotation shown with the 3D grouathtmotion capture sequence (green circles). Third rowpRstcucted 3D points
(dots) with ground truth MOCAP data (green circles). Fouav: 3D reconstruction imaged from a different angle.
Problem reformulation

(40)
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where||X|| = +/tr (XXT) denotes the Frobenius norm xf
Using (41) in (40) gives

g(w) = uf* + 2vVuTxxTu+
+2\/HY||2 —uTYYTu+2[det(Y)|v1—uTu+

+2\/|\z||2 —u'ZZTu+ 2|det(2)|vV1—uTu. (42)

Now, we distinguish the following two cases which lead

to two different optimisation strategies:

1. The matrice§I,, YY", zz"} are linearly independent
2. The matricegI,, YY", ZZ "} are linearly dependent

Itis also given that we have the inclusi6nC 7 where

T := {(a’7 ba C) : 3UEO La= tI’(U), b=tr (YYTU) ,

c=tr(zz'U)}
Using7 instead ofS in (46) gives the convex problem

maximise¢(a, b, ¢)
subject toa = tr(U)
b=tr(YY'U)
c=tr(zz'0)
U>=0
a<l1

(47)

Casel is the one that most frequently occurs in practice and et u* be a solution of (47) and let

it will be solved with a semi-definite program (SDP). In our
experiments, we almost did not observe any occurrences of

Case2. In any case, we provide the solution to Casky
means of "% order cone program (SOCP).

Case 1:{I,,YY",zz"} are linearly independent

In this case, the matricgg,, YY", zz "} form a basis for the
three-dimensional vector space2of 2 symmetric matrices.

This means that there exists 3,y € R such that
xx| =aly+GYY ++2Z". (43)

Using (43) in (42) yields

g(u) = [ull® +2v/ouTu+ BuTYYTu+yu' ZZTu +

+2\/||YH2 —uTYYTu + 2| det(Y)|v/1—uTu+

+2\/||z|\2 —u'zzTu+ 2|det(z)|v1 —uTu(44)

Our optimisation problem is

maximiseg(u)
subject to||u|| < 1

(45)

with g(u) as in (44). In (45), the variable to optimiseusc
R2. Problem (45) can be rewritten as

maximised(a, b, c)
subjectto(a, b,c) € S
a<l1

(46)

where
S:={(a,b,c) : Ty :
and
¢(a,b,¢) == a+2v/aa+ Bb+~vc+
20/ IV = b+ 2] det (V)| —a +
212> - ¢ + 2| det()|VT — @

is a concave function.

a=u'u,b=u'YY u, c= uTZZTu},

N A 07 [uf
U™ = [111 UQ} [01 )\2] [E;T]

be an eigenvalue decomposition, whage> \,. A subop-
timal solution for (35) isu* = £+v/A1uy, where the sign is
chosen such that"u* > 0.

Case 2:{I,,YY" zz"} are linearly dependent

We assume thaz " can be written as a linear combination
of I, andYY', i.e.

22" =al, +BYY',

for somea, 8 € R. Our problem becomes

maximises(a, b, c) (48)
subjectto(a,b,c) € S
a<l1
where
S = {(a, bc) : Iyt a= u'ub=u'yYY  c= uTxxTu} ,

and
d(a,b,c) == a+2yc+ 2\/||YH2 —b+2|det(Y)|V1—a+
+2\/1Z? - aa — Bb+ 2/ det(Z) VI —a

is a concave function. Similarly as the previous case, we
have the following inclusios C 7 where

7T :={(a,b,¢) : Fy=o :

a=tr(U), b=tr (YY'U),
c=tr(xx'U)}
Using7 instead ofS in (48) gives the convex problem

maximised(a, b, c)
subject toa = tr(U)

(49)

b=tr(YY'U)
c=tr(xx'U)
U>=0

a<l1
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It can be shown that (49) can be rewritten as a SOCRJLet
be a solution of (49). Let

. A1 O !
-t 2]

be an eigenvalue decomposition, whage> X5. A subop-
timal solution for (35) isu* = ++1/A\1uy, where the sign is
chosen such that"u* > 0.



