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Abstract—This work considers the problem of locating a single
source from noisy range measurements to a set of nodes in a
wireless sensor network. We propose two new techniques that
we designate as Source Localization with Nuclear Norm (SLNN)
and Source Localization with �1-norm (SL-�1), which extend to
arbitrary real dimensions our prior work on 2D source localization
formulated in the complex plane. Our approach is based on for-
mulating a Maximum-Likelihood (ML) estimation problem, and
then using convex relaxation techniques to obtain a semidefinite
program (SDP) that can be globally and efficiently solved. SLNN
directly approximates the Gaussian ML solution, and the relax-
ation is shown to be tighter than in other methods in the same
class. We present an analysis of the convexity properties of the con-
straint set for the 2D complex version of SLNN (SLCP) to justify
the observed tightness of the relaxation. We propose the SL-�1
algorithm to address the Laplacian noise case, which models the
presence of outliers in range measurements. We overcome the non-
differentiability of the Laplacian likelihood function by rewriting
the ML problem as an exact weighted version of the Gaussian
case. In terms of accuracy of localization, the proposed algorithms
globally outperform state-of-the-art optimization-based methods
in different noise scenarios, while exhibiting moderate computa-
tional complexity.

Index Terms—Centralized method, convex hull, convex relax-
ation, range-based source localization, semidefinite programming.

I. INTRODUCTION

LOCATING a source from range measurements to a set of
known reference points (anchors) is a classic problem in

many engineering applications (e.g., radar, sonar, GPS, mobile
communications), and has received much attention over the
years. Recently, source localization from range measurements
has been intensively examined in the context of wireless sensor
networks (WSN), where ranges estimated from times of arrival,
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or from surrogates such as received signal strength, are some-
what unreliable due to the complexity of many WSN propaga-
tion environments (e.g., indoor settings with few unobstructed
line-of-sight (LOS) paths).

Spatial information per se, or as georeference to other sensor
measurements, is crucial in WSN applications and warrants
investigation into suitable localization algorithms. While many
approaches to source localization based on classical triangu-
lation or heuristic criteria can be found in the WSN literature
[1], [2], our primary focus is on optimization-based methods
derived from the likelihood function of observations, or related
cost functions [3]–[9]. Through this formal approach we expect
to take advantage of the optimality properties of maximum-
likelihood (ML) estimates to improve the robustness to pertur-
bations in range measurements.

Centralized ML algorithms for range-based source localiza-
tion, which require the transmission of the full data set to a
fusion node for processing, are proposed in [4]–[12]. Some
of these resort to semidefinite relaxation (SDR) to alleviate
the problem of algorithmic convergence to undesirable local
maxima of the likelihood function under Gaussian noise [4],
[9] or Laplacian noise [10]. A related alternative approach
proposed in [5] solves a constrained least-squares (LS) problem
using squared range (SR) measurements, subject to a quadratic
constraint. This was shown to outperform, on average, the
ML SDR approach of [9] whose relaxed solutions sometimes
fail to produce meaningful source position vectors (rank one
solutions). An SDP-based method proposed in [13] is originally
developed for sensor network localization and accounts for
uncertainties in anchor positions. Another approach, proposed
in [7], approximates the ML solution via second-order cone
programming and a low-dimensional search. A linearization-
based method presented in [12] and [14] solves two consecutive
linear problems where the first one is unconstrained and the sec-
ond is a refinement step that approximately exploits a nonlinear
norm constraint linking the optimization variables.

Distributed algorithms for wireless sensor nodes, where the
source location is iteratively determined through in-network
processing at individual nodes and communication between
neighbours, are also being very actively pursued [15]. These
techniques, however, are not the focus of our work.

This paper develops algorithms for range-based source lo-
calization in arbitrary dimensions, including 2D/3D, through
an ML SDR approach. The original principle, proposed in [4]
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for 2D localization under Gaussian noise, was termed Source
Localization in the Complex Plane (SLCP) and reformulates
range-based localization as an equivalent problem of determin-
ing a set of angles for the source-anchor directions. The main
motivation for the geometrically-inspired approach followed in
SLCP is the fact that the reformulated localization problem
will often be convex or nearly convex (depending on observa-
tions), and thus amenable to convex relaxation, as explained in
more detail below. Our relaxation for the nonconvex likelihood
function is tighter than the popular one presented in [9], in
the sense that the solution will more often have (near) rank-1,
as required to obtain target coordinates by factorization. SLCP
also outperforms other approaches such as the SR-LS algorithm
of [5], which iteratively solves a generalized trust-region sub-
problem and dispenses with factorization of rank-1 matrices,
but undergoes some degradation due to squaring of (noisy)
ranges in the cost function. The degradation of SR-LS becomes
more severe in the presence of outliers [10], which commonly
affect practical range measurement systems, e.g., when non-
line-of-sight (NLOS) propagation occurs. The contributions of
this work are as follows:

1) The paper expands upon the results of [4], extending the
novel angular framework of SLCP from 2D localization,
which relied on a formulation where target and anchor
coordinates were represented as complex numbers, to
arbitrary (real) dimensions. The ability to operate in 3D is
especially relevant in indoor localization systems, where
the placement of anchors may be dictated by structural
constraints of buildings, rather than desirable geometries.
We term the new SDR method Source Localization with
Nuclear Norm (SLNN), as this norm arises naturally in
the cost function of our relaxed optimization problem.
Similarly to SLCP, SLNN offers a tight relaxation in most
problem instances, and retains a performance advantage
over several other methods. Furthermore, we provide
an analysis of the geometry and accuracy properties of
SLCP, and find that its success in providing tight relax-
ations relies on certain parametrically defined sets in R

2

being nearly convex.
2) In [10] a modification of SLCP based on the same angular

strategy was introduced for ML source localization under
Laplacian noise. The new approach, termed SL-�1, builds
robustness to outlier measurements, a property that was
observed in simulation even for non-Laplacian range er-
rors. Mathematically, this stems from usage of �1 instead
of �2 norms in the likelihood function, which tend to
de-emphasize large discrepancies between predicted and
measured ranges. In this paper, we provide a conceptu-
ally similar extension for source localization beyond 2D,
consisting of a reformulation of the nondifferentiable log-
likelihood function for Laplacian noise as a reweighted
version of the Gaussian log-likelihood. We propose SL-�1
in multiple dimensions (SL-�1 MD), which outperforms
all benchmarked algorithms, and a simplified formulation
(SL-�1 SD), which has slightly worse performance but is
less computationally complex.

3) We perform extensive simulations to compare the perfor-
mance of our algorithms with several others of varying

complexity and accuracy based on different criteria. We
find that ours exhibit the most consistent performance
over different types of range measurement noise, and rel-
atively close to the Cramér-Rao lower bound for Gaussian
noise. The complexity is comparable to that of other SDP-
based methods, and appears suitable for practical imple-
mentation in several centralized scenarios of interest with
current technology.

Throughout, scalars, vectors and matrices are denoted by
lowercase, boldface lowercase and boldface uppercase letters,
respectively. Individual components of matrix X are written as
xij and those of vector x as xi. The superscript T (H) denotes
the transpose (Hermitian) of the given real (complex) vector or
matrix, 〈·, ·〉 denotes the inner product of two vectors or matri-
ces, and tr(·) denotes the trace of a matrix. For symmetric ma-
trix X, X � 0 means that X is positive semidefinite. We denote
the Frobenius norm of matrix X as ‖X‖F =

√
tr(XHX) and

its nuclear norm as ‖X‖N = tr((XHX)1/2). ‖x‖ corresponds
to the Euclidean norm of vector x. Below, Im is the m×m
identity matrix and 1m is the vector of m ones. The convex hull
of set S is denoted by co(S).

The paper is organized as follows. In Section II we formulate
the ML source location problem under Gaussian or Laplacian
noise. In Section III we derive the SLCP algorithm for 2D local-
ization, analyzing the geometry of the associated optimization
problem and the tightness of the relaxation in Appendix A.
In Section IV we derive the SLNN algorithm (Section IV-A)
and SL-�1MD/SL-�1 SD (Section IV-B), which extend SLCP
and SL-�1 to 3 (and higher) dimensions, respectively.
Section V benchmarks our algorithms against performance
bounds and other available algorithms in different representa-
tive classes using simulated data. Finally, conclusions are drawn
in Section VI.

II. PROBLEM FORMULATION

Let x ∈ R
n be the unknown source position, ai ∈ R

n, i =
1, . . . ,m be known sensor positions (anchors), and ri = ‖x−
ai‖+ wi be the measured range between the source and the
ith anchor, where wi denotes a noise term with standard
deviation σ. Under independent and identically distributed
(i.i.d.) Gaussian or Laplacian noise, maximizing the likelihood
of observations for the source localization problem is equiv-
alent to

minimize
x

m∑
i=1

|‖x− ai‖p − rpi |
q (1)

for suitable values of p and q. We will derive the SLCP/SLNN
algorithms to (approximately) solve (1) under Gaussian noise
(p = 1, q = 2), whereas SL-�1 will solve it under Laplacian
noise (p = 1, q = 1). The case (p = 2, q = 2) is also of interest
and corresponds to the cost function used in the SR-LS algo-
rithm of [5], which is used to benchmark our algorithms. Note
that the cost function for SR-LS is not a likelihood function,
and it arises out of mathematical convenience, at the cost of
increasing the sensitivity to measurement noise due to the
presence of third and fourth powers of ri.
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Fig. 1. Geometrical interpretation of terms in the cost function (1) for p = 1,
q = 2.

The main difficulties of solving (1) lie in the fact that this cost
function is, in general, nonconvex and possibly multimodal. We
address the nonconvexity of the cost function in Sections III
and IV by developing convex relaxations that turn out to be
tight in most problem instances, thus providing a very good
approximation to the global minimum of (1). An additional
challenge is posed by the nondifferentiability of (1) for q = 1,
which is addressed in Section IV-B by rewriting it as a weighted
version of the case q = 2, where the weights themselves be-
come optimization variables.

III. SOURCE LOCALIZATION IN 2D: SLCP

For p = 1, q = 2, each term in (1) can be viewed as the
squared distance between two circles centered on ai, one with
radius ‖x− ai‖, and the other with radius ri (see Fig. 1).
This term can be replaced by the squared norm of the differ-
ence between the position vector x and its closest point on
the circle {y ∈ R

2 : ‖y − ai‖ = ri}, which we denote by yi.
Problem (1) can then be equivalently expressed as (a formal
proof of equivalence is provided in [10])

minimize
x,yi

m∑
i=1

‖x− yi‖2

subject to ‖yi − ai‖ = rii = 1, . . . ,m. (2)

If yi is fixed, the solution of (2) with respect to x is an
unconstrained optimization problem whose solution is read-
ily obtained as the center of mass of the constellation x =
(1/m)

∑m
i=1 yi. Moreover, in 2D the constraints of (2) can be

compactly described in the complex plane, yielding

minimize
y,θ

∥∥∥∥ 1

m
1m1T

my − y

∥∥∥∥2
subject to y = a+Rθ, (3)

where a = [a1 . . . am]T ∈ C
m holds the anchor coordinates,

expressed as complex numbers, R = diag(r1, . . . , rm) ∈
R

m×m, and θ = [ejφ1 . . . ejφm ]T ∈ C
m. The problem acquires

a flavor of angle-of-arrival localization, as the angles φi are
variables that encode a set of directions, departing from anchor
nodes, that ideally intersect at the source position. The complex
representation makes it simple to impose unit magnitude con-
straints on the elements of θ, and later relax them to obtain an

SDR. Expanding the cost function and deleting constant terms
yields a quadratic constrained problem

minimize
θ

2Re(cHθ)− 1

m
θHrrTθ

subject to |θi| = 1, (4)

where r = R1m and c = R(Im − (1/m)1m1T
m)a.

To proceed we now wish to replace Re(cHθ) in (4) with
−|cHθ|, which is readily written as a function of a quadratic
form in θ and then relaxed in the same way as the second
term in the objective function. To this end, first note that if θ
is replaced with θejγ neither the second term in the objective
function of (4) nor the constraints change for any angle γ.
By proper choice of γ the complex number cHθ may be
rotated to the (negative) real axis for any feasible θ, such
that Re(cHθejγ) = −|cHθ|, thus reducing the value of the
objective function relative to other values of γ. This implies that
any optimal solution of (4) will satisfy Re(cHθ) = −|cHθ|,
which justifies replacing Re(·) with −| · | in the cost function.
It should be kept in mind, however, that once a solution θ
to the modified optimization problem is obtained it should be
rotated to obtain the actual vector of phases θejγ such that
Re(cHθejγ) = −|cHθ|.

Now the modified problem is equivalently written as

maximize
θ

2

√
tr(ccHθθH) +

1

m
tr(rrTθθH)

subject to |θi| = 1, (5)

and following standard manipulations we introduce the new
variable Φ = θθH and an associated (nonconvex) constraint
rank(Φ) = 1. Finally, a SDR formulation of SLCP is obtained
by introducing the hypograph variable t such that 0 ≤ t ≤
2
√
tr(ccHΦ) and dropping the rank constraint

maximize
Φ,t

t+
1

m
tr(rrTΦ)

subject to Φ � 0, φii = 1, 4cHΦc ≥ t2. (6)

Remark that the solution of (6) is a positive semidefinite matrix,
which should have a clearly dominant eigenvalue in problem
instances where the SDR is an accurate approximation to the
initial problem (2). In such cases Φ ≈ λ1u1u

H
1 , where λ1 is the

highest eigenvalue of Φ and u1 the corresponding eigenvector,
and the vector of complex phases is estimated as θ =

√
λ1u1.

In Appendix A we examine the geometry of the cost function
and constraint set in (5), shedding light on the observed high
probability of obtaining a nearly rank-1 solution.

IV. SOURCE LOCALIZATION IN HIGHER DIMENSIONS

In this section, we derive extensions of the localization
algorithms in [4] and in [10] for 3D and higher dimensions
under both Gaussian and Laplacian noise assumptions. In the
first part we develop the SLNN algorithm for Gaussian noise.
In Section IV-B we then present the SL-�1 MD and SL-�1
SD algorithms for Laplacian noise, which overcome nondif-
ferentiability issues by expressing the likelihood function as a
variable-weighted Gaussian likelihood.
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A. Localization Under Gaussian Noise: SLNN

To extend the approach used in SLCP to n > 2 dimensions,
we write the circle/sphere equations in (2) using an equivalent
parametric form with real coordinates

maximize
x,yi,ui

m∑
i=1

‖x− yi‖2

subject to yi = ai + riui, ‖ui‖ = 1, (7)

where x,yi,ai, and ui are now vectors in R
n, rather than

complex scalars used in SLCP. In (7) variable ui ∈ R
n is a

unit-norm vector that plays the same role as the complex phase
shift ejφi in SLCP. The derivation parallels that given for SLCP,
but dealing with vectors for the angular components leads
to significant differences, most notably a rotation subproblem
whose solution is no longer obvious and turns out to be given
by the nuclear norm of the linearly transformed angular matrix.
We write (7) equivalently as

maximize
x,yi,ui

‖1mxT −Y‖2F

subject to

⎡
⎢⎣ yT

1
...

yT
m

⎤
⎥⎦

︸ ︷︷ ︸
Y

=

⎡
⎢⎣ aT1

...
aTm

⎤
⎥⎦

︸ ︷︷ ︸
A

+R

⎡
⎢⎣ uT

1
...

uT
m

⎤
⎥⎦

︸ ︷︷ ︸
U

, ‖ui‖ = 1, (8)

where R = diag(r1, . . . , rm) as in (3). For fixed yi, ui (8)
describes n uncoupled least-squares problems whose variables
are the components of the source location vector x. The optimal
solutions may be jointly written compactly as

xT =
(
1T
m1m

)−1
1T
mY =

1

m
1T
mY. (9)

After replacing x in (8) with (9), the objective function becomes
‖ΠY‖2F = tr(YTΠY), where Π = Im − (1/m)1m1T

m is a
projection matrix (hence idempotent). Similarly to (3), and (4),
we can now eliminate variable Y and the first set of equality
constraints, expand its definition in the objective function, and
ignore constant terms to obtain

maximize
U

2 tr(CTU)− 1

m
tr(UT rrTU)

subject to ‖ui‖ = 1, (10)

where C = RΠA and, as in (4), r = R1m.
Nuclear Norm Approximation: As in the complex formula-

tion we wish to rewrite the first term in the objective function
of (10) in a form that is more amenable to SDR. Similarly to
SLCP, where we introduced a complex rotation ejγ to progress
from (4) to (5), in the new optimization problem U is replaced
with the product UV, where V is an n× n orthogonal matrix
(VTV = VVT = In) that plays the role of a rotation factor.
This yields

maximize
U,V

2 tr(CTUV)− 1

m
tr(VTUT rrTUV)

subject to ‖ui‖ = 1, VTV = In. (11)

Note that, due to the orthogonality of V, each row of UV
still has unit norm, so for any feasible U in (10) UV is also
feasible. Regarding (11), V may be interpreted as an inner
optimization variable that, for each candidate U, minimizes
the value of the objective function. Noting that the second
term in the objective function (11) does not depend on V,
as tr(VTUT rrTUV) = tr(rrTUVVTUT )= tr(rrTUUT ),
the inner optimization problem simply becomes

maximize
V

tr(CTUV) = 〈V,UTC〉

subject to VTV = In. (12)

This involves the minimization of a linear function on the set
of orthogonal matrices, which resembles the known problem of
minimizing a linear function of a vector v, say, 〈v,a〉, on the
unit sphere ‖v‖2 = vTv = 1. The minimizer for this problem
is readily seen to be the point on the sphere along vector −a,
with optimal cost −‖a‖ [16]. With UTC playing the role of a,
one would therefore expect the optimal value of (12) to equal
−‖CTU‖, for some matrix norm of CTU. In Appendix C it is
shown that this is indeed the case, and the appropriate norm to
consider turns out to be the nuclear norm, defined for matrix X
as ‖X‖N = tr((XHX)1/2) and equal to the sum of its singular
values. The optimization problem (11) is therefore equivalently
rewritten as

maximize
U

−2‖CTU‖N − 1

m
tr(rrTUUT )

subject to ‖ui‖ = 1, (13)

or

maximize
U

2 tr
(
(CTUUTC)

1
2

)
+

1

m
tr(rrTUUT )

subject to ‖ui‖ = 1. (14)

We now introduce the variable W=UUT and ignore the asso-
ciated nonconvex constraint rank(W) = n to obtain the SDR

maximize
W

2 tr
(
(CTWC)

1
2

)
+

1

m
tr(rrTW)

subject to W � 0, wii = 1. (15)

The objective function of (15) is the sum of a concave1 function
of W with a linear term, and is therefore concave. The con-
straint set of (15) is convex, thus establishing that this is indeed
a convex optimization problem which is expressed in standard
SDP form as

maximize
W,Z

2 tr(Z) +
1

m
tr(rrTW)

subject to W � 0, wii=1, Z�0,

[
CTWC Z

Z In

]
� 0.

(16)

The equivalence between (15) and (16) is proved in Appendix C.

1The first term is the composition of the linear map X = CTWC with
tr(X1/2), which is known to be concave in X [16].
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Similar to the complex 2D formulation, the solution of our
SDR is a m×m matrix W that should have approximately
rank n when the relaxation is tight. The matrix U of unit-norm
vectors is obtained by Singular Value Decomposition (SVD)
factorization of W and, after accounting for the inner rotation
of U, it is used to build the yi and, ultimately, the source
position vector x. Algorithm 1 summarizes the steps of SLNN.

Algorithm 1 Summary of SLNN

1: Given the anchor positions and range measurements, solve
the SDR (16)

2: Compute a rank-n approximation of the SDR solution as
W ≈ UUT

3: Solve the inner optimization problem (12) to get the
rotation matrix V (Appendix C)

4: Obtain the matrix of sphere projections as Y=A+RUV
5: Estimate the source position as the centroid of the rows of
Y, x = (1/m)YT1m

B. Localization Under Laplacian Noise: SL-�1

When disturbances are Laplacian and i.i.d., thus heavier
tailed than Gaussian, maximizing the likelihood amounts to
solving (1) for p = q = 1

minimize
x

m∑
i=1

|‖x− ai‖ − ri| . (17)

The presence of | · | in each summation term of (17), rather
than (·)2, de-emphasizes the contributions of measurements ri
corrupted by large noise values. The optimal point of (17) is
thus less biased by these outlier measurements than the cost
function (1) for the Gaussian case p = 1, q = 2. However, a
major difficulty in solving (17) is the fact that the cost function
is not differentiable, making it less amenable to the types
of analytic manipulations that we use to develop SDR. The
strategy that we adopt to circumvent this difficulty parallels the
one used in [10] for 2D sources, and as a key ingredient involves
squaring the cost function of (17) (which does not affect the
location of extremal points), and then rewriting it as

minimize
x,λ

m∑
i=1

(‖x− ai‖ − ri)
2

λi

subject to λi > 0, 1T
mλ = 1. (18)

The cost function is thus reduced to a weighted version of the
more tractable Gaussian log-likelihood, where the real weight-
ing coefficients λi become optimization variables themselves.
See [10] for a proof of this result (also [17]). Salient differences
of the derivation to that for the complex case [10] include the
presence of nonconvex rank-1 constraints in the reformulation
based on epigraph variables of Section IV-B1, which are ap-
proximately enforced through a penalizing term in the cost
function. The internal structure of variables is also different.
Now, the manipulations used earlier in Section IV-A for the

development of SLNN can be replicated here to reformulate the
problem as

minimize
x,yi,ui,λ

m∑
i=1

‖x− yi‖2
λi

subject to yi = ai + riui, ‖ui‖ = 1, λi > 0, 1T
mλ = 1.

(19)

For given yi, ui, and λ, (19) has a least-squares cost function
whose unconstrained optimal solution with respect to x is read-
ily found in closed form as x∗ = (

∑m
i=1 λ

−1
i )−1

∑m
i=1 λ

−1
i yi.

Substituting the optimal x in (19), and using matrix notation,
the cost function becomes tr(YTΞY), where Ξ is the modified
projector

Ξ =

⎡
⎢⎣

1
λ1

0

. . .
0 1

λm

⎤
⎥⎦− 1∑m

i=1
1
λi

⎡
⎢⎣

1
λ1

...
1

λm

⎤
⎥⎦ [ 1

λ1
. . . 1

λm
]

=Λ−1 −Λ−11(1TΛ−11)−11TΛ−1 (20)

with λ = diag(λ1, . . . , λm). Now Y and the related constraint
can be eliminated to obtain

minimize
U,λ

tr
(
(A+RU)TΞ(A+RU)

)
subject to ‖ui‖ = 1, λi > 0, 1T

mλ = 1. (21)

1) SL-�1 in Multiple Dimensions (SL-�1 MD): An epigraph
variable ti is introduced for each term contributing to tr(·) in
the cost function of (21)

minimize
U,λ,t

t1n

subject to eTi (A+RU)TΞ(A+RU)ei ≤ ti,

‖ui‖ = 1, λi > 0, 1T
mλ = 1, (22)

where t = [t1 . . . tn] and ei is the standard coordinate vector
with 1 in the ith position and zeros elsewhere. As in [10]
the matrix inversion lemma is invoked to express (20) as
the limiting case of (positive semidefinite) Ξ = limη→∞(λ+
η1m1T

m)−1, which is more amenable to analytic manipulations
in optimization problems. In practice we take η as a sufficiently
large constant. Using Schur complements the inequality con-
straint in (22) may be successively written as[

ti eTi (A+RU)T

(A+RU)ei Ξ−1

]
� 0 (23)

ti(Λ+ η1m1T
m)− (A+RU)eie

T
i (A+RU)T � 0. (24)

The last inequality is bilinear in ti and λ1, . . . , λm, and we
linearize it by replacing the optimization variable λ with a new
βi = tiλ. Now, the βi can be assembled into a matrix

β = [β1 . . . βn] = λt (25)

which, as shown above, should have rank 1 and satisfy βij >
0, 1T

mβ = t. However, the rank-1 constraint for β cannot be



3956 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 7, JULY 2014

directly imposed in convex formulations, and we resort to a
common technique to indirectly induce low rank in optimal
solutions by adding to the cost function the (scaled) nuclear
norm ‖β‖N .

Regarding the second term on the left-hand side of (24), we
first note that

(A+RU)ei = [Aei R]

[
1

Uei

]
= [αi R]

[
1

υi

]
(26)

where αi and υi denote the ith columns of matrices A and
U, respectively. Now, consider the following variable, obtained
from the stacked rotation vectors that make up U

W =

[
1

vec(UT )

] [
1 vec(UT )T

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 uT
1 . . . uT

m

u1 u1u
T
1︸ ︷︷ ︸

W11

...
. . .

um umuT
m︸ ︷︷ ︸

Wmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

Further, let Ii denote the set of row indices that extracts the
elements of [1υT

i ]
T in (26) from the first column of W. Then,

the dyad WIiIi =
[
1
υi

]
[1υT

i ] is readily obtained by selecting
the submatrix formed from the Ii rows and Ii columns of W
and this carries over to (24) through (26), which can therefore
be written in terms of submatrix WIiIi . The positive semidef-
inite matrix W will replace U as an optimization variable,
retaining the constraints along the diagonal blocks in (27),
namely, tr(Wii) = 1. Finally, we obtain the convex relaxation
of (22) by combining all the above elements and dropping the
rank-1 constraint for W that is implied by (27)

minimize
W,β,t

t1n + μ‖β‖N

subject to diag(βi) + tiη1m1T
m � [αi R]WIiIi

[
αT

i

R

]
W�0, w11=1, tr(Wii)=1, βij>0,1T

mβ=t.

(28)

In the numerical assessment of Section V it was observed that
the performance of this algorithm is only very weakly affected
by the choice of penalization factor μ over a broad interval, and
fixing it a priori seems acceptable (μ = 10 was used).

2) Simplified Formulation (SL-�1 SD): Our simulation re-
sults suggest that in most scenarios the accuracy of the solution
obtained from (28) is nearly identical to that of a simplified
formulation where a single epigraph variable, t, is used. Refer-
ring to (22), we now minimize tr(tIn) or, equivalently, t, and
replace the first constraint for all i = 1, . . . , n with the single
matrix inequality (A+RU)TΞ(A+RU) � tIn. Applying
Schur complements as in (23) and (24) yields

t(Λ+ η1m1T
m)− [A R]

[
In
U

]
[In UT ]

[
AT

R

]
� 0 (29)

and again variable λ is replaced with β = tλ such that βi > 0,
1T
mβ = t. Now, however, there is no need to assemble a matrix

as in (25) and to include its nuclear norm as a penalization
term in the cost function. Finally, to obtain a convex relax-
ation we replace U with the new variable W =

[
In
U

]
[InU

T ] =⎡
⎣ In︸︷︷︸

W11

UT

U UUT

⎤
⎦, and drop the rank-n constraint on W.

This simplified SDP formulation, denoted by SL-�1 SD, is
given by

minimize
W,β,t

t

subject to diag(β) + tη1m1T
m � [A R]W

[
AT

R

]
,

W � 0,W11 = In, wii = 1, βi > 0,1T
mβ = t.

(30)

Note that the optimization variables W and β in (28) have
size (mn+ 1)× (mn+ 1) and m× n, respectively, whereas
the corresponding sizes in (30) are only (m+ n)× (m+ n)
and m× 1. For ambient dimension n = 2 or 3 and for m ≈ 5
anchors used in our simulations, problem (30) has considerably
fewer variables than (28), and the gap increases as m and n
grow.

Given the configuration for variable W in both formulations
of SL-�1, the required elements of the rotation vectors that make
up U can be obtained from the rightmost (block) column of
W or by factorizing submatrices along the block diagonal. The
former approach is usually more accurate [18]. Algorithm 2
summarizes the steps of SL-�1 MD and SL-�1 SD.

Algorithm 2 Summary of SL-�1 MD/SD

1: Given the anchor positions and range measurements, solve
the SDR (28) or (30)

2: Compute a rank-n approximation of the SDR solution
from the rightmost (block) column of W or by factorizing
submatrices along the block diagonal

3: Obtain the matrix of sphere projections as Y = A+RU
4: Estimate the source position as x = (

∑m
i=1(yi/λi)/∑m

i=1(1/λi))

V. PERFORMANCE ANALYSIS AND NUMERICAL RESULTS

In this section, we assess the performance and computational
complexity of several localization algorithms. Our goal is to
demonstrate that the proposed algorithms offer superior accu-
racy and consistent performance for various noise assumptions,
while retaining a moderate computational load that is compat-
ible with the resources of many practical centralized setups. In
Table I, the acronyms of the proposed and benchmarked algo-
rithms used in the figures and their descriptions are presented.
ML location estimates should be regarded as lower performance
bounds, as the iterative minimization algorithms are initialized
with true source positions.
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TABLE I
ALGORITHMS USED FOR PERFORMANCE ASSESSMENT IN SIMULATIONS

We adopt the weighting procedure in [19], [20] that penalizes
larger ranges and assumes knowledge of the variances of the
disturbances for the weights used in wSR-LS and LLS.

In each simulation we performed M Monte Carlo runs,
where in each run the source and anchor locations were
randomly generated from a uniform distribution over a
square or cube. Observed ranges were generated as described
in Section II under appropriate noise densities. The fig-
ures show Root Mean-Square Errors (RMSE), computed as√
(1/M)

∑M
i=1 ‖xi − x̂i‖2, where xi and x̂i denote the actual

and estimated source positions in the ith run2.
Some plots also show the Cramér-Rao Lower Bound (CRLB)

for the source location, computed as
√
(1/M)

∑M
k=1 tr(F

−1
k ),

where Fk denotes the Fisher Information Matrix (FIM)
(Appendix D) on the kth Monte Carlo run [11], [21]. Under
our nonlinear observation model there is no efficient unbiased
estimator, and the bound becomes loose in the presence of
large Gaussian perturbations [22]. Still, it is of interest and
commonly used as a benchmark. We model disturbances in
outlier measurements as Laplacian, selective Gaussian (see
below), or Exponentially Modified Gaussian (EMG) [23]–[25]
variables. We do not compute the CRLB for Laplacian (non-
smooth likelihood) and selective Gaussian (too cumbersome)
noise models.

Localization under gaussian noise: We performed M =
1000 Monte Carlo runs, where the source and anchor locations
were randomly generated from a uniform distribution over a
cube whose sides are [0,10]. Observed ranges, corrupted by
i.i.d. Gaussian noise with σGaussian ∈ [10−2, 0.8], were gener-
ated according to Section II.

Fig. 2(a) shows the RMSE of the algorithms for 6 anchors.
The worst performances are attained by SR-LS and LLS. The
former squares measurements [p = 2, q = 2 in (1)], and thus
becomes more sensitive to the presence of (Gaussian) noise in
range measurements. The latter resorts to linearization, which is
not very accurate for this observation model and becomes less
so as the noise power increases. The weighted version (wSR-
LS) performs significantly better than SR-LS, slightly worse
than SLNN, and 7% worse than SL-�1 MD at high noise levels.
wSR-LS achieves these improvements by de-emphasizing long

2To avoid cluttering the plots only the performances of selected algorithms
are shown, and the average relative performances of the remaining ones are
summarized in the text.

ranges where the impact of squared disturbances is strongest.
However, in practice this method requires some form of calibra-
tion to estimate the variances of the disturbances. PSDP3 and
SDR have similar performance and are 7% worse than SL-�1
MD (28), which is 1.5% better than the simplified version SL-�1
SD (30).

The results for the various algorithms under Gaussian noise
tend to cluster into three performance classes: LLS and SR-
LS form a class with relatively large RMSEs, though the latter
does considerably better than the former. The second class
comprises wSR-LS and SLNN with intermediate and similar
performances. Finally, PSDP, SDR, SL-�1 SD, and SL-�1 MD
form a class with superior performance. Within the second and
third classes our algorithms attain the lowest residual errors.
The RMSE gap to the CRLB is significant (about 0.3 m
for σGaussian = 0.75), but it seems unlikely that it could be
closed by alternative algorithms.

Localization in the presence of outliers: We adopt the
same setup for Gaussian noise, except that ranges are now
contaminated either by Laplacian noise with σLaplacian ∈
[0.4, 1.8], by what we designate as selective Gaussian noise, or
by EMG noise. Range measurements for the selective Gaussian
model are created as ri = ‖x− ai‖+ wi + |ε|, where wi is
a Gaussian noise term with σGaussian = 0.1 that is present in
all observations and ε is also a Gaussian disturbance, but with
higher standard deviation σoutlier ∈ [0.4, 1.6], that contami-
nates only one measured range (i.e., ε = 0 for all other observa-
tions). This statistical model is less tractable than the Laplacian
noise model, but we include it in some of our simulations as it
more realistically reflects how outliers might occur in real rang-
ing systems. Fig. 2(b) and (c) show RMSEs under the Laplacian
and selective Gaussian outlier generation models. There are
now more substantial disparities between different classes of
algorithms. Broadly, the RMSE curves in these figures can still
be divided into 3 classes: As before, LLS and SR-LS attain
the highest RMSEs (the latter faring 16% and 25% worse than
SL-�1 MD for Laplacian and selective Gaussian outliers, re-
spectively). The intermediate group is formed by wSR-LS and
SLNN which is matched to Gaussian likelihoods (which fares
12% and 20% worse than SL-�1 MD for Laplacian and selective
Gaussian outliers, respectively, and is now outperformed by

3The performances of PSDP and SDR are almost identical for all noise levels.
Therefore, they are shown by a single curve which is labelled as SDR in all the
figures.
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Fig. 2. 3D source localization performance. (a) Gaussian noise; (b) Laplacian outliers; (c) Selective Gaussian outliers; (d) EMG outliers.

PSDP and SDR). Finally, the algorithms designed for Laplacian
noise (SL-�1 MD/SD) outperform all others. Interestingly, their
superiority is even more evident under selective Gaussian noise,
which does not match the underlying cost (likelihood) function
of Section IV-B.

The EMG statistical model is reasonably tractable and of-
ten used to model the presence of outliers due to NLOS
propagation [23]. Our observations are modeled as i.i.d. and
given by ri = di + bi + εi, where εi is a Gaussian noise term
with σGaussian = 0.1 and bi is an exponential noise term with
parameter σexponential ∈ [0.01, 0.6]. Fig. 2(d) shows that the
proposed �1-based algorithms are still superior under EMG
noise. Similarly to the Laplacian and selective Gaussian cases,
SR-LS and SLNN fare 22% and 15% worse than SL-�1 MD,
respectively. The gap of all algorithms to the CRLB is now even
wider than in the Gaussian case, which could be attributed to
looseness of the bound and the fact that the cost functions are
not matched to the EMG likelihood function.

Overall, our �1-based algorithms show the most consistent
behavior across all noise models. Also, some enhancements

to LLS used in our simulations are available in the literature,
which could considerably reduce the RMSE in the presence of
outliers and bring it closer to that of (w)SR-LS [26].

Practical complexity of algorithms vs. ambient space di-
mension and number of anchors: Several authors have ex-
amined the theoretical (worst-case) complexity of localization
algorithms, e.g., [11], [27], [28]. The emphasis here is on
demonstrating the practical feasibility of our algorithms in cen-
tralized scenarios with moderate computational power, so we
focus on actual running times, knowing that many technological
factors related to hardware and software architectures may
influence it4. These times are evaluated in 2D and 3D for vari-
able numbers of anchors that encompass those that one would
reasonably expect to find within range of a given target position
in practice. Our experiments were conducted on a machine

4Note, however, that SLCP, SLNN, SL − �1 MD/SD, as well as PSDP and
SDR, are single-shot formulations that essentially require a single invocation
of the same general-purpose solver, and the running times for these algorithms
should therefore closely reflect the relative operations count.
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Fig. 3. Speed comparison of algorithms vs. number of anchors. (a) 2D scenario; (b) 3D scenario; (c) Accuracy vs. speed in 2D.

powered by an Intel Xeon 3.2 GHz Quad-Core CPU and 8 GB
of RAM, using Matlab R2010b and CVX/SeDuMi as a general-
purpose SDP solver. Fig. 3(a) shows that SR-LS, wSR-LS, and
LLS are much faster than the other algorithms (average times
are 0.2 ms for LLS, 3 ms for SR-LS, and 2.5 ms for wSR-LS),
but their larger RMSEs would make them preferred mainly un-
der severe temporal or computational constraints. The running
times of SDR, SLCP, and SLNN are almost constant in the
figure (about 0.2 s), suggesting that the fixed overhead from our
software implementation plays an important role (the variable
component becomes significant above 15 anchors). Regarding
SL-�1, SL-�1 SD and PSDP, the times increase moderately,
remain below 0.5 s for the first two algorithms and below
0.7 s for the latter, and are similar in 2D and 3D [Fig. 3(b)]. The
largest time and increase rate is attained by SL-�1 MD. Note
that in SL-�1 MD the number of variables is affected multiplica-
tively by the ambient space dimension, leading to larger effort
in 3D.

The above results show that SL-�1 SD has nearly the same
performance of SL-�1 MD at a fraction of the complexity. The
running times for these algorithms, even with more modest
hardware, may enable tracking of relatively slow targets with
practical numbers of anchors. Fig. 3(c) summarizes the RMSE
vs. speed tradeoff of the considered algorithms in 2D for
5 anchors and Selective Gaussian noise with σoutlier = 1.5.

Convexity and tightness of SLCP: In this example we
characterize the accuracy of the convex relaxation used in SLCP
and compare it to the SDR algorithm of [9]. Range measure-
ments to a variable number of randomly placed anchors in a
square [−10, 10]× [−10, 10] were generated over M = 1000
Monte Carlo runs, and corrupted by white Gaussian noise.

First, we estimate how often the constraint set S(32), which
appears in our formulation of the source localization problem
prior to relaxation (31), is convex along its “upper right” bound-
ary. As discussed in Appendix A, when this property holds the
relaxed solution Φ obtained by SLCP (6) will have rank 1 and
can be factorized to yield the optimal point for the non-relaxed
problem (31) on the boundary of S . We empirically assess
convexity of S by tracing the boundary of the (partially hypoth-
esized) convex hull T (33) and searching for line segments that
delimit regions where the boundaries of S and T depart due to
local concavity of S . We solve the support hyperplane problem
(34) for a grid of angles 0 ≤ β ≤ (π/2) and detect the presence
of a line segment when the distance between the intersection

TABLE II
SOURCE LOCALIZATION ACCURACY FOR RELAXATION-BASED METHODS

points (u(β), v(β)) for two consecutive angles β exceeds a
threshold. For a noise standard deviation σGaussian = 10−2, S
passed the convexity test in 80% of runs for three anchors.
The value increased to 84% for five anchors, in line with our
reasoning in Appendix A that S is more likely to be convex as
the number of anchors increases.

Next, we compare the RMSEs of SDR [9] and SLCP. As
in [6] we provide results for all Monte Carlo runs (denoted
by SDR, SLCP) and also for so-called tight runs (denoted by
SDRt, SLCPt) where the solution for the relaxed localization
problem is close to having rank 1, as desired for subsequent
factorization to obtain the actual source coordinates. A solution
matrix is considered to be tight when the ratio between its first
and second eigenvalues is at least 102. Table II lists the RMSEs
and the number of tight runs (NSDR, NSLCP) over 1000 trials
for five anchors and variable Gaussian noise power. SLCP is
clearly superior over the full set of trials, but the gap to SDR
closes in the subset of tight runs, indicating that the advantage
is mostly due to a much higher probability of its solution having
near rank 1. Even for the highest noise power, where the number
of tight runs in both algorithms is comparable, the ratio of first
to second eigenvalues is usually higher in SLCP, leading to
lower RMSE.

VI. CONCLUSION

We have proposed approximate ML algorithms for range-
based source localization through convex relaxation of
likelihood functions for Gaussian or Laplacian noise. These
centralized algorithms exhibit appealing tradeoffs between lo-
calization accuracy and computational cost. The fact that they
solve a single convex optimization problem and do not require
setting critical parameters a priori makes them robust and very
convenient for practical use, if execution times on the order of
1 second or less using contemporary generic computers can be
tolerated.
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We have used complex formulations for 2D localization
as a starting point, and derived comparable real formulations
that can be extended to 3D and higher dimensional scenarios.
The flexibility stemming from full 3D localization capability
is very relevant in practice, e.g., in indoor localization sys-
tems where purely planar anchor/source configurations may be
technically cumbersome or altogether unfeasible. As in the 2D
formulations (SLCP, SL-�1), the relaxations underlying our new
3D algorithms (SLNN, SL-�1 MD, and SL-�1 SD) are very
consistent, yielding matrix solutions that approximately have
the rank-1 property with high probability. Our new analysis of
the geometry of SLCP sheds light on its observed high accuracy
and consistency in various scenarios.

Simulation results show that, for Gaussian noise, our al-
gorithms are more accurate than linearization approaches and
those relying on squared ranges. Broadly, their accuracy is
comparable to state-of-the-art relaxation-based methods and
to (nonrelaxed) ML methods. In the presence of outliers our
�1-based algorithms clearly outperform all the remaining ones,
particularly under the selective Gaussian noise model. Overall,
SL-�1 SD emerged as a versatile algorithm that delivers very
good performance under different types of disturbance and
whose moderate complexity scales favorably with the number
of anchors and the ambient space dimension.

APPENDIX A
TIGHTNESS AND GEOMETRY ANALYSIS OF SLCP

One of the salient features of SLCP is the observed tightness
of its relaxation, i.e., when the source and anchors are placed
randomly the optimal solution is more likely to have nearly
rank-1 than other convex relaxations such as [9]. We shed
some light on this property by examining the geometry of
SLCP’s cost function and constraint set, lending support to the
technique used in Section V to empirically assess the convexity
of specific instances of SLCP by tracing the boundary of the
convex hull for the non-relaxed constraint set.

The source localization problem prior to relaxation (5) is

maximize
u,v

2
√
u+

1

m
v

subject to (u, v) ∈ S, (31)
S =

{(
|cHθ|2, |rTθ|2

)
: θ ∈ C

m, |θi| = 1
}
. (32)

The objective function in (31) is concave with respect to u
and v, and the optimization problem would be convex if the
constraint set S were convex. Then, the SDR used in SLCP (6)
would always find a desired rank-1 solution Φ.

Given the separable form of the cost function (31) it is clear
that, for fixed v, it can be maximized by choosing u as large as
possible within S , and vice-versa. This implies the following:

Property 1: Optimal points of (31) lie on the “upper right”
boundary of set S , i.e., they are maximal elements of S with
respect to the standard cone R

2
+ [16].

Regarding the convexity properties of S , first recall that the
cost function of (31) was designed to be invariant to rotations of
θ, so its first element may be taken as unity. For m = 2 anchors
and θ1 = 1, θ2 = ejφ set S as defined in (32) is readily seen
to be an ellipse. Given the definitions of c and r in (4), for

Fig. 4. Constraint set S for 4 anchors and randomly generated θ satisfying
|θi| = 1. The hypothesized convex hull, computed by relaxation of S, is also
depicted.

m > 2 anchors it is always possible to effectively zero out the
contributions from θ3, . . . , θm when r3 = . . . = rm = 0 in the
diagonal of R, thus reverting to the case m = 2. Hence, set S
may be nonconvex for any number of anchors.

In spite of the lack of convexity guarantees for S , our
simulation results suggest that for m ≥ 3 anchors and typical
range measurements this set usually does have a convex-like
shape. Even when S is not convex all that is required for our
SDR to provide a rank-1 solution is “local convexity” along
the “upper right” boundary of S where the optimal point of
(31) is known to be located. More formally, we require that the
intersection of S with any supporting hyperplane defined by a
normal direction with nonnegative components be a compact
subset (a single point or a line segment) [16]. Fig. 4 depicts
an example of S for m = 4 anchors and randomly generated
c, r. Our practical test for local (non)convexity of S consists
of tracing multiple supporting hyperplanes with nonnegative
normal elements, and assessing whether any of them intersect S
at two well-separated points. We build supporting hyperplanes
not on S directly, which is a hard problem, but on the related
relaxed convex set

T =
{(

tr(ccHΦ), tr(rrTΦ)
)
: Φ ∈ C

m×m,Φ � 0, φii = 1
}
.

(33)

Specifically, for a supporting hyperplane with normal
(cosβ, sinβ), 0 ≤ β ≤ (π/2), we determine an intersection
point with T by solving the convex optimization problem

maximize
Φ

〈(cosβ, sinβ),
(
tr(ccHΦ), tr(rrTΦ)

)
〉

subject to Φ � 0, φii = 1, (34)

and setting the intersection as u = tr(ccHΦ), v = tr(rrTΦ).
This is justified by the following lemma (see Appendix B).

Lemma 1: For m ≤ 3 anchors the sets S and T have the
same set of supporting hyperplanes with nonnegative normal
elements. Equivalently, in the relevant portion of its boundary
T coincides with the convex hull of S .
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Although we only prove this result up to m = 3, the em-
pirical evidence suggests that it is also valid for higher m and
arbitrary supporting hyperplanes (i.e., T is actually the convex
hull of S). We leave this as a conjecture and apply the procedure
for m > 3 as well, noting, however, that the case m = 3 has
major practical significance as the minimum number of anchors
that are necessary to recover a general 2D source position based
on range measurements.

APPENDIX B
PROOF OF LEMMA 1

Our proof of Lemma 1 relies on a result, interesting in its
own right, that characterizes the convex hull of the set of 3 ×
3 rank-1 matrices built from complex vectors with unit-
magnitude components.

Lemma 2: Let

A =
{
θθH : θ ∈ C

3, |θi| = 1
}
, (35)

B =
{
Φ ∈ C

3×3 : Φ � 0, φii = 1
}

(36)

then B = co(A).
Proof: co(A) ⊂ B is straightforward since B is convex

and A ⊂ B. For the reverse direction co(A) ⊃ B our goal is
to find, for every Φ ∈ B, matrices Θi ∈ A and nonzero scalars
λi ≥ 0, with

∑
i λi = 1, such that Φ =

∑
i λiΘi.

Note that both A and B are invariant under the (unitary)
similarity operation, M → PMPH , where P is the product of
a permutation and a diagonal unitary matrix. In other words, we
can simultaneously permute rows and columns and multiply the
ith row and ith column by a unit-magnitude complex number.
Thus, we can assume without loss of generality that Φ is of the
form

Φ =

⎡
⎣ 1 a b
a 1 z∗

b z 1

⎤
⎦ , 0 ≤ a ≤ b, z ∈ C. (37)

Since Φ � 0, we must have a ≤ 1, b ≤ 1, |z| ≤ 1, and 0 ≤
|Φ| = 1− a2 − b2 − |z|2 + 2abRe{z}, which, for z = x+
jy, reads

(x− ab)2 + y2 ≤ (1− a2)(1− b2). (38)

For fixed a, b this inequality describes a circle (with interior)
in the (x, y) plane, centered on (ab, 0). Since any point in the
interior of a circle can be written as a convex combination of
two points on its boundary, we can assume that we have equality
in (38). Thus, from now on we assume

z = ab+
√
(1− a2)(1− b2)ejϕ. (39)

We now complete the proof by expressing such Φ as a convex
combination of two matrices from A. For given 0 ≤ a ≤ b ≤ 1
and ϕ ∈ [0, 2π[ we want to find α, β, γ, δ ∈ [0, 2π[, and 0 ≤
λ ≤ 1 such that (37) equals

λ

⎡
⎣ 1
ejα

ejβ

⎤
⎦ [1 e−jα e−jβ ] + (1− λ)

⎡
⎣ 1
ejγ

ejδ

⎤
⎦ [1 e−jγ e−jδ]. (40)

Fig. 5. Illustration of geometrical Lemma 3 and its application to a convex
combination on the unit circle.

We thus have

a =λejα + (1− λ)ejγ , b = λejβ + (1− λ)ejδ, (41)

z =λej(β−α) + (1− λ)ej(δ−γ). (42)

From the first two relations we get ejγ = (a− λejα)/(1− λ),
ejδ = (b− λejβ)/(1− λ), and replacing these in (42) yields,
after simple manipulations

z = ab+
λ

1− λ
(e−jα − a)(ejβ − b). (43)

Before proceeding, we state and prove a useful lemma from
elementary geometry:

Lemma 3: Referring to Fig. 5(a), if A is a point inside a unit
circle whose distance to the center is a, RS is any line through
A, and PQ is a diameter through A, then

AR ·AS = AP ·AQ = (1− a)(1 + a) = 1− a2. (44)

This is proved by noting that triangles APR and AQS, de-
picted in Fig. 5(b), are similar, hence AP/AS = AR/AQ. We
use the lemma above with parameters as depicted in Fig. 5(c).
From A = λR+ (1− λ)S we have (AR/AS) = (1− λ)/λ,
and by Lemma 3 AR ·AS = 1− a2, hence

AR =

√
1− λ

λ
(1− a2), ejα = a+

√
1− λ

λ
(1− a2)ejϕ1 .

(45)

Similarly, with A = b, R = ejβ , S = ejδ , and ϕ2 instead of ϕ1,
we have

ejβ = b+

√
1− λ

λ
(1− b2)ejϕ2 . (46)

Substituting (45), (46) back in (43) yields z = ab+√
(1− a2)(1− b2)ej(ϕ2−ϕ1), which has the same form as (39),

obtained from the positive semidefinite condition for matrix Φ
in (37).

We now argue that letting angle α go from 0 to 2π is
equivalent to letting ϕ1 cover an interval of length 2π as well
[Fig. 5(c)]. Fixing ϕ1, and consequently α, the two relations in
(41), together with an arbitrary requirement that Im{ejβ} ≥ 0,
fix the values5 of β, γ, δ, λ, and, in particular, of ϕ2. Thus,
ϕ2 = f(ϕ1) is a continuous function of ϕ1.

5Equivalently, fixing ϕ1 defines the geometrical construction shown in
Fig. 5(c), setting γ and λ. Then, λ defines the second construction for A = b if
Im{ejβ} ≥ 0 is additionally specified, setting β, δ, and ϕ2.
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When ϕ1 = 0, ϕ2 has a certain value, say, ε0 ∈ [0, π] (it can
be computed, but is not needed in this proof). For ϕ1 = π it
is straightforward to see that ϕ2 = π − ε0, and for ϕ1 = 2π
it is again ε0. In particular, the continuous function ϕ2 − ϕ1

takes values from ε0 − 0 = ε0 to ε0 − 2π, i.e., modulo 2π it
takes all values in [0, 2π[. Thus, for any given angle ϕ in (39),
let ϕ1 be such that f(ϕ1)− ϕ1 = ϕ, modulo 2π. Then, the
corresponding α, β, γ, δ, and λ, as explained above, give the
desired decomposition (40). �

We proceed and prove Lemma 1 under the assumption of
Lemma 2, thus assuming m = 3.

Proof: We rewrite sets S in (32) and T in (33) using the
notation (35)

S =
{(

cHΘc, rTΘr
)
: Θ ∈ A

}
, (47)

T =
{(

cHΦc, rTΦr
)
: Φ ∈ co(A)

}
. (48)

Obviously S ⊂ T . Now let α ∈ [0, (π/2)] and define

(u1, v1) = arg max
(u,v)∈T

〈(cosα, sinα), (u, v)〉. (49)

We wish to show that

〈(cosα, sinα), (u1, v1)〉 = max
(u,v)∈S

〈(cosα, sinα), (u, v)〉
(50)

so that the inner product over S attains the same maximum
as over the larger set T , and the support hyperplanes with
normal (cosα, sinα) coincide for the two sets. It is enough
to prove that there exists (u′, v′) ∈ S that attains the left-hand
side of (50). We may write Φ1 ∈ co(A) which maximizes (49)
as Φ1 =

∑
i λiθiθ

H
i , λi ≥ 0,

∑
i λi = 1, |θik| = 1, hence the

left-hand side of (50) is given by

(
√
cosα c)HΦ1(

√
cosα c︸ ︷︷ ︸

p

) + (
√
sinα r)TΦ1(

√
sinα r︸ ︷︷ ︸
q

)

=
∑
i

λi

(
|pHθi|2 + |qHθi|2

)
. (51)

Let i0 be the index for the maximum term in the
sum. Then 〈(cosα, sinα), (u1, v1)〉 ≤ |pHθi0 |2 + |qHθi0 |2=
〈(cosα, sinα), (cHθi0θ

H
i0
c, rTθi0θ

H
i0
r)〉, which completes the

proof because the second argument in the inner product is an
element of S . �

APPENDIX C
ANALYSIS OF SLNN

Solution of the inner subproblem (12): We reformulate
(12) as

minimize
V

1

2
‖V −B‖2F

subject to VTV = In, (52)

with B = −UTC, whose cost function differs from (12) by a
constant on the constraint set of orthogonal matrices and there-
fore has the same minimizer. Recognizing (52) as an orthogonal
Procrustes problem [29], its solution for this particular instance

is known to be obtained from the SVD of B = SΣWT as
V = SWT . Inserting this into (12) yields the optimal cost

tr(−BTV) = − tr

⎛
⎝WΣT STS︸︷︷︸

I

WT

⎞
⎠ = −tr

⎛
⎝ΣT WTW︸ ︷︷ ︸

I

⎞
⎠

= − tr(ΣT ) = −‖CTU‖N .

�
Proof of equivalence between (15) and (16): We first

rewrite (16) using an equivalent Schur complement

maximize
W,Z

2 tr(Z) +
1

m
tr(rrTW)

subject to W � 0, wii = 1, Z2 � CTWC, Z � 0.

(53)

Let p∗1 and p∗2 be the optimal values of problems (15) and
(53), respectively. Choose a feasible point (Z,W) for the
second problem, such that 0 � Z2 � CTWC. This implies6

Z � (CTWC)1/2, hence the values of the objective functions
satisfy

2 tr(Z) +
1

m
tr(rrTW) ≤ 2 tr

(
(CTWC)

1
2

)
+

1

m
tr(rrTW).

(54)

Choosing for (Z,W) the unique maximizer of (53), inequality
(54) asserts that p∗1 ≥ p∗2. For the converse choose a feasible
point W for the first problem and consider the eigendecomposi-
tion CTWC = QλQT . Now set Z = Qλ1/2QT , so that Z2 =
QλQT = CTWC, and (W,Z) is therefore feasible for (53).
For both problems the value of the cost function is 2 tr(λ1/2) +
(1/m)tr(rrTW). Choosing for W the maximizer of (15) the
construction for Z yields a feasible point (W,Z) for (53)
with cost p∗1. Therefore, p∗1 ≤ p∗2, and coupling this with the
converse inequality above we conclude that p∗1 = p∗2 and the
two problems are equivalent. �

APPENDIX D
CRLB FOR SOURCE LOCALIZATION BASED ON TOA

Several authors have addressed the problem of deriving
performance bounds for source localization based on different
types of observations under both LOS and NLOS propagation
[23]–[25]. As pointed out in [24] the FIM for the localization
problem can be expressed, under mild conditions, as the product
of a scalar defined by the noise statistics alone, and a matrix that
depends only on the geometry of the source and anchors

F = g

m∑
i=1

Fi (55)

where

Fi =
(x− ai)(x− ai)

T

‖x− ai‖2
, (56)

g =E

{(
∂

∂w
ln f(w)

)2
}

=

∞∫
−∞

f ′(w)2

f(w)
dw, (57)

6A � B � 0 ⇒ A1/2 � B1/2 � 0 [29].
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and f denotes the additive noise pdf that affects range measure-
ments as described at the start of Section II. The assumptions
underlying (55) are that f is differentiable over its support
region, say, [a, b], and that f(a)− f(b) = 0. These are satisfied
by many distributions, including EMG [25], [30], Rayleigh
[25], and several types of mixtures that are often used to model
NLOS propagation (but not by the Laplacian pdf that underlies
our �1-based algorithms). In the LOS case f is Gaussian
N (0, σ2) and the constant above evaluates to g = σ−2, such
that (55) coincides with the well-known Gaussian bound.

In the EMG model measurements are corrupted by the sum
of independent Gaussian (mean 0, variance σ2) and exponential
(reciprocal rate μ) components. The density is the convolu-
tion of both pdfs, given by f(w) = (1/2μ) exp(−(w/μ) +
(σ2/2μ2))erfc(−(w/

√
2σ) + (σ/

√
2μ)), with mean value μ

and variance σ2 + μ2. We evaluate the integral (57) numeri-
cally with sufficiently large upper and lower limits.
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[4] P. Oŭguz-Ekim, J. Gomes, J. Xavier, and P. Oliveira, “A convex relaxation
for approximate maximum-likelihood 2D source localization from range
measurements,” in Proc. IEEE ICASSP, Dallas, TX, USA, Mar. 2010,
pp. 2698–2701.

[5] A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source
localization problems,” IEEE Trans. Signal Process., vol. 56, no. 5,
pp. 1770–1778, May 2008.

[6] A. Beck, M. Teboulle, and Z. Chikishev, “Iterative minimization schemes
for solving the single source localization problem,” SIAM J. Optim.,
vol. 19, no. 3, pp. 1397–1416, 2008.

[7] E. Xu, Z. Ding, and S. Dasgupta, “Wireless source localization based on
time of arrival measurement,” in Proc. IEEE ICASSP, Dallas, TX, USA,
Mar. 2010, pp. 2842–2845.

[8] Y. Chan, H. Hang, and P. Ching, “Exact and approximate maximum
likelihood localization algorithms,” IEEE Trans. Signal Process., vol. 55,
no. 1, pp. 10–16, Jan. 2006.

[9] K. W. Cheung, W. K. Ma, and H. C. So, “Accurate approximation algo-
rithm for TOA-based maximum likelihood mobile location using semidef-
inite programming,” in Proc. IEEE ICASSP, Montreal, QC, Canada,
May 2004, pp. II-145–II-148.
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