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Abstract—We find large deviations rates for consensus-based
distributed inference for directed networks. When the topology is
deterministic, we establish the large deviations principle and find
exactly the corresponding rate function, equal at all nodes. We
show that the dependence of the rate function on the stochastic
weight matrix associated with the network is fully captured by
its left eigenvector corresponding to the unit eigenvalue. Further,
when the sensors’ observations are Gaussian, the rate function
admits a closed-form expression. Motivated by these observations,
we formulate the optimal network design problem of finding the
left eigenvector that achieves the highest value of the rate function,
for a given target accuracy. This eigenvector therefore minimizes
the time that the inference algorithm needs to reach the desired
accuracy. For Gaussian observations, we show that the network
design problem can be formulated as a semidefinite (convex)
program, and hence can be solved efficiently. When observations
are identically distributed across agents, the system exhibits an
interesting property: the graph of the rate function always lies
between the graphs of the rate function of an isolated node and the
rate function of a fusion center that has access to all observations.
We prove that this fundamental property holds even when the
topology and the associated system matrices change randomly
over time, with arbitrary distribution. Due to the generality of its
assumptions, the latter result requires more subtle techniques than
the standard large deviations tools, contributing to the general
theory of large deviations.
Index Terms—Distributed inference, large deviations anal-

ysis, rate function, large deviations principle, directed topolo-
gies, random networks, time-correlated networks, consensus
algorithms.

I. INTRODUCTION

T HE field of wireless sensor networks (WSN) has signif-
icantly evolved since its beginnings about two decades

ago. Starting from wildlife monitoring, smart housing, and
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building and infrastructure surveillance [1], the applications of
WSNs have grown both in diversity and in scale. They now
include monitoring and control of some highly complex large
scale systems, such as vehicular networks and electric power
grids. One important emerging trend in this field is networks
consisting of thousands of very small and simple sensing
devices, such as microrobots [2] and nano-networks [3].
Due to the increased complexity and scale ofWSNs, there has

been significant interest recently in algorithms that process net-
work information using local communications only [4]–[6]. A
representative of this class of algorithms is the consensus algo-
rithm [7]–[9]. With consensus algorithms, each agent maintains
over iterations an estimate of the quantity of interest and over
time it communicates the estimate to its immediate neighbors.
In addition, intertwined with local communications are the local
agents’ innovations, where agents collect new measurements
and incorporate them in an iterative fashion in their current esti-
mates. Algorithms of this form, referred to as consensus+inno-
vations [10], [13], possess several desirable features, including
scalability and simplicity of implementation. Further, they are
robust to structural changes in the system, such as node failures
and intermittent communications, which are typical for com-
plex systems consisting of many structurally simple devices. In
terms of applications, consensus algorithms have been applied
in various different contexts: distributed Kalman filtering [11],
[12], distributed detection [9], [13], [8], [14] and parameter es-
timation [7], [15], [10], distributed learning [16], and tracking
[17].
In this paper, we study large deviations performance of con-

sensus algorithmswhen the underlying network is directed. This
complements the existing work that usually studies asymptotic
variance or asymptotic normality [10], [18]. Our goal is to com-
pute (or characterize—when exact computation is not possible)
the rates at which the local nodes’ estimates converge to the
desirable values (e.g., the vector of true parameters that are
being estimated). To explain the relevance of large deviations
performance, consider, for example, a binary hypothesis testing
problem in a WSN. In this context, the rates of large deviations
correspond to error exponents, i.e., they provide answers to how
fast the error probabilities—false alarm, missed detection, or
total error probability decay with time. In the context of estima-
tion, large deviation rates provide estimates of times to reach a
desired accuracy region around the true parameter that the local
estimates converge to. Naturally, the higher the rate of a node,
the better is the decision or estimation produced by that node
at a given time. One particular goal of this paper is to provide
answers to questions such as: “How much faster a node in a
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network filters out the estimation noise compared to a node that
operates alone?”
Contributions: We consider both cases when the local nodes’

interactions are deterministic and when they are random, where
the local interactions are captured by associated stochastic
systemmatrices 1. For the deterministic case, when ,
we prove the large deviations principle at each node, and we
find the corresponding rate function, equal at all nodes. We
prove that its dependence on the (stochastic) system matrix
is fully captured by the left eigenvector of associated with
the eigenvalue one, i.e., the left Perron vector of . When the
observations are Gaussian—independent, but non-identically
distributed, we find a closed form expression for the rate
function. Motivated by the fact that the rate function strongly
depends on the eigenvector , we formulate the following
network design problem. For a given accuracy region, find the
optimal vector that maximizes the value of the rate function
on this fixed region. We further show that for Gaussian obser-
vations with equal means (but different covariance matrices)
this problem can be formulated as a semidefinite program
(SDP) and thus can be solved efficiently. Simulation examples
demonstrate that the optimized system significantly outper-
forms the system with the uniform left eigenvector that, in the
asymptotic sense, equally “weighs” all of the nodes’ estimates.
Finally, considering the special case when the observations are
independent and identically distributed (i.i.d.), we reveal a very
interesting property: the rate function, independently of the
choice of , always lies between the rate function of an isolated
node and the rate function of a fusion center , where is
the number of nodes in the network. Intuitively, this means that
the distributed system is always better than an isolated node,
and that, on the other hand, can never beat the performance of
a fusion center having access to all the sensors’ observations.
To provide a hint as to why the latter property holds, consider

the log-moment generating function of the nodes’ observa-
tions and its conjugate . Then, the (properly scaled) log-mo-
ment generating function of the estimate at node has the
following form:

(see ahead the derivations in (12)). Exploiting the fact
that the powers of are stochastic matrices together with cer-
tain nice properties of (such as convexity) it can be shown
that is, for all , “sandwiched” between the following two
time-invariant functions:

(1)

In the deterministic case, the sequence ,
has a point-wise limit, , and we immediately obtain by the
Gärtner-Ellis theorem that the ’s satisfy the large deviations
principle. The corresponding rate function is given as the con-
jugate of . Then, relations (1)—through elementary properties
of the conjugacy operation—yield that must be sandwiched
between , the rate function of an isolated node, and , the
rate function of a fusion center.

1With a stochastic matrix, rows sum to one, and all the entries are non-
negative.

Proving the latter property in a general random matrices set-
ting requires much more sophisticated techniques. Namely, we
cannot use standard large deviations results like the Gärtner-
Ellis theorem. Instead, proving this requires a novel, non-trivial
combination of large deviations techniques (such as exponential
Markov inequalities, exponential tilting, and Gaussian regular-
ization), further combined with novel intermediate results (see
Lemmas 8–10). A major reason for this is that the sequence of
log moment generating functions that arises in the anal-
ysis does not have a limit and, moreover, functions
are not 1-coercive for any finite .
Related work: Large deviations asymptotic performance of

consensus+innovations algorithms has been previously studied
in [9], [13], [19]–[21], and [22]. Reference [19] finds the
exact large deviations rate of consensus algorithms for random
topologies and therefore captures the effects of intermittent
communications on large deviations performance of distributed
inference. Reference [20] studies large deviations of the sto-
chastic Riccatti equation for the distributed Kalman filter, and
it provides an upper and a lower bound for the large deviations
rate function. In our previous work [9], [13], we considered
the case of i.i.d. networks, where each topology realization is
symmetric. Under this model, [9] finds an upper and a lower
bound for the rate function when the observations are Gaussian,
and [13] extends the results of [9] to arbitrary distributions of
sensor observations. Reference [21] extends this work to con-
sensus based distributed detection with constant learning step.
They show that the local decision statistics satisfy the large
deviations principle and characterize the corresponding rate
function. Reference [22] studies belief formations in social net-
works and also characterizes error exponents (Kullback-Leibler
divergences) for distributed multiple hypothesis testing.
In this paper, we go beyond all these results in several impor-

tant directions. First, we study here directed random networks,
and, furthermore, we make no restrictions on the distribution of
the system matrices; in particular, we allow for their arbitrary
time correlations. Second, when the system matrices are deter-
ministic, asymmetric, we fully characterize the rate function and
show that it is amenable to optimization.
Regarding the large deviations literature, our results are re-

lated with those of [23]. This reference studies sequences of
correlated random variables in (scalar random variables) and,
similarly to our paper, it is concerned with deriving bounds on
the decay rates of the corresponding large deviations proba-
bilities. The proposed methodology is based on transforming
the random variables by an appropriate real-valued continuous
function , and then upper and lower bounding the log-moment
generating functions of the transformed variables. In the special
case when function is the identity, the problem that we study in
Theorem 2 and the one in [23] are similar and are essentially the
following: derive bounds on the large deviations rates based on
the bounds of the log-moment generating functions. However,
there are several major differences between our paper and [23].
First, we study random vector sequences, i.e., sequences in ,
where the space dimension is arbitrary. As a result, our
upper and lower bounds on the large deviations rates are more
general than those from [23]. A further important comment is
that the proofs in [23] cannot be easily generalized to the
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case2. Second, even if one considers the case , our large
deviation bounds hold for much broader sets than the bounds in
[23]. In particular, [23] proves the large deviations bounds for
finite open and closed intervals, where, in addition, the open in-
tervals are restricted to belong to a certain set, strictly smaller
than when the random variables have finite support. In con-
trast, we prove both the upper and the lower large deviations
bounds with full generality, i.e., for arbitrary closed and open
sets, respectively. This for example incurs no restrictions on the
sets for the random variables with finite supports in contrast with
the results in [23].
Notation: For arbitrary , we denote by

the -dimensional vector of all zeros; by the -dimensional
vector of all ones; by the -th canonical vector of (that has
value one on the -th entry and the remaining entries are zero);
by the -dimensional identity matrix; by the matrix
with all entries equal . For a matrix , we let and
denote its entry and for a vector , we denote its -th
entry by . For a function , we
denote its domain by ;
the subdifferential (gradient, when is differentiable) of at
a point by denotes the natural logarithm;
for two sequences and that agree to first order in the ex-
ponent, , we shortly write .
For , we denote by the probability simplex in

and by the generic element of this set:
. We let and , re-

spectively, denote the maximal and the second largest (in mod-
ulus) eigenvalue of a square matrix; denotes the pseudoin-
verse of a square matrix; and denotes the spectral norm.
For a matrix , we let denote the range of

denotes the trace of ;
for square matrices , we let
denote the block-diagonal matrix whose th block is , for

. An open Euclidean ball in of radius and
centered at is denoted by ; the closure, the interior, the
boundary, and the complement of an arbitrary set are
respectively denoted by , and denotes the
Borel sigma algebra on denotes the probability space and
denotes an element of and denote the probability and

the expectation operator; denotes Gaussian distribu-
tion with mean vector and covariance matrix .
Paper Organization: In Section II we present the

system model and formulate the problem that we study. In
Section III we give preliminaries. Section IV presents our re-
sults for the deterministic case. Using the results of Section IV,
Section V formulates the network design problem and solves
it for the case of Gaussian observations with equal means.
Section VI presents the fundamental bounds on the rate function
for the generic case, when system matrices are random; proofs
of this result are given in Subsections VI.A and VI.B. Simula-
tion results are presented in Section VII, and the conclusion is
given in Section VIII.

II. PROBLEM SETUP
This section explains the system model and the distributed

inference algorithm that we study.

2For example, a major difficulty arises with (3.11) in [23].

Fig. 1. Illustration of the problem setup; each node updates its state
according to (2).

Network Observations: Suppose that we have geographi-
cally distributed agents (e.g., sensors, robots, humans) that mon-
itor and collect observations about their environment. We de-
note the set of agents by such that
denotes the -th agent. At each new time instant ,
each agent produces a -dimensional observation vector. We
denote by the observation vector of agent at time
, where we assume that the measurements are made synchro-
nously across all agents. We denote by the expected value
of observations at node (constant for all ).
Inter-Agent Communication: We assume that a direct com-

munication is possible only between a subset of agents’ pairs,
e.g., the agents that are close enough to each other. (For instance,
in a WSN, communication links are established only between
sensors that lie within a certain, predefined distance from each
other.) We model the possible inter-agent communications via a
directed graph , where the set collects
all possible (directed) communication links, i.e., all pairs
such that agent can receive messages from agent in a single
hop manner. The links in should be understood only as poten-
tial communication channels. In other words, at a certain time
, agent may decide whether to send or not send a message to
agent . Also, in case a message from to was sent, its recep-
tion at could be unsuccessful due to imperfect channel effects
(e.g., fading). For any link , we say that is active
at time if at time a message is sent from and successfully
received at . We let denote the set of all active links at time
. Accordingly, the neighborhood of node at time is

, that is, is the set of all active links at time
that are pointing to ; for any , we say that is an active
neighbor of . Finally, we denote by the graph
realization at time . Fig. 1 illustrates the problem setup.
Consensus+Innovations Based Distributed Inference: The

distributed inference algorithm that we study operates as fol-
lows. Each node, over time, maintains a -dimensional vector
that serves as the node’s estimate on the state of nature. The es-
timate of node at time is denoted by , and we also refer to
it as the state of node . The estimates (states) are continuously
improved over time twofold. First, each agent incorporates its
new observation into its current state with the weight
and forms an intermediate state update; subsequently, it trans-
mits the intermediate state to (a subset of) its neighbors. Finally,
agent forms a convex combination (weighted average) of its
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own and its active neighbors’ intermediate states, with the co-
efficients . Mathematically, the state
update of agent is:

(2)

with the initialization . To derive a more compact
representation, collect for each the agents’ weights in
an matrix as follows: for any pair that
satisfies is assigned the value , and equals
zero otherwise, and for any .
We refer to matrix as the weight matrix. Due to the fact that,
for any , form a convex combination, is
stochastic for any . Further, let , for and ,
be defined as the matrix product , for

. From (2), we then obtain:

(3)

Algorithms of the form (2) and (3) have been previously studied,
e.g., in [7], [8], and [9].
We now state our assumptions on the weight matrices and the

agents’ observations.
Assumption 1 (Network and Observation Model):
1) Observations are indepen-

dent both across nodes and over time;
2) For each agent are identically dis-

tributed;
3) Quantities and are independent for all .
The model above is very general. In particular, in terms of the

agents’ interactions, it allows for directed topologies and asym-
metric weight matrices, and it also allows for time dependen-
cies between the weight matrices; directed topologies and tem-
poral dependencies are cases that are much less studied in the
literature. In terms of observations, we remark that the model
above allows for non-identically distributed observations across
nodes.
We next introduce the rates of large deviations and motivate

their use for performance characterization of algorithm (2).
Rates of Large Deviations at Individual Agents: Suppose

that, for some converges almost surely (a.s.) to a deter-
ministic vector , e.g., the vector of parameters that the
system wishes to estimate. In many scenarios, it is of interest
to determine at what rate this convergence occurs. To explain
why this is important, suppose that we wish to determine up
to a certain accuracy defined by the accuracy region ,
where . Let denote the time interval after which
belongs to with a prescribed, high probability, say 0.97. For
convenience, define also the complement of ,
usually called the deviation set. Since converges a.s. to

we know that the probability that remains outside of
, vanishes as . The question that we

ask then is how fast this probability vanishes with time. It turns
out that in many scenarios this convergence is exponential (see
[13] for the scalar, case). That is:

(4)

for a certain function , where, we recall, means that the
two functions agree to first order in the exponent. Function

is usually called the rate function. Relating
with time , we see that can be approximately computed as

(5)

The quality of the approximation in (5) improves for higher ac-
curacies (i.e., smaller region around ). In the context of,
e.g., Neyman-Pearson hypothesis testing, rates directly corre-
spond to error exponents: taking, for example to be the false
alarm region under gives the error exponent
of the false alarm probability at sensor . The problem that we
address in this paper is finding the rate functions :

(6)

whenever the limit above exists for any set . For
further details on the use of large deviations rate functions in
probabilistic inference, we refer the reader to [24]–[26].

III. PRELIMINARIES

Before we start our analysis, we first review in
Subsection III.A basic large deviations concepts and tools.
Subsection III.B then describes the large deviations perfor-
mance of an isolated agent and a fusion node.

A. Large Deviations Preliminaries

We define the large deviations principle and introduce, for
each , the logarithmic moment generating function of observa-
tions . We then define the conjugate of a function and state
some important properties of log-moment generating functions
and their conjugates in general, and in our particular setup as
well.
Large Deviations Principle: A rate function is any function

that is lower semi-continuous, or equivalently, that has closed
sublevel sets. A sequence of random variables is said
to satisfy the large deviations principle (LDP) with rate function
if for any measurable set it holds that

(7)

Essentially, what the large deviations principle tells is that,
for any (nice enough) set , probabilities that belongs
to decay with exponentially, with the rate equal to

. Key objects in proving the large de-
viations principle and computing the rate function in general
(see Cramér’s and Gärtner-Ellis theorem [27], [28]) are the
log-moment generating function and its conjugate, which we
introduce next.
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Log-Moment Generating Function of Observations : The
log-moment generating function corre-
sponding to is given by:

(8)

For the special case when all the agents’ observations are iden-
tically distributed, we let denote the corresponding log-mo-
ment generating function, , for any .
The second key object of interest in our analysis is the conju-

gate of a log-moment generating function. Let be the log-mo-
ment generating function of a -dimensional random vector .
Then, the conjugate, or the Fenchel-Legendre transform, of is
given by

(9)

When are i.i.d., we will denote by the conjugate of .
We next give the Gärtner-Ellis theorem [28]3, which shows the
relevance of the conjugate of a log-moment generating function
for characterizing the large deviations performance. We will use
this result in the next section, when considering the case of de-
terministic matrices.
Gärtner-Ellis Theorem: Let , be a

sequence of random vectors in , and, for each , let
denote the scaled log-moment generating function of

. If, for each , the
following limit exists:

(10)

and, additionally, , then the sequence satisfies the
large deviations principle with the rate function , where is
the conjugate of .
Example 1 (Gaussian Observations): It can be shown

by simple algebraic manipulations that when is i.i.d.,
Gaussian, with mean value and covariance matrix , the
log-moment generating function and its conjugate are both
quadratic and given, respectively, by [28]:

To simplify our analysis, we make the following assumption.
Assumption 2: , i.e., for all ,

for each .
Assumption 2 holds for arbitrary Gaussian and discrete

random vectors, and also for many other commonly used dis-
tributions; we refer the reader to [13] for examples of random
vectors beyond the ones mentioned here that have a finite
log-moment generating function.
Properties of Log-Moment Generating Functions and Their

Conjugates: For future reference, we list the properties that an
arbitrary log-moment generating function and its conjugate
satisfy; proofs can be found in [29, p. 8] and [28, p. 27, 35].

3Note that we use here the variant of the Gärtner-Ellis theorem that asserts
the full LDP under the additional assumption that the limit function, see (10), is
finite on the whole space; see Exercise 2.3.20 in [28].

Lemma 1 (Properties of a Log-Moment Generating Function
and Its Conjugate): Consider the log-moment generating func-
tion and its conjugate , associated with an arbitrary -dimen-
sional random vector . Let . Then:
1) function satisfies:

a) and , when ;
b) is lower semi-continuous and convex;
c) is on ;

2) and function satisfies:
a) is nonnegative and ;
b) is lower semi-continuous and convex;
c) if , then has compact level sets.
d) is differentiable on .

We end this subsection by stating a simple but important prop-
erty of the log-moment generating function that follows from
its convexity and zero value at the origin. We note that the
right-hand side of inequality (11) was previously proven in [13]
(for the case ).
Lemma 2: Let be an arbitrary log-moment generating func-

tion. For any and ,

(11)

Proof: We first prove the right-hand side inequality in (11).
(The proof is analogous to the proof of the same inequality for
the special case [13]; for completeness, we provide the
proof here.) Fix . Then, by convexity of and the fact
that , we have

Now, fix an arbitrary . Applying the preceding in-
equality for , for , yields the claim by sum-
ming out the resulting left and right hand sides.
To prove the left hand side inequality in (11), consider the

function , for .
We prove the claim if we show that the minimum of over the
unit simplex is attained at

. Since is convex (being the sum of convex func-
tions), it suffices to show that there exists a Lagrange multi-
plier such that the pair satisfies the Karush-
Kuhn-Tucker (KKT) conditions [30]. To this end, define the
Lagrangian , for some

. We have

Taking and , proves the claim.

B. Setting the Benchmarks: Isolation and Fusion
To set benchmarks for the performance of distributed in-

ference (2), we consider two extreme cases of the agents’
cooperation: 1) complete agent’s isolation, when an agent
operates alone, making inferences based on its own obser-
vations only; and 2) network-wide fusion, when each agent
has access to all of the observations. Mathematically, the
state of agent corresponding to these two cases are as
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follows: , for , for the case
of isolated agents (obtained when in (3) ), and

, for the case of fusion center
(obtained when ). In Example 2 we compute the cor-
responding large deviation rates, and we also show that, when
the observations are i.i.d., the fusion-based rate scales linearly
(with constant one) with the number of participating agents.
Example 2: Suppose that are i.i.d. for all and , and

recall that denotes the conjugate of the log moment generating
function of . Then,
1) for each , the sequence satisfies the LDP with rate

function ;
2) the sequence satisfies the LDP with rate function

.
We remark that both results follow as direct applications

of Cramér’s theorem [27], [28, p. 36], where to prove part
(1) for any given node one uses the sequence of i.i.d.
variables , and to prove part (2) the sequence of i.i.d.
variables . Also, clearly, with both the isolated
nodes and the fusion center cases, the corresponding states

, and converge a.s. to ,
which follows as a direct application of the strong law of large
numbers.
Example 2 asserts that the rate function of any isolated agent
is , where is the conjugate of the log-moment gener-
ating function of its observation, whereas the rate function of the
network-wide fusion is times higher, . Intuitively,
for the general case of algorithm (2), we expect that the rate
function of a fixed agent should be between these two func-
tions, and . It turns out that this is indeed the case—Corol-
lary 1 proves this for deterministic matrices, and Theorem 2 later
in Section VI confirms that this is true even for arbitrary (asym-
metric) random matrices.

IV. RATE FUNCTIONS FOR DETERMINISTIC
WEIGHT MATRICES

This section considers deterministic weight matrices. The
first result that we present, Theorem 1, computes the rate
functions for the case when the weight matrices at all times
are equal to a stochastic matrix such that . (This
means that the underlying network has only one initial class4,
e.g., [33], [32].) We then focus on the special case when all
observations are Gaussian (with possibly different parameters
across agents), and we calculate the rate functions in closed
form. Further, we formulate the problem of optimal network
design and show that it can be efficiently solved by an SDP
when the observations are Gaussian.
Theorem 1: Let for each and let Assumptions

1 and 2 hold. Suppose that and let denote the
left Perron vector of whose entries sum to one5. Then, for

4An initial class of a directed graph is any communication class of that
has no incoming edges [31]. We also note that initial classes of correspond
to essential classes of the transpose of (the graph that results from reversing
the directions of edges in [32]).

5Note that since is stochastic—hence non-negative, its left eigenvector cor-
responding to the maximal (unit) eigenvalue—the Perron vector, must have all
entries non-negative [34].

each satisfies the LDP with the rate function
, where is the conjugate of

Moreover, for each converges a.s. to .
Proof: We prove the first part of the theorem by applying

the Gärtner-Ellis theorem [28]. Fix and let
, for . In order to apply the Gärtner-Ellis

theorem (see Section III), one needs to verify that the following
condition is fulfilled: for every , the sequence

has a limit in . Using that are independent and that
are constant, we obtain

(12)

From we have that as ,
where is the left Perron vector of that satisfies and

(e.g., Theorem 8.5.1 in [34]). Hence, for any , we have
that . Consider now a fixed . Then, by continuity
of , and hence the Cesàro averages
must converge to the same number:

Going back to (12) and taking the limit yields
. Since, by Assumption 2,

, conditions for applying the Gärtner-Ellis theorem
are fulfilled, and we have that, for each satisfies the
large deviations principle with the rate function equal to the
conjugate of .
The proof of the almost sure convergence is given in the

Appendix.
Let denote the induced graph of , i.e., where

, e.g., [35].
Corollary 1: When are i.i.d. (identical agents), it holds

(13)

where is the conjugate of an agent’s log-moment generating
function and the inequalities in (13) hold in the point-
wise sense. Moreover, the lower bound in (13) is attained when-
ever there exists a “leader” agent that satisfies and for
any there is a (directed) path from to in the induced graph
of . The upper bound is attained when is doubly stochastic
with positive diagonals and the induced graph of is strongly
connected.
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The proof of Corollary 1 is given in an extended arxiv version
of this paper [36].
Rate for Gaussian Observations: Of special interest is the

case when observations are all Gaussian. For this case,
Lemma 3 gives a closed form expression for the rate function .
The proof follows by simple algebraic manipulations, and hence
we omit it.
Lemma 3: Suppose that , for , where
, for each , is a positive definite matrix. Function from

Theorem 1 is then given by

(14)

where and . In particular,
when and , where

is the nodes’ individual rate function given in Example 1.
Remark 1: It is possible to determine analytically even

when matrices , and vector are such that
is not invertible. It can be shown that the expression for for

this case is:

V. NETWORK DESIGN

In this section, we focus on the dependence of the
distributed inference rate function on weight matrix .
Subsection V.A considers optimization and performance limits
as regards the weight matrix in time-asymptotic regimes.
Subsection V.B discusses practical, finite time regimes and
provides ways on how in principle one optimizes , while
efficient, tractable heuristics are presented in Section VII.

A. Asymptotic Regime
From Theorem 1 and Corollary 1, we can see that the large

deviations (asymptotic) performance (in the sense of (6)) of al-
gorithm (2) critically depends on the choice of the weight matrix
, where the dependence is only through the left Perron eigen-

vector . We therefore pose the problem of optimizing , for a
fixed desired accuracy region , such that the value of the cor-
responding large deviation rate is maximized:

(15)

Here, is the rate function from Theorem 1. Note that opti-
mization vector in (15) must be constrained to belong to the
simplex due to the fact that, for a given stochastic matrix , the
corresponding rate function is defined by the left Perron vector
of , which is non-negative, and whose entries sum to one. We
denote by and , respectively, an optimal solution and the
optimal value of problem (15).
Remark 2: In general, there is no guarantee that is achiev-

able for a given topology . In that sense, the optimal value of
(15) is only an upper bound on the achievable large deviations
performance. However, as we show in Section VII, the knowl-
edge of can be instrumental in deriving efficient heuris-
tics for optimizing the weight matrix under given topology
constraints.

For networks of small to moderate sizes and generic (non-
Gaussian) sensor observations, optimization problem (15) can
be in principle solved by brute force (grid search). We exploit
here the analytical expression (14) for the rate function from
Lemma 3, to show that, for Gaussian observations, problem
(15) can be solved efficiently. We assume that all nodes are ob-
serving the same set of physical quantities ,
embedded in local sensor noises. Hence, the observations
have the same expected value across all nodes.
We show in Lemma 4 that, when is a ball, (15) can be formu-
lated as an SDP (a convex problem). The proof of this result is
given in an extended arxiv version of this paper [36].
Lemma 4: Consider the setup of Lemma 3 when .

When the confidence set is an Euclidean ball of some arbitrary
radius centered at , the optimal solution of (15)
is obtained by solving:

(16)

where is a block diagonal matrix given by
, and ,

where repeats times. Furthermore, , where
is the optimum of (16).
Remark 3: Although problem (15) involves the expected

value of the observations (which we do not know), it is clear
from the equivalent reformulation (16) that, under the stated
assumption, the knowledge of is not needed for discovering
the optimal in (15). We also remark that, under the same
assumptions, the solution of (15) does not depend on the
particular accuracy : once (16) is solved, the same vector
applies for all .
Remark 4: When the observations are one-dimensional
, it can be shown that the SDP in (16) reduces to a quadratic

program (QP).

B. Finite Time Regime Considerations
We now examine more closely the practical, finite time

regime. This will also present certain aspects of the perfor-
mance of distributed inference (2) (in the sense of probabilities
of the form (4)) that are not captured by the large deviations
rates. To this end, pick an arbitrary node and represent its
error probability in the following form:

(17)

By Theorem 1 it holds that:

(18)

and . Note that, even though is
equal across nodes (i.e., all nodes have equal asymptotic per-
formance), quantities and may be different across
different nodes; therefore, finite time performance of different
nodes may be different, as confirmed in subsequent simulations.
Naturally, finite time performance (and hence, the effects of
and ) is to a large extent determined by how fast the
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weight matrix approaches its asymptotic limit . This is
in turn determined by the modulus of the second largest eigen-
value of : the smaller is, the faster this convergence is.
Therefore, besides optimizing rate , one also wants tomake

small. This yields the following optimization problem:

(19)

Here, the optimization variable is the matrix and
, a function of , is its left Perron eigenvector. Fur-

ther, is the set of
matrices with a given sparsity pattern dictated by the network
topology, and is the weight that balances the trade-off
between the two objectives in (19). Problem (19) is very diffi-
cult to solve optimally (e.g., is not a convex function,
and also the problem involves simultaneous optimization of ma-
trix and its left eigenvector ). In Section VII, we present a
convex programming alternative to (19), whose efficiency we
demonstrate by simulations.

VI. UNIVERSAL BOUNDS ON THE RATE FUNCTIONS FOR
GENERAL, RANDOM WEIGHT MATRICES

We have seen in the previous section (Corollary 1) that, when
the weight matrices are deterministic and constant, the states
exhibit a very interesting and fundamental property: their large
deviation probabilities have rates that are always
lower than the corresponding rate of the fusion center, and al-
ways higher than the corresponding rate of a node working in
isolation. Theorem 2 that we present next asserts that this prop-
erty in fact holds, not only for deterministic, but for arbitrary
sequences of random weight matrices.
Theorem 2: Consider the distributed inference algorithm

(2) under Assumptions 1 and 2, when are i.i.d. (identical
agents). For any measurable set , for each :

(20)

(21)

Theorem 2 asserts that, no matter how we design the agents’
interactions (represented by the weight matrices), in terms of
large deviations performance, algorithm (2) can never be worse
than when a node is working in isolation, but it also can never
beat the fusion center. This result is important as it provides
fundamental bounds for large deviations performance of any
algorithm of the form (2) that satisfies Assumptions 1 and 2
and processes i.i.d. observations. In the next two subsections
we state our proofs of Theorem 2.

A. Proof of the Upper Bound
Fix an arbitrary . To prove (21) for node , it suffices to

show that, for any closed set ,

(22)

To see why this is true, note that, for an arbitrary measurable set
, there holds . Applying (22) to

the closed set yields (21).
The proof of (22) consists of the following three steps.
Step 1: We use the exponential Markov inequality, together

with conditioning on the matrices , to show that, for
any measurable set ,

(23)

Step 2: In the second step, we show that (23) is a sufficient
condition for (22) to hold for all compact sets . Lemma 5 for-
malizes this statement.
Lemma 5: Suppose that (23) holds for any measurable set

. Then the inequality (22) holds for all compact sets .
The proof of Lemma 5 uses the standard “finite cover” argu-

ment: for a compact set , a finite number of balls forming a
cover of is constructed, and then (23) is applied to each of the
balls. The details of this derivation are given in Appendix A of
an extended arxiv version of this paper [36].
Step 3: So far, Steps 1 and 2 together imply that (22) holds for

all compact sets. To extend (22) to all closed sets , by a well
known result from large deviations theory, Lemma 1.2.18 from
[28], it suffices to show that the sequence of measures

is exponentially
tight. We prove this by considering the family of compact sets

, with increasing to infinity. The result is given
in Lemma 6, and the proof can be found in Appendix B of an
extended arxiv version of this paper [36].
Lemma 6: For every ,

(24)

Hence, the sequence is exponentially tight.
We now provide the details of Step 1.
Step 1. The proof of (23) is based on two key arguments:

exponential Markov inequality [37] and the right hand side in-
equality of Lemma 2. For any measurable set and any

, by the exponential Markov inequality, we have

(25)

which, after computing the expectation, yields

(26)

We now focus on the right hand side of (26). Conditioning on
, the summands in (3) become independent, and

using the fact that the ’s are i.i.d. with the same log-moment
generating function , we obtain

(27)

Applying now the right-hand side inequality from Lemma 2 to
for each fixed (note that, for a fixed

), it follows that the
conditional expectation above is upper bounded by , i.e.,

(28)
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for any . Since in (28) were arbitrary, taking
the expectation, we get . Combining this
with (26), we finally obtain

(29)

B. Proof of the Lower Bound
We prove (20) following the general lines of the proof of

the Gärtner-Ellis theorem lower bound, see [28]. However, as
we will see later in this proof, we encounter several difficul-
ties along the way that force us to depart from the standard
Gärtner-Ellis method and use finer arguments. The main reason
for this is that, in contrast with the setup of the Gärtner-Ellis
theorem, the sequence of the (scaled) log-moment generating
functions of (see ahead (31)) need not have a limit. Never-
theless, with the help of Lemma 2, wewill be able to “sandwich”
each member of this sequence between and .
This is the key ingredient that allows us to derive (20). The proof
is organized in the following four steps.
Step 1: In this step, we derive a sufficient condition, given in

Lemma 7, for (20) to hold. Namely, to prove (20) for a given set
, it suffices to confine to a smaller region within
, and show that, conditioned on any realization of the matrices

, the rate of this event is at most . This impli-
cation is proven by applying Fatou’s lemma [37] to the sequence
of random variables ,
and then combining the obtained result with the simple fact that,
for every and all sufficiently small, . The
proof is given in the Appendix. We remark that the sufficient
condition (30) below is with respect to all possible realizations
of sequences of random matrices (i.e., for all pos-
sible ).
Lemma 7: If for every and ,

(30)

then (20) holds for all measurable sets .
Step 2: To prove (30), we introduce the scaled log-mo-

ment generating function of , under the conditioning on
,

(31)

It can be shown (similarly as in Step 1 of the proof of the upper
bound) that, for any ,

(32)

where, we recall, . Note that is convex
and differentiable. However, is not necessarily 1-coercive6,
which is needed to show (30) for all points7 . To over-
come this, we introduce a small Gaussian noise to the states

6A function is 1-coercive if , e.g.,
[38]. A notable property of 1-coercive functions, which we exploit in this paper,
is that their conjugates are finite at all points.

7More precisely, the problem arises when is not an exposed point of the
conjugate of , as will be clear from later parts of the proof (see also Exer-
cise 2.3.20 in [28]).

and define, for each , where has the
standard multivariate Gaussian distribution , and, we
assume, is independent of and , for all and (hence,
is independent of , for all ). The parameter con-

trols the magnitude of the noise, and the factor adjusts the
noise variance to the same level of the variance of .
For each fixed , let denote the log-moment gener-

ating function associated with the corresponding , under the
conditioning on . It can be shown, using the inde-
pendence of and , that

(33)

Hence, the noise adds a (strictly) quadratic function to , thus
making 1-coercive, as proved in the following lemma.
Lemma 8 gives the properties of that we use in the sequel;
the proof is given in the Appendix.
Lemma 8:
1) Function is strictly convex, differentiable, and 1-co-

ercive. Thus, for any , there exists such
that .

2) Let . For any , the corresponding sequence
, is uniformly bounded, i.e.,

(34)

Using the results of Lemma 8, we prove in Step 3 the coun-
terpart of (30) for the sequence —(35), and in Step 4 we
complete the proof of (20) by showing that (30) (a sufficient
condition for (20)) is implied by (35).
Step 3: We show that, for any fixed , and
,

(35)

where is the conditional probability measure induced by
.

To this end, fix arbitrary and
. We prove (35) by the change of measure argument. For

any , we use the point from Lemma 8 to change the
measure on from to by:

(36)

Note that, in contrast with the standard method of Gärtner-Ellis
Theoremwhere the change of measure is fixed (once is given),
here we have a different change of measure8’9 for each . Ex-
pressing the probability through , for each ,
we get:

(37)

8The reason for this alteration of the standard method is the fact that our se-
quence of functions does not have a limit.

9It can be shown that all distributions , have the same expected
value ; we do not pursue this result here, as it is not crucial for our goals.
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We analyze separately each of the terms in (37). First, since
is uniformly bounded, by Lemma 8, we immediately obtain that
the third term vanishes:

(38)

We consider next the sum of the first two terms. Let denote
the conjugate of . By Lemma 8, we have that is the
maximizer of . Thus, the sum of the first
two terms in (37) equals . Further,
starting from the fact that and then invoking Lemma
2 (lower bound), we obtain:

(39)

which holds for all and all . Comparing with (35),
we see that it only remains to show that the lim inf as
of the last term in (37) vanishes with .
It is easy to show that the log-moment generating function

associated with is . Let
denote the conjugate of . Similarly as in the proof of

the upper bound in Section VI.A, it can be shown that

(40)

The next lemma asserts that the right-hand side of (40) is strictly
negative10, and uniformly bounded away from zero. The proof
is given in the Appendix.
Lemma 9: For any , there exists a minimizer

of the optimization problem . Furthermore,
there exists such that

(41)

Combining (40) and (41), we get

which, together with the fact that is a probability measure
(and hence ), yields

(42)

Since (42) holds for all , we conclude that the last term
in (37) vanishes after the appropriate limits have been taken.
Summarizing (38), (39), and (42) finally proves (35).
Step 4: To complete the proof of (20), it only remains to show

that (35) implies (30). Since , we have

(43)

10In the proof of the lower bound of the Gärtner-Ellis theorem, the sequence
(our ) has a limit , and, because of this, it is sufficient to show that

is strictly negative, where is the conjugate of . Here, since
we do not have the limit of the ’s, we need to prove that the latter holds
for each function of the sequence , and, moreover, that the strict
negativity does not “fade out” with .

From (35), the rate for the probability of the first term in (43) is
at most . On the other hand, the probability that the norm
of is greater than decays exponentially with at the
rate ,

(44)

Observe now that, for any fixed , for all large enough so that
, the exponential decay of the difference in (43)

is determined by the rate of the first term, . This finally
establishes (30), which combined with Lemma 7 proves (20).

VII. SIMULATION RESULTS
This section presents our simulation results for the perfor-

mance of algorithm (2) for both deterministic and random
weight matrices. In the deterministic case, we present two
solutions for designing the weight matrix , one that builds on
the optimized left eigenvector (see ahead (45)), and the other
based on a simple heuristic, that uses local information only
(see ahead (46)). Simulations show that both the optimized
system based on the knowledge of and the heuristic solution
significantly outperform the system with the uniform left Perron
vector, that, asymptotically, weighs equally all the observa-
tions. When the number of estimated parameters increases,
the optimized system outperforms both the heuristic and the
uniform solution, hence proving the benefit of network design.
We then consider randomly time-varying weight matrices and
verify by simulations Theorem 2 for the following cases: 1)
are i.i.d. in time, with i.i.d. link failures; and 2) link failures of
each link in the network, independently from other links, are
governed by a Markov chain.
Simulation Setup: The number of nodes is . We

form the communication graph by placing the nodes uniformly
at random in a unit square and forming the links between the
node pairs that lie within distance . The resulting graph

used in simulations is connected and also contains
all the self-loops. For both deterministic and random cases, ob-
servations are Gaussian, with equal expected values across
all nodes. In the deterministic case, we consider and

. When , the expected value (equal at
all nodes) is chosen uniformly at random from the in-
terval, whereas the variances , are different
across the nodes and are chosen uniformly at random, inde-
pendently from each other, from . When , each of
the nodes has the same vector of expected values ,
with the components chosen uniformly at random from ,
and independently from each other. The covariance matrices

, are generated as follows: 1) for each , we
generate from the standard Gaussian distribution a 3 by 3 ma-
trix , form , and compute the matrix of
eigenvectors of ; 2) we then assign . In the
random case, we only consider the case of i.i.d. one-dimensional
observations, where the mean value is and the variance is
chosen uniformly at random from .
In the case of one-dimensional observations, since all the

nodes were assigned the same expected value and because
the left Perron vector of from Theorem 1 belongs to the
simplex, it must be that . By Theorem 1, we therefore
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obtain that all the states converge almost surely to . The
accuracy region that we target is , where
we set . In the case when , it can similarly be
shown by Theorem 1 that all the states converge to vector

, and the accuracy region that we tested in this case is
(with the same as with ).

A. Network Design for the Deterministic Case
In this section, we consider the problem of designing the (con-

stant) weight matrix . We present two heuristic design choices
for the weight matrix , and we show by simulations that they
both perform well in practice.
Tuning to : We now present an optimization method

for selecting matrix in the Gaussian case, given the optimal
Perron vector (obtained, e.g., by solving (16)). This method
is, in a certain sense, a tractable substitute of (19). The method
consists of the following: under the given communication con-
straints, we optimize such that we force its left Perron vector
to be as close as possible to the optimal Perron vector and,
at the same time, achieve that the powers of converge quickly.
Motivated by this idea, we formulate the following optimization
problem for finding :

(45)

Here,

and is a large penalty param-
eter (e.g., ); and is a small constant (e.g.,

). The second summand in the objective func-
tion of (45) forces to tune its left Perron vector to ; the first
term in the objective function is a tractable heuristic replace-
ment for the non-convex function from (19), which one
would ideally wish to optimize in order to achieve the fastest
mixing of . Finally, for any and a strongly connected
topology , the constraint ensures that any solution
of (45) has the second largest eigenvalue strictly smaller than
1 in modulus. For the simulation results shown in Fig. 2, we
solved (16) and (45) via CVX [39], [40], where in (45) we used

and . We remark that, due to the quadratic in-
crease of complexity of (45) in , for larger networks one might
need to consider more scalable solutions than CVX, such as pro-
jected subgradient methods or alternating direction method of
multipliers (ADMM), in order to solve (45).
Heuristic Based on Sensors’ Relative Variances: To address

the design of when the dimension of the network is very
large, such that solving (16) and (45) is impractical, we pro-
vide a simple but efficient heuristic. The heuristic is based on
the sensor variances of the node’s local neighborhoods. In par-
ticular, the heuristic solution is achieved by the fol-
lowing weight assignment:

(46)

That is, for each pair of nodes such that can receive mes-
sages from , the corresponding weight is set to be the rel-

Fig. 2. Estimated error probabilities vs. number of iterations , for each ,
for the deterministic model. Green dashed lines correspond to ; red dotted
lines to ; and blue full lines to . Top: . Bottom: .

ative inverse of the trace of the covariance matrix of node ,
where the scaling is taken with respect to the neighborhood of
, and takes value 0 otherwise.
Fastest Averaging With Uniform Perron Vector: For the pur-

pose of comparison, we present a solution where we seek the
fastest possible averaging as in (45), but now with replaced
by —the vector which is oblivious to the dif-
ferences in the distributions (i.e., qualities) of different sensors.
We denote the corresponding solution by .
We compare the performance of distributed inference algo-

rithm (2) running with, respectively, , and . For
the case , at each node and each time , we estimate
the probability of error , by Monte Carlo simulations: we
count the number of times that the state of node at time ,
falls outside of the accuracy region ,
and then we divide this number by the number of simulation
runs .
Similarly, in the case , we estimate the error probabili-
ties by , where we used

.
The plots in Fig. 2 show the evolution of the error probability

over iterations, in the log-scale (we take the natural logarithm),
for each node . The top figure corresponds to the described
setup for , and the bottom figure to the described setup
for . In both plots, green dashed lines correspond to ,
dotted red lines correspond to , while blue full lines corre-
spond to . We can see from Fig. 2 (top) that for each of
the three systems, , and , the curves at all nodes
have the same slope, equal to the value of the corresponding rate
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function over the set . For the same weight matrix, the vertical
shift in different curves (that correspond to different nodes) is
due to the difference in the observations parameters (intuitively,
nodes with higher variances need more time to filter out the
noise—and thus their error probability curves are shifted up-
wards), and the placement in the network (nodes with more cen-
tral location in the network converge faster). We can see that
the system with matrix achieves much higher large devia-
tions rate than the onewith the uniform eigenvector, as predicted
by our theory. For example, for the target error probability of

, the optimized system needs around 140 iterations
on average (across nodes), while the system with the uniform
vector requires almost as twice as much iterations for the same
accuracy. The reason for this behavior is quite intuitive: opti-
mizing the vector corresponds to choosing different weights
for different sensors depending on their local variances (i.e., co-
variance matrices, when ). What is also interesting is that
the system with the heuristic matrix , obtained through the
simple, local variances based rule, performs almost as equally
well as the system with the optimized matrix , which re-
quires optimization at the network scale. We also report that,
in certain cases, the heuristic even beats the optimized system
in the finite regime. This happens when the left Perron vector
of is close to and has faster convergence than

(smaller second in modulus eigenvalue). However, when
we move to higher dimensions, the difference between the op-
timized system and the heuristic one starts to show, as can be
seen from Fig. 2 (bottom), which shows the simulation results
for . This is to be expected, as the heuristic cannot “see”
(and thus account for) the correlations in the observations of dif-
ferent parameters.

B. Random Weight Matrices
This subsection considers random weight matrices for

two cases: i.i.d. link failures and Markov chain link failures.
With the i.i.d. model, each directed link can fail
with probability at any given time ; this occurs inde-
pendently from other link failures and independently from past
times. With the Markov chain model, each link be-
haves as a Markov chain, independent from the Markov chains
of other links, such that with probability the link stays online,
if it was online in the previous time slot, and with probability
stays offline. (For example, if at time a link is online, then at
time this link stays online with probability and fails with
probability ).With both i.i.d. and theMarkov chain model,
the weight matrix at time equals , where is
the Laplacian of the (directed) topology realization at time

, and is the maximal degree in .
The top and the bottom plot in Fig. 3 show the estimated error

probabilities versus the number of iterations for both the i.i.d.
and the Markov chain model, for two different sets of parame-
ters: (top) and

(bottom). The error probability curves shown are computed
by Monte Carlo, similarly as in the deterministic case,
based on Monte Carlo runs. Both simula-
tions are obtained for the same value of accuracy , and
one-dimensional Gaussian observations with parameters and

chosen uniformly at random from the interval. The re-

Fig. 3. Estimated error probabilities vs. number of iterations , for each
, for the random model. Dashed curves correspond to the i.i.d. model, dotted
curves to the Markov chain model, and full curves to an isolated node (upper)
and the fusion center (lower). Top: . Bottom:

.

sults for the i.i.d. model are plotted in dashed lines, while the
results for the Markov chain model are plotted in dotted lines.
For reference, we also plot the estimated error probabilities for
perfect fusion and isolation (full lines), see Section III.B; the
lower curve corresponds to fusion. We can see from the plots
that, under both models, the rate at which the error probability
at each node decays is between the respective decay rates of
the isolated node and the fusion center curves, as predicted by
Theorem 2. We can also see that the agents’ decay rates for
the Markov chain model are faster than the ones for the i.i.d.
model. This is expected since, for both sets of parameters, links
in the i.i.d. model are online less frequently than the links in
the Markov chain model, once the system reaches a stationary
regime. Also, we see that improvements in the system param-
eters (higher , in the i.i.d. model, and higher and lower
in the Markov chain model) significantly affect the large devia-
tions rates: in the bottom plot, the rates at each node got closer
to the optimal, fusion center rate.

VIII. CONCLUSION
We studied large deviations rates for consensus based dis-

tributed inference, for deterministic and random asymmetric
weight matrices. For the deterministic case, we characterized
the corresponding large deviations rate function, and we showed
that it depends on the weight matrix only through its left eigen-
vector that corresponds to its unit eigenvalue. When the ob-
servations are Gaussian (not necessarily identically distributed
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across agents), the rate function has a closed form expression.
Motivated by these insights, we formulate the optimal weight
matrix design problem and show that, in the Gaussian case, it
can be formulated as an SDP and hence efficiently solved.When
the weight matrices are random, we prove that the rate functions
of any node in the network lie between the rate functions corre-
sponding to a fusion node, that processes all observations, and
a node in isolation. The bounds hold for any random model of
weight matrices, with the single condition that the weight ma-
trices are independent from the agents’ observations.

APPENDIX

A. Proof of the Almost Sure Convergence of

We break the sum in (3) according to the limiting values of
the elements of :

(47)

By the strong law of large numbers [37] applied to the sequence
of i.i.d. random vectors , we know that the first
term on the right hand side of (47) converges almost surely to

. Hence, to complete the proof of the claim, it re-
mains to show that the second term of (47) converges almost
surely to 0. We do this by showing that, for every ,

(48)

Fix , and, to ease the exposition, denote
. Note that, since and , there holds that

, for any . Recalling that
, it can be shown that there exists

and a constant such that, for all such that
:

(49)

(see, e.g., Corollary 5.6.13 in [34]). Having (49), the proof of
(48) follows the standard path. By Chebyshev’s inequality [37],
for arbitrary , the following holds:

(50)

where , and . Using part 1c
of Lemma 1 together with Assumption 2, yields that both
the expected value and the covariance matrix

are finite—hence, and are

finite (and also non-negative). Considering separately the sums
in the left and the right hand side of (50), and applying (49) to
each of the terms , we obtain:

(51)

(52)

which when combined in (50) yields

(53)

From (53) we obtain that, for any fixed
. This by the Borel-Cantelli

lemma [37] implies , finally
proving (48). Since was arbitrary, this completes the proof of
almost sure convergence of the ’s.

B. Proof of Lemma 7

Fix a measurable set . We first show that if (30) holds for
any and any , then for any

(54)

To this end, fix and fix .
Applying Fatou’s lemma [37] to the sequence of random vari-

ables , we
get

(55)

where . Consider the
left-hand side of (55). By linearity of the expectation and con-
cavity of the logarithmic function, we have

Taking the lim inf as on both sides of the preceding
inequality and combining the result with (55), yields:

(56)

We now focus on the random variable . Note that we assumed
that is nonempty (if the interior of is empty, the lower
bound (20) holds trivially). Since is open, for any ,
we can find a small neighborhood that is fully contained
in (where, we note, ). Hence, for all , we
have , and thus, for any fixed

(57)
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(we used here that the logarithmic function is non-decreasing).
Since (57) holds for all and all sufficiently small, taking the
corresponding limits yields

Using now the assumption (30) of the lemma to bound
the right-hand side of the preceding inequality, we obtain

, which, we note, holds for every point in .
Taking the supremum over all , we obtain that for every

,

(58)

Taking the expectation in the left-hand side, and combining with
(56), we finally obtain the lower bound (20):

Since was arbitrary, the claim of Lemma 7 is proven.

C. Proof of Lemma 8
Being the sum of and a (convex) quadratic function,

inherits convexity and differentiability from is strictly
convex due to strict convexity of . To prove 1-coer-
civity, by convexity of , we have that . Hence,

Dividing both sides by and using in the right hand side that
, we obtain

when proving that is 1-coercive. Strict con-
vexity, differentiability, and 1-coercivity of imply that the
gradient map is a bijection, see, e.g., Corollary 4.1.3 in
[38, p. 239]. This proves part 1.
We now prove part 2. Fix and fix . Note that is the

maximizer in , and thus it
holds that . Since is convex (and
differentiable), its gradient map is monotone. Hence,

(59)

We next show that the value of the gradient of at 0 equals .
From (32), we have

(60)

The gradient of at equals , see Lemma 1. Using the
fact that, for each fixed , we obtain that

. Thus, from (59) we have

(61)

Now, note from (33) that , for
arbitrary . Using now the fact , (61) implies

. Thus, , and
using further the fact that proves the
claim of the lemma for this fixed . Since was arbitrary, the
proof of the lemma is complete.

D. Proof of Lemma 9
From the fact that , one can show that

has compact level sets (note that is lower
semi-continuous). Thus, the infimum in (40) has a solution.
Denote this solution by and let denote a point for which

(such a point exists by
Lemma 8). We now show that is uniformly bounded for
all , which, combined with part 2 of Lemma 8, in turn implies
that is uniformly bounded.
Lemma 10: For any fixed and , there exists

such that for all :
1) , and
2) .
Proof: Fix . Define

as:
for . Note that both

are lower semi-continuous, finite for every , and have
compact level sets. Let , and de-
fine .
Fix arbitrary . One can show, with the help of Lemma

2, that, for any ,

(62)

Observe now that
. On the other hand, taking in (62)

, yields , and it thus follows that
belongs to .
Finally, as is compact, we can find a ball of some radius

that covers , implying .
Since was arbitrary, the claim in part 1 follows.
We now prove part 2. Recall that, for any and

satisfy . Applying part 2 of Lemma 8
for , we have that . Combining
this with part 1 of this lemma yields

This completes the proof of part 2 and the proof of Lemma 10.

Fix and and define
, where is the constant that verifies Lemma 10. Fix

now and recall that , and are chosen such that
, and

. By part 2 of Lemma 8 and part 2 of Lemma
10 we have for and . To prove
Lemma 9, we first show that there exists some positive con-
stant , independent of , such that for all . To this
end, consider the gradient map , and note that

is continuous, and hence uniformly continuous on every
compact set. Note also that ;
that is, points and are uniformly bounded for all .
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Suppose now, for the sake of contradiction, that for some se-
quence of times , as .
Then, , and hence, by the uniform con-
tinuity of on we have

Recalling that , yields

This contradicts with the fact that, for all .
Thus, we proved the existence of independent of such that

, for all .
Now, let

and introduce ,

(63)

By strict convexity of , we see that, for any and
, the value is strictly positive. Further, note that since

and are continuous, function is also continuous.
Consider now

(64)

Because is compact, by the Weierstrass theorem, the problem
in (64) has a solution, that is, there exists , such that

. Finally, because is strictly positive at each point
in (note that in ), we conclude that .
Returning to the claim of Lemma 9, by Lemma 10,
belongs to , and, thus,

This completes the proof of Lemma 9.
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