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Abstract—We find the exact rate for convergence in probability
of products of independent, identically distributed symmetric, sto-
chastic matrices. It is well-known that if the matrices have positive
diagonals almost surely and the support graph of the mean or ex-
pected value of the random matrices is connected, the products of
the matrices converge almost surely to the average consensus ma-
trix, and thus in probability. In this paper, we show that the conver-
gence in probability is exponentially fast, and we explicitly charac-
terize the exponential rate of this convergence. Our analysis reveals
that the exponential rate of convergence in probability depends
only on the statistics of the support graphs of the randommatrices.
Further, we show how to compute this rate for commonly used
randommodels: gossip and link failure.With thesemodels, the rate
is found by solving a min-cut problem, and hence it is easily com-
putable. Finally, as an illustration, we apply our results to solving
power allocation among networked sensors in a consensus+inno-
vations distributed detection problem.

Index Terms—Consensus, consensus innovations, convergence
in probability, exponential rate, performance analysis, random
network.

I. INTRODUCTION

W E study the convergence in probability of products
of (doubly) stochastic symmetric

matrices . These products arise in many contexts; we
consider a power allocation application in distributed detection
in Section V. When 1) the matrices are independent and
identically distributed (i.i.d.), 2) the support graph of the ex-
pected matrix is connected, and 3) each has positive
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diagonals almost surely, it is well known that these products
converge to the average consensus matrix almost
surely [1], hence in probability. The goal of the current paper
is to study the rate of this convergence in probability—namely,
we establish that this convergence in probability is exponen-
tially fast, and we determine the exact exponential rate of this
convergence.
We explain our problem in intuitive terms. Consider

the static (deterministic) case , for all ,
where is a (doubly) stochastic symmetric matrix with

; let denote the spectral norm. Then
, or, in words, the spectral

norm of the error matrix decays
exponentially fast with exponent . When the ’s are
random i.i.d. matrices, a similar behavior occurs, but now the
role of is taken by the Lyapunov exponent ,
i.e., the path of the norm , be-
haves as [2]–[4]1. But, contrary to the deterministic case,
because the ’s are random, there are paths of the norm

, that decay slower than ,
although with vanishing probability as the size of the product
increases. To be specific, consider an arbitrary and,
for large , the rare event . In this
paper, we consider the probability of such rare events and the
rate at which the sequence of these probabilities vanishes with
; in particular, we show that the following large deviation rate
exists

(1)

and we show how it can be computed in terms of network pa-
rameters and the statistics of the ’s. Actually, we provide a
stronger result on the rate . We show that the same large de-
viation rate holds for the following events. Let ,
be a sequence with a decay rate slower than exponential; e.g.,

, for . Similarly to the case when , con-
sider the rare event . This is a rare
event because . We show that
the large deviation rate at which the probabilities of these rare
events vanish with is the same as the rate in (1). More pre-
cisely, for any sequence ,

(2)

and the rate is the same for any such sequence .

1More precisely, , almost surely.
We also remark that is a constant that depends only on the statistics of the
matrices (and not on the particular choice of the sequence realization

), see also [2].

1053-587X/$31.00 © 2013 IEEE



2558 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 10, MAY 15, 2013

Our results reveal that the large deviation rate is solely a
function of the graphs induced by the matrices and the cor-
responding probabilities of occurrences of these graphs. In gen-
eral, the computation of the rate is a combinatorial problem.
However, for special important cases, we can get particularly
simple expressions. For example, when the matrices are
the weight matrices for gossip consensus on a tree, the rate
is equal to , where is the probability of the
link that is least likely to occur in the gossip protocol.
Another example is with gossip consensus over a regular graph
when in which case we show that the rate equals

, where is the probability that a node
is isolated from the rest of the network and is the degree of a
node. For gossip over more general graph structures, we show
that the rate where is the min-cut value (or
connectivity [5]) of a graph whose links are weighted by the
gossip link probabilities; the higher the connectivity is (the
more costly or, equivalently, less likely it is to disconnect the
graph) the larger the rate and the faster the convergence are.
Similarly, for consensus algorithms running on networks with
link failures on general graphs, the rate is computed by solving
a min-cut problem and is computable in polynomial time.
Review of the literature. There has been a large amount of
work on linear systems driven by stochastic matrices. Early
work includes [6], [7], and the topic received renewed interest
in the past decade [8], [9]. Reference [9] analyzes convergence
of the consensus algorithm under deterministic time-varying
matrices . Reference [10] provides a detailed study of the
standard gossip model that has been further modified, e.g., in
[11], [12]; for a recent survey, see [13]. Reference [1] analyzes
convergence under random matrices , not necessarily sym-
metric, and ergodic—hence not necessarily independent in time.
Reference [14] studies effects of delays, while [15] studies the
impact of quantization. Reference [16] considers random ma-
trices and addresses the issue of the communication com-
plexity of consensus algorithms. The recent [17] surveys con-
sensus and averaging algorithms and provides tight bounds on
the worst case averaging times for deterministic time varying
networks. In contrast with consensus (averaging) algorithms,
consensus innovations algorithms include both a local aver-
aging term (consensus) and an innovation term (measurement)
in the state update process. These algorithms find applications
in distributed inference in sensor networks, see, e.g., [18]–[20]
for distributed estimation, and, e.g., [21]–[23], for distributed
detection. In this paper, we illustrate the usefulness of the large
deviation rate in the context of a consensus+innovations algo-
rithms by allocating the transmission power of sensors for dis-
tributed detection.
Relation with the literature on products of stochastic ma-
trices. Products of random matrices appear also in many other
fields that use techniques drawn from Markov process theory.
Examples include repeated interaction dynamics in quantum
systems [24], inhomogeneousMarkov chains with random tran-
sition matrices [25], [24], infinite horizon control strategies for
Markov chains and non-autonomous linear differential equa-
tions [26], or discrete linear inclusions [27]. These papers are
usually concerned with deriving convergence results on these
products and determining the limiting matrix. Reference [24]

studies the product of matrices belonging to a class of complex
contractionmatrices and characterizes the limitingmatrix by ex-
pressing the product as a sum of a decaying process, which ex-
ponentially converges to zero, and a fluctuating process. Refer-
ence [26] establishes conditions for strong and weak ergodicity
for both forward and backward products of stochastic matrices,
in terms of the limiting points of the matrix sequence. Using
the concept of infinite flow graph, which the authors introduced
in previous work, [25] characterizes the limiting matrix for the
product of stochastic matrices in terms of the topology of the
infinite flow graph. For more structured matrices, [28] studies
products of nonnegative matrices. For nonnegative matrices, a
comprehensive study of the asymptotic behavior of the products
can be found in [29]. A different line of research, closer to our
work, is concerned with the limiting distributions of the prod-
ucts (in the sense of the central limit theorem and large devia-
tions). The classes of matrices studied are: invertible matrices
[30], [31] and its subclass of matrices of determinant equal to 1,
[32], and, also, positivematrices [33]. None of these apply to our
case, as the matrices that we consider are not invertible (
has a zero eigenvalue, for every realization of ) and, also, we
allow the entries of to be zero, and therefore the entries of

might be negative with positive probability. Further-
more, as pointed out in [34], the results obtained in [30]–[32]
do not provide ways to effectively compute the rates of con-
vergence. Reference [34] improves on the existing literature in
that sense by deriving more explicit bounds on the convergence
rates, while showing that, under certain assumptions on the ma-
trices, the convergence rates do not depend on the size of thema-
trices; the result is relevant from the perspective of large scale
dynamical systems, as it shows that, in some sense, more com-
plex systems are not slower than systems of smaller scale, but
again it does not apply to our study.
When studying the products , most of the ex-

isting work, e.g., [10], [35], [36], [3], is concerned with
(standard) consensus or gossip algorithms, and not with the
consensus innovations algorithms. References [10], [36] con-
sider other metrics, e.g., the -averaging time, and .
Further, [3] considers . Note
the difference to (2): [3] considers the rate for the average path
of the product, while we consider the rate of the probability
that the product has a worst-case path, with a sub-exponential
dynamics. We note that, when studying consensus+innovations
distributed detection, the large deviation rate arises as a
natural metric. (See Section V, and Fig. 2, left.) To our best
knowledge, the exact large deviations rate in (2) has not
been computed for i.i.d. averaging matrices , nor for the
commonly used sub-classes of gossip and link failure models.
From existing results, one can deduce upper bounds on ,
but not the exact rate . Consider, e.g., [10] and [36]; [10] is
concerned with computing the -averaging times of gossip; in
[36], as a means of showing the almost sure convergence of
consensus, the authors prove that
decays exponentially fast in . With both [10], [36], the upper
bounds on are derived by an ap-
plication of Markov’s (i.e., Chebyshev’s) inequality (see, e.g.,
(32) in [10] or Theorem 6 in [36]); the latter yields a bound
on based on the second largest (in modulus) eigenvalue of
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or . However, from these bounds, we cannot
see a very particular, distinguishing characteristic of the large
deviation probabilities in (2), that is, the probabilities that the
dynamics of consensus is sub-exponential, that we discover:
in the asymptotic regime, these probabilities depend on the
distribution of matrices only through the distribution of
their support graphs. For example, if each realization of has
a connected underlying support graph (the case studied in [9]),
we calculate the rate to be (see Section III). That
is, if each realization of has a connected graph, then the
convergence of the product cannot be slower than
exponential. On the other hand, the “rate” that would result
from the bound based on is finite unless .
One of our motivations for finding the limits in (2) and (1)

comes from distributed inference in sensor networks, and, in
particular, consensus+innovations distributed detection, e.g.,
[23], [22]. In [23], [22] we discovered that the rate is the key
network parameter that captures the effect of the network on
distributed detection performance. Here we show that the rate
is a useful metric for the design of distributed algorithms by

optimizing the allocation of the sensors’ transmission power in
a sensor network with fading (failing) links in consensus+inno-
vations detection [22], [23].
Paper organization. Section II introduces the model for
random matrices and defines relevant quantities needed in
the sequel. Section III proves the result on the exact exponential
rate of consensus. Section IV shows how to compute the rate
for gossip and link failure models via a min-cut problem.

Section V addresses the power allocation for distributed detec-
tion by maximizing the rate . Finally, Section VI concludes
the paper.
Notation. We denote by or the entry of a matrix .
For , we denote by the set of stochastic symmetric
by matrices; by the set of all undirected graphs on

the set of vertices ; by the identity matrix
of size . For a graph we denote with
the Fiedler value of , i.e., the second smallest eigenvalue
of the Laplacian matrix of ; by the adjacency matrix
of , defined by if belongs to , and

otherwise. denotes the uniform distribu-
tion on the interval [0,1]; denotes the smallest integer not
less than . For a finite set S we denote by the set of all
two-element subsets of ; by the cardinality of .

II. PROBLEM SETUP

Let be a probability space, where is the set of
outcomes, is a sigma algebra on , and is a probability
measure on . Let , be a sequence of
maps that are -measurable, that is, for any

belongs to , for all .
In other words, is a sequence of random matrices on

.
Assumption 1:
1) Random matrices , are independent and identi-
cally distributed (i.i.d.);

2) Diagonal entries of are almost surely positive, i.e., for
each , almost surely for all .

Let denote the product of the matrices that occur from
time until time . Also,
let ; we call the error matrix from
time until time .
To analyze the products , we introduce the induced

graph operator . For , we define
by

(3)

Thus, the set of edges of the induced graph of a matrix encodes
which entries of the matrix are positive.
Sequence of induced graphs. Using the induced graph op-
erator, from the sequence , we derive the sequence
of random graphs by assigning , for

. More precisely, , for , is de-
fined by , for any . Note that, for any

is -measurable, that is, for any ,
the event belongs to .
As the random matrices are independent, it fol-

lows by the disjoint block theorem [37] that the random graphs
are also independent. Furthermore, as are identi-

cally distributed, it follows that, for any , the proba-
bility is the same at all times.
Thus, the sequence is i.i.d., and each is distributed
according to the same probability mass function ,
where

Further, for a collection , let denote the proba-
bility that the induced graph of belongs to , that is,

. Then, . Finally, we collect in the
set all the graphs that occur with positive probability:

(4)

and we call the set of realizable graphs. For example, if
contains a link such that , then ;
similarly, if for some , then all real-
izable graphs must contain this link. The complete graph

is obtained whenever has a joint probability den-
sity function that is strictly positive on . We next give exam-
ples of sequences of random matrices that satisfy Assumption
1 and, for each of the examples, we derive the set of realizable
graphs and compute the distribution of the corresponding in-
duced graphs.
Example 1 (Gossip With Uniformly DistributedWeights): Let

be an arbitrary connected graph on vertices. At
each time a node in is chosen independently from the
previous choices and according to the probability mass function

. The chosen node then randomly
chooses a neighbor in according to the probability mass func-
tion . De-
note the node chosen at time and its chosen neighbor by
and , respectively. With gossip with uniformly distributed
weights, averaging occurs only at the edge that is active at time
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, and with weight equal to the realization of a uni-
formly distributed parameter . Correspondingly,
the weight matrix at time is

. We assume that , are independent random vari-
ables, and, also, that is independent of , for all , im-
plying that the sequence is i.i.d. Also, since
with probability zero, diagonal entries of are almost surely
positive, and we conclude that the sequence of random matrices

constructed in this way satisfies Assumption 1.
By construction, every realization of is of the form

, for some and such
that . Thus, every realization of is of the form: 1)

, when ; or 2) , for . Since
with probability 0, we have that , and, so,

the potential candidates for realizable graphs are only graphs
from the second category. Now, for

and or and ).
Since is independent of and , it follows that

, showing that is a realizable
graph. Summing up, the set of realizable graphs for gossip with
uniformly distributed weights running on is the set of all one-
link subgraphs of

(5)

We remark that the same conclusions would be obtained if the
uniform distribution, which generates , was replaced by an ar-
bitrary distribution satisfying
.
Example 2 (Link Failure Model With Metropolis Weights):

Consider a connected network defined by . We as-
sume that, at any time , only edges in can occur, and,
also, that occurrence of edge at time is modeled as a
Bernoulli random variable , for , where

. We assume that occurrences of edges are indepen-
dent across space and in time. For and ,
let , that is, is the degree of
node at time . The weight matrix at time is chosen by

, for all

and , otherwise. It can

be easily shown that, for every realization of , di-
agonal entries of are positive. Further, since are
independent (in time), and for any for are
identically distributed, it follows that random matrices are
i.i.d. Thus, the sequence satisfies Assumption 1.
For each time , let collect all the edges that are online at

time . Then, by construction of
, for all . Using this fact, for any

such that , we get and
), which by the independence assumption

yields . We conclude that

the set of realizable graphs for the link failure model on is the
set of all subgraphs of :

(6)

Accumulation graph and disconnected collections. For a col-
lection of graphs , we denote by the graph that

contains all edges from all graphs in . That is, is the min-
imal graph (i.e., the graph with the minimal number of edges)
that is a supergraph of every graph in :

(7)

where denotes the set of edges of a graph .
Specifically, for any , we denote by 2 the

random graph that collects the edges from all the graphs that
appeared from time to , i.e.,

and we call the accumulation graph from time until
time .
We next define collections of realizable graphs of certain

types that will be important in computing the rate in (2) and (1).
Definition 3: The collection is a disconnected collec-

tion on if its accumulation graph is disconnected.
Thus, a disconnected collection is any collection of realizable
graphs such that the union of all of its graphs yields a discon-
nected graph. We also define the set of all possible disconnected
collections on :

(8)

Example 4 (Gossip Model): Consider the gossip algorithm
from Example 1 when is the complete graph on vertices.
In this case , that is, is the set
of all possible one-link graphs on vertices. An example of a
disconnected collection of is
where is a fixed vertex, or, in words, the collection of all
one-link graphs except of those whose link is adjacent to .
Another example is

where is a fixed
link.
Example 5 (Toy Example): Suppose that, for some se-

quence of random matrices taking values in , the set
of realizable graphs is , where graphs

are given in Fig. 1. In this model each
realizable graph is a two-link graph and the supergraph
of all the realizable graphs is con-
nected. If we scan over the supergraphs of all sub-
sets of , we see that and

are connected, whereas and
, are disconnected. It follows that

.

III. CONVERGENCE IN PROBABILITY—EXPONENTIAL RATE

This Section states and proves the main result of this paper,
Theorem 6. We prove Theorem 6 by proving the corresponding
large deviation upper and lower bound; the proof of the lower

2Graph is associated with the matrix product going
from time until time . The notation indicates that the product
is backwards; see also the definition of the product matrix after Assump-
tion 1 at the beginning of this section.



BAJOVIĆ et al.: CONSENSUS AND PRODUCTS OF RANDOM STOCHASTIC MATRICES 2561

Fig. 1. Example of a five node network with three possible graph realizations,
each being a two-link graph.

bound is given in Subsection III.A, whereas the proof of the
upper bound is given in Subsection III.B.
Theorem 6: Let be a sequence of real numbers such that

and . Then:

where

and is the probability of the most likely
disconnected collection.
We prove Theorem 6, by proving separately the lower bound (9)
and the upper bound (10). We remark that we need to prove the
lower bound (9) only for the case when , as the bound
trivially holds when .

(9)

(10)

Subsection III.A proves the lower bound (9), and
Subsection III.B proves the upper bound (10).

A. Proof of the Lower Bound (9)

We first show that, for any , a sufficient condition for the
norm being above is that the supergraph
is disconnected. In fact, we prove the following stronger claim.
Lemma 7: For any fixed and any

Proof: Fix and and suppose that is
not connected. Suppose further (without loss of generality) that

has exactly two components and denote them by and
. Then, for all such that and , we have

, and, consequently, , for all
. By definition of , this implies that the corresponding

entries in the matrices , are equal to zero, i.e.,

Thus, every matrix realization from time 1 to time has a
block diagonal form (up to a symmetric permutation of rows
and columns, the same for all )

where is the block of corresponding to the nodes
in , and similarly for . This implies that
has the same block diagonal form, which, in turn, proves that

.
Using the result of Lemma 7, we get:

(11)

We now focus on computing the probability of the event that
is disconnected. For any fixed , a sufficient con-

dition that guarantees that is disconnected is that every
graph realization from time 1 to time is drawn from some
disconnected collection . More precisely, for every

and every , it holds for all :

(12)

This can be easily shown by observing that if
, then is a subgraph of ,

or, in other words, cannot contain any additional edge
beyond the ones in . Now, since is disconnected,
it must be that is disconnected as well. Claim in (12)
implies that for every and every

(13)

where the last equality follows by the time independence as-
sumption. Combining the previous bound with (11) and opti-
mizing the bound over yields

Finally, taking the , dividing by , and taking the over
, the lower bound (9) follows.

B. Proof of the Upper Bound (10)

To prove the upper bound, we first extend the concept of the
induced graph operator to the -induced graph operator which
accounts only for those entries that are above some given ,
i.e., the entries that are sufficiently important. Using the defini-
tion of the -induced graph, we correspondingly extend the con-
cepts of the accumulation graph, the set of realizable graphs and
the most likely disconnected collection. We explain this next.
The family of -induced graph sequences.
Definition 8: For each we define the -induced graph

operator by (14), shown at the bottom
of the page.
As we can see from the definition, if a matrix has all diag-

onal entries above , then its -induced graph contains all the
edges whose corresponding entries of the matrix are above .
On the other hand, any matrix that has a diagonal entry below

(14)
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gets mapped by to the symbol ; note that, by doing
this, we discard all the potential edges for such a matrix (no
matter how large their corresponding entries are). Intuitively,
-induced graph operator , compared to , acts as an edge
truncator that cuts off all the non-significant edges and, also, it
discards all the matrices with low diagonals by mapping them to
. We will see later in the analysis that, whenever at some point
in the sequence , a matrix with a small diagonal entry
occurs, we cannot say much about the continuity of the “infor-
mation flow” at that point. Thus, we introduce a special symbol,
, to indicate such matrices that cut (or “erase”) the information
flow.
We now use operators , to construct from

new induced graph sequences. For every , let
be defined by ,

for . Thus, for every is the -induced graph of
the matrix . Remark that, in contrast with the regular
induced graph can take value .
Each sequence from this family indexed by is

i.i.d., as the sequence is i.i.d. For any ,
denote by the probability that is equal to , i.e.,

. The probability that takes value
is denoted by . We show in Lemma 9

that, for each converges almost surely to as ,
thus implying the corresponding convergence in distribution.
For convenience, we state the result in terms of the adjacency
matrices: for any and , we define

, if , otherwise,
we assign to be the by matrix of all zeros.
Lemma 9: For any , almost surely , as

. Hence, for any and also
.

Proof: For any , let ; note
that, by Assumption 1, . Now, fix and , and
consider . Then, for all and let

(note that and also that it depends on ). For
all , whereas for all

. Note that, to prove the claim, it is sufficient to consider only
the case when . First, for all such that ,
we have and also for all
(in fact, due to the definition of , the latter holds for all ),
showing that converges to . On the other
hand, let be the minimum over all positive entries of

and note that and . Then, for
all and match, implying that

for all such . As was an arbitrary point from and
since , the almost sure convergence follows. The
second part of the claim follows from the fact that almost sure
convergence implies the convergence in distribution.

Similarly as with the set of realizable graphs, for each ,
we define the set of -realizable graphs

(15)

For a collection of graphs , we denote by the
probability that belongs to , which is equal to

. Similarly as before, denotes the set of all
possible disconnected collections on .
For such that , let

; that is, is the probability that
belongs to the most likely disconnected collection on . The
following corollary of Lemma 9 is one of the main steps in the
proof of the upper bound (10). We omit the proof of Corollary
10 due to lack of space.
Corollary 10: If , then there must exist

such that, for every , . Moreover,
.

Similarly as with accumulation graph that collects all
the edges of the (regular) induced graphs , for
each , we define the -accumulation graph to
collect the edges of the -induced graphs . In
contrast with , here we have to take into account that,
for some , realizations of the -induced graphs might be equal
to . To handle this, for each and , we introduce

which we define by (16), at the bottom of
the page. Now, for any and , we define
to be

(17)

We now explain the intuition behind this construction of
. If , that is, if the interval from until is clear

from the realization , then we assign to collect all
the edges of all the -induced graph realizations that occurred
from time until time . If, on the other hand, it happens
that, starting from time we encounter the realization , i.e., if

for some , we consider this to be a bad event and
we reset the number of collected edges so far to zero (formally,
by assigning at time ). We repeat this until we hit
time . Since the last occurrence of the bad realization was at
time , assuming that , the -accumulation graph
will contain all the edges of the -induced graph realizations
that occurred from time until time .
We have seen in the proof of the lower bound in Lemma 7

that, if the accumulation graph is disconnected, then the
norm of the error matrix is still equal to 1 at time . Lemma 11

(16)
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is, in a sense, a converse to this result, as it provides a sufficient
condition in terms of for the norm of the error matrix to
drop on the time interval from until .
Lemma 11: For any fixed , for all and

such that , it holds

(18)

Using the fact that the Fiedler value (algebraic connectivity) of
a connected graph is positive [38], if is connected (and

), then the squared norm of the error matrix on this
interval drops for at least . To get a
uniform bound for this drop (that holds for all connected real-
izations of ), we use the Fiedler value of the path graph
on vertices. This is stated next in Corollary 12.
Corollary 12: For any fixed , for all

such that and is connected

(19)

where is the Fiedler value of the path graph
on vertices, i.e., the minimum of over all con-
nected graphs on vertices [38].
We next prove Lemma 11.

Proof: We first prove Lemma 11 for all such that
. To this end, fix and consider a

fixed , for which . Similarly to the
proof of Lemma 1 a), b) in [39], it can be shown here that: 1)

, for all ; and 2) ,
for all , where we let denote the set of edges of the
graph .
Notice that is the second largest eigenvalue of

, and, thus can be computed as:

Since is a symmetric stochastic matrix, it can
be shown, e.g., [9], that its quadratic form, for a fixed vector

, can be written as:

(20)

Now, combining the two auxiliary inequalities from the
beginning of the proof, we get that, for all

, where, we recall, is
the set of edges of . Further, since all the entries of

are non-negative (for every , every realization of
is a stochastic matrix, and thus has non-negative entries), we
can upper bound the sum in (20) over all by the sum over

only, yielding:

(21)

Finally, is equal to the
Fiedler value (i.e., the second smallest eigenvalue of the Lapla-
cian) of the graph . This completes the proof of
Lemma 11 for the case when are such that .
The claim of Lemma 11 for the case when are such
that essentially follows from the submulti-
plicativity of the spectral norm, the result of Lemma 11 for the
case that we just proved (with ), and the fact that

.
Lemma 11 and Corollary 12 say that, for each fixed
, whenever there is an interval in which the -accumulation
graph is connected, then the norm of the error matrix on this
interval improves by some finite amount (dependent on the in-
terval size). We next introduce, for each , the sequence of
-stopping times that registers these times at which we are cer-
tain that the error matrix makes an improvement.
Family of the sequences of -stopping times. For each ,
we define the sequence of -stopping times

by:

By its construction, the sequence defines the times
that mark the right end point of “clear” intervals, without re-
alization of -induced graphs equal to , on which is con-
nected. Using the result of Lemma 11, we have that at times
the norm of drops below 1 and the averaging process makes
an improvement. Let further, for each and

count the number of improvements with respect
to the -stopping times until time :

(22)

We now explain how, at any given time , we can use the knowl-
edge of to bound the norm of the “error” matrix .
Suppose that . If we knew the locations of all the
improvements until time then, using
Lemma 11, we could bound the norm of . Intuitively,
since for fixed and fixed the number of allocations of ’s
is finite, there will exist the one which yields the worst bound
on . It turns out that the worst case allocation is the
one with equidistant improvements, thus allowing for deriving
a bound on only in terms of . This result is given
in Lemma 13.
Lemma 13: For any fixed and :

(23)

Proof: Fix . If , then the
claim holds trivially. Thus, suppose , and,
suppose further

( , for , because ).
By the construction of the -stopping times, we know that

is connected for all . Thus,
we apply Lemma 11 on the intervals from until , for

, to get .
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Combining this with submultiplicativity of the spectral norm,
yields:

(24)

Denote and note that . Further,
remark that is a concave function.
Taking the in (24) and applying Jensen’s inequality [40] for
equal convex multipliers , yields

Finally, since is increasing and
. Multiplying

both sides of the last inequality with , and computing the
exponent yields (23).
Lemma 13 provides a bound on the norm of the “error” matrix

in terms of the number of improvements up to
time . Intuitively, if is high enough relative to , then the
norm of decays exponentially fast (to see this, just take

in (23)) and, thus, it cannot stay above , which
decays sub-exponentially as increases. We show that this is
indeed true for all for which or higher,
for any choice of ; this result is stated in Lemma 14,
part 1. On the other hand, if the number of improvements is less
than , then there must have been long intervals on which
was disconnected. The probability that such an interval of length
occurs is essentially determined by the probability that the
sequence of -induced graphs is “trapped” in some disconnected
collection for time , and it equals . As the number of
these intervals until time is at most , this yields, in a crude
approximation, the probability of for the event
; this intuition is formalized in part 2 of Lemma 14.
Lemma 14: For any fixed :
1) there exists sufficiently large such that

(25)

2) for every

(26)

where and is defined as
, for such that , and

, otherwise.

Proof: Fix . To prove 1, we first note
that by Lemma 13 we have:

(27)

This gives

(28)

where , for . For fixed ,
each of the probabilities in the sum above is equal to 0 for those
such that . This yields:

(29)

where is the switch function defined by:

Also, as is, for fixed , decreasing in , it follows that
for . Combining this with (28) and

(29), we get:

We now show that will eventually become 0, as in-
creases, which would yield part 1 of Lemma 14. To show this,
we observe that has a constant negative value at :

Since , as , there exists
such that , for every . Thus,
for every . This completes the proof of part 1.
To prove part 2, we first prove the following result which is

the main argument in the proof of part 2.
Lemma 15: For any

(30)

Proof: Fix . For the case when
, the claim easily follows by noting that

. (The latter is
true because each realization of , which has a positive
probability of occurrence is either a connected graph or equal
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to .) Suppose now that is such that . Define
to be the (random) locations of the realization in the

sequence of -induced graphs and let also be the number of
such realizations until time ; for convenience, let also .
By definition of , the event is equivalent to the
event that is disconnected on each block in the sequence of

that is clear from realizations of . Partitioning
this event over all possible number of realizations of on the
interval from time 1 until time , and, also, over all possible
locations of , we get

(31)

where the last equality follows from the fact that realizations of
belonging to disjoint blocks are independent, and, also, we

implicitly assume that the statement
implies that , for . We now fix

and focus on computing .
To this end, let and note
that, since each of the events in the intersection has prob-
ability 1, the event also has probability 1. We show
that

, or, in words, if is disconnected on
some interval and all the graph realizations that occurred during
this interval belong to , then there must exist a disconnected
collection on to which all the graph realizations belong to;
the last claim, since , would yield

(32)

To prove the claim above, consider fixed such
that is disconnected, and let

. Since , and we assume
that , then it must be that , for all

. On the other hand, since
is disconnected, it follows that is a disconnected

collection on , thus proving the claim. Combining now (31)
and (32) yields (30)

Now, notice that we can express the event that
through increments of -stopping times:

. Applying the
exponential Markov inequality [41] with parameter

(33)

where the equality follows from the fact that the increments of
-stopping times are i.i.d. We now focus on computing the ex-
pectation in the equation above. Using the result of Lemma 15

(34)

The sum in the previous equation converges for all to
. Combining this with (33) completes the proof

of part 2.
From parts 1 and 2 of Lemma 14 it follows that for any fixed

and :

(35)

Now, taking first the infimum over and then the infimum over
yields:

(36)

Finally, if , then, by Lemma 9 and Corollary 10,
converges to , as . On the other hand, if
, it can be easily shown that goes to , as . Taking
the limit in eq. (36) yields the upper bound (10).

IV. COMPUTATION OF VIA MIN-CUT: GOSSIP AND LINK
FAILURE MODELS

Motivated by the applications of averaging in sensor net-
works and distributed dynamical systems, we consider two fre-
quently used types of random averaging models: gossip and link
failure models. For a generic graph , we show that

for both models can be found by solving an instance of
a min-cut problem over the same graph . The corresponding
link costs are simple functions of the link occurrence probabili-
ties. In this section, we detail the relation between the minimum
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cut (min-cut) problem and computation of . We first ex-
plain the min-cut problem.
Minimum cut (min-cut) problem. Let be given
undirected weighted graph where is the set of nodes, is
the set of edges, and is the matrix of the edge
nonnegative costs; by convention, we set , for all , and

, for . The min-cut problem is to find the
subset of edges such that is disconnected and the
sum is minimal; we denote this minimal value,
also referred to as the connectivity, by . The
min-cut problem is easy to solve, and there exist efficient algo-
rithms to solve it, e.g., [42], [5].

A. Gossip Model

Consider the network of nodes, collected in the set and
with the set defining communication links between
the nodes, such that if then nodes , can
communicate. In the gossip algorithm, only one link
is active at a time. Let be the probability of occurrence of
link . We note that

.
Lemma 16: Consider a gossip model on a graph

with link probabilities . Construct a mincut
problem instance with the graph and the cost assigned to link

equal . Then:

(37)

(38)

where is the symmetric matrix that collects link occurrence
probabilities, , for
and .

Proof: For the gossip model, the set of all possible graph
realizations is the set of all one-link subgraphs of

. Also, there is
a one to one correspondence between the set of collections of
realizable graphs and the set of subgraphs of : a collection

corresponds to the subgraph of if and only if
. Thus, if we assign to each link in a cost equal

to , then searching over the set of all disconnected
collections to find the most likely one is equivalent to searching
over all disconnected subgraphs of with the maximal total
cost:

(39)

Using the fact that , (39) can be written as:

The minimization problem in the last equation is the min-cut
problem .

Gossip on a regular network. We now consider a special case
of the uniform gossip model on a connected regular graph with
degree and the uniform link occurrence
probability . It can be easily seen that the value
of the min-cut is times the minimal number of edges that dis-
connects the graph, which equals ; this corresponds
to cutting all the edges of a fixed node, i.e., isolating a fixed
node. Hence,

Note that the asymptotic rate is determined by the probability
that a fixed node is isolated; and the rate does not depend on
the degree .

B. Link Failure Model

Similarly as with the gossip model, we introduce a graph
to model the communication links between the

nodes. In contrast with the gossip model, the link failure model
assumes that each feasible link occurs independently
from all the others links in the network, as explained in detail
in Example 2. Given the realization of the network topology,
weight matrices can, for example, be chosen according to
the Metropolis rule, see Example 2. Let again denote the
probability of occurrence of link . (Remark that, due
to the independence assumption, we now do not have any con-
dition on the link occurrence probabilities .)
Lemma 17: Consider a link failure model on a graph

with link probabilities . Construct a
mincut problem instance with the graph and the cost of link

equal to . Then:

(40)

(41)

where is the symmetric matrix that collects the link occur-
rence probabilities, , for

and and denotes the entry
wise logarithm of a matrix .

Proof: Since the links occur independently, any subgraph
of can occur at a given time, therefore yielding

that the collection of realizable graphs is the collec-
tion of all subgraphs of :

(42)

here denotes the power set of , i.e., the collection of all
possible subsets of the set of feasible links .
This implies that for any fixed set of edges that dis-

connect we can find a disconnected collection
such that (recall that is

the minimal supergraph of all the graphs contained in ). On
the other hand, any disconnected collection will map by to
one disconnected subgraph of . Therefore, in order to find
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we can split the search over disconnected collections
as follows:

(43)

Next, we fix a disconnecting set of edges and consider
all such that . We claim that, among
all such collections, the one with maximal probability is

. To show this, we observe that if
, then , thus implying:

Therefore, the expression (43) simplifies to:

We next compute for given :

where the last equality follows by the independence assumption
on the link occurrence probabilities. This implies that
can be computed by

Regular graph and uniform link failures. We now consider
the special case when the underlying graph is a connected reg-
ular graph with degree , and the uniform
link occurrence probabilities . It is easy to see that
and simplify to:

V. APPLICATION: POWER ALLOCATION FOR

DISTRIBUTED DETECTION

We now demonstrate the usefulness of our Theorem 6 by
applying it to consensus innovations distributed detection,
[23], [22], over networks with symmetric fading links. We first
show that the asymptotic performance (error exponent of the
detection error probability) of distributed detection explicitly
depends on the large deviation rate . Further, we note

that is a function of the link fading (failure) proba-
bilities, and, consequently, of the sensors’ transmission power.
We exploit this fact to formulate the optimization problem of
minimizing the transmission power subject to a lower bound on
the guaranteed detection performance; the latter translates into
the requirement that exceeds a threshold. We show
that the corresponding optimization problem is convex. Finally,
we illustrate by simulation the gains achieved by optimizing
the transmission power.

A. Consensus Innovations Distributed Detection

Detection problem. We now briefly explain the distributed de-
tection problem that we consider. We consider a network of
sensors that cooperate to detect an event of interest, i.e., face
a binary hypothesis test versus . Each sensor , at each
time step performs a measurement . We as-
sume that the measurements are i.i.d., both in time and across
sensors, where under hypothesis has the density func-
tion , for and
Consensus innovations distributed detector. To resolve be-
tween the two hypothesis, each sensor maintains over time
its local decision variable and compares it with a threshold;
if , sensor accepts ; otherwise, it accepts .
Sensor updates its decision variable by exchanging the
decision variable locally with its neighbors, by computing the
weighted average of its own and the neighbors’ variables, and
by incorporating its new measurement through a log-likelihood
ratio :

(44)

Here is the (random) neighborhood of sensor at time
(including ), and is the (random) averaging weight that
sensor assigns to sensor at time .
Let and

. Also, collect the averaging weights
in the matrix , where, clearly, if

the sensors and do not communicate at time step . For the
weight matrices we assume the Metropolis weight model
explained in Example 2. Then, using the definition of ,
writing (44) in matrix form, and unwinding the recursion, we
get:

(45)

Equation (45) shows the significance of the matrices
to the distributed detection performance, and, in particular, on
the significance of how much the matrices are close to
. Indeed, when , the contribution of to
is , and hence sensor effectively
uses the local likelihood ratios of all the sensors. In the other
extreme, when , and hence
sensor effectively uses only its own likelihood ratio. In fact, it
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Fig. 2. Top: Detection error probability for the worst sensor versus
time step for the 2 node network. Center and Bottom: Detection
error probability of the worst sensor versus time step for the opti-
mized power allocation, the uniform power allocation with

,) and for the random, gossip
allocation; Center: lower SNR; Bottom: higher SNR.

can be shown that, when the rate exceeds a certain threshold,
then the error exponent of the detection error probability at each
sensor is optimal, i.e., equal to the error exponent of the best
centralized detector. Specifically, the optimality threshold on
depends on the sensor observations distributions and and
is given by3:

(46)

Furthermore, when , the detection error ex-
ponent is a highly nonlinear function of . (See Fig. 2, right in
[23].)
Remark: We now provide a simple example to demonstrate

that the large deviations rate is a more relevant metric than

3See [23] for the precise expression of the threshold.

the existing aggregate metrics, like and
, when studying the consensus innovations detector’s per-

formance. Consider a -node network with the underlying
2 2 i.i.d. symmetric, stochastic matrices , with
, with probability , and , with probability ,
and is constant. Sensor has Gaussian
measurements under hypothesis , with

, and , else. To show that
does not capture sufficient information to describe detection
performance, we make two different models of with equal

, and hence, with equal . With the first model
, we set , a small value
so that distributed detector does not have an optimal error expo-
nent, and . With the second model , we set ,
and , so that is equal for both
models and . Now, using , we would infer that,
with both networks and , distributed detector achieves the
same performance. On the other hand, calculating the large de-
viations rate and , we
expect a very different detection performance. Fig. 2, top plots
the maximal probability of error (across nodes 1 and 2) versus
time step , with models and , estimated via 20,000 Monte
Carlo runs. We can see, as predicted by the large deviations rate
, that the performance of models and is very different.
Moreover, fails to shed light on detection perfor-
mance. We note that we can show similarly that
also fails to measure the consensus+innovations distributed de-
tector performance.

B. Power Allocation

Equation (46) says that there is a sufficient large deviation rate
such that the distributed detector is asymptotically optimal;

a further increase of above does not improve the exponen-
tial decay rate of the error probability. Also, as we have shown
in Subsection IV.B, the large deviation rate is a function of
the link occurrence probabilities, which are further dependent
on the sensors’ transmission power. In summary, (46) suggests
that there is a sufficient (minimal required) transmission power
that achieves detection with the optimal exponential decay rate.
This discussion motivates us to formulate the optimal power
allocation problem of minimizing the total transmission power
per time subject to the optimality condition . Before
presenting the optimization problem, we detail the inter-sensor
communication model.
Inter-sensor communication model. We adopt a symmetric
Rayleigh fading channel model, a model similar to the one pro-
posed in [43] ([43] assumes asymmetric channels). At time ,
sensor receives from sensor

where is the transmission power that sensor uses for trans-
mission to sensor is the channel fading coefficient,
is the zero mean additive Gaussian noise with variance is
the inter-sensor distance, and is the path loss coefficient. We
assume that the channels and at time experience
the same fade, i.e., is i.i.d. in time; and
and are mutually independent for all . We adopt the
following link failure model. Sensor successfully decodes the
message from sensor (i.e., the link is online) if the signal
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to noise ratio exceeds a threshold, i.e., if: ,

or, equivalently, if . The quantity is,
for the Rayleigh fading channel, exponentially distributed with
parameter 1. Hence, we arrive at the expression for the proba-
bility of the link being online:

(47)

We constrain the choice of the transmission powers by
4, so that the link is online if and only if the link is

online, i.e., the graph realizations are undirected graphs. Hence,
the underlying communication model is the link failure model,
with the link occurrence probabilities in (47) that are depen-
dent on the transmission powers .
With this model, the large deviation rate is given by (40),

where the weight associated with link is:
. We denote by the set of all powers

.
Lemma 18: The function , with

, for , and else,
is concave.

Proof: Note that the function
can be expressed as

On the other hand, is concave in for , which
can be shown by computing the second derivative and noting
that it is non-positive. Hence, is a pointwise minimum
of concave functions, and thus it is concave.
Power allocation problem formulation.We now formulate the
power allocation problem as the problem ofminimizing the total
transmission power used at time , so that the
distributed detector achieves asymptotic optimality. This trans-
lates into the following optimization problem:

(48)

The cost function in (48) is linear, and hence convex. Also,
the constraint set

is convex, as a sub level set of the convex
function . (See Lemma 18.) Hence, we have just
proved the following Lemma.
Lemma 19: The optimization problem (48) is convex.

Convexity of (48) allows us to find a globally optimal solution.

C. Simulation Example

We first describe the simulation setup. We consider a geo-
metric network with sensors. We place the sensors uni-
formly over a unit square, and connect those sensors whose dis-
tance is less than a radius. The total number of (undirected)

4We assumed equal noise variances so
that , which implies the constraint . Our analysis easily
extends to unequal noise variances, in which case we would require

; this is not considered here.

links is 38. (These 38 links are the failing links, for which we
want to allocate the transmission powers .) We set the coef-
ficients with . For the averaging weights,
we use Metropolis weights, i.e., if link is online, we as-
sign , where is the degree
of node at time and otherwise; also,

. For the sensors’ measurements, we use the
Gaussian distribution , with

. For a lower signal-to-noise ratio (SNR) case, we set
, and for a higher SNR case, we set .

The corresponding values are ,
for a lower SNR, and , for a higher SNR; see [23].
To obtain the optimized power allocation, we solve the

optimization problem (48) by applying the subgradient algo-
rithm with constant stepsize on the unconstrained
exact penalty reformulation of (48), see, e.g., [40], which is to
minimize ,
where , for ,
and zero else; and is the penalty parameter that we set to

. We used the MATLAB implementation [44] of the
min-cut algorithm from [42]. Note that the resulting power
allocation is optimal over the class of deterministic power
allocations, i.e., the power allocations that: 1) use the same
total power across all links per each time step; and 2) use
deterministic power assignment policy at each time step.
Results. Fig. 2 (center) plots the detection error probability
for a lower SNR case, of the worst sensor
versus time . We compare: 1) the optimized power allocation

(solid blue line); 2) the uniform power allocation
across all links, such that the total power per over all links

and 3) a random,
gossip like, power allocation, where, at a time step , only one
out of all links is activated (uniformly across all links) such
that the power is invested in it (half of in each direction
of the communication.) Note that this allocation is random,
hence outside of the class that we optimize over. The optimized
power allocation significantly outperforms the uniform power
allocation. For example, to achieve the error probability 0.1,
the optimized power allocation scheme requires about 550 time
steps, hence the total consumed power is ; in contrast, the
uniform power allocation needs more than for the same
target error 0.1. In addition, Fig. 2 plots the detection perfor-
mance for the uniform power allocation with the total power
per equal to . This scheme takes more than 700 time
steps to achieve an error of 0.1, hence requiring the total power
of to achieve an error of 0.1. Further, we
can see that, for a lower SNR case, the random, gossip policy
achieves—exactly as the optimized policy—the best detection
error exponent . (Note that the two corresponding lines are
parallel.) This is not a contradiction as the random policy is
outside of the class of deterministic allocations that we optimize
over. Furthermore, the randomized gossip policy is slightly
better than the optimized policy (It has a better constant in
the detection error ). However, for a larger
SNR (Fig. 2, bottom), the gossip policy no longer achieves
the optimal slope , and the optimized policy becomes better.
In particular, for the detection error, the optimized policy
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saves about 50 time steps (from 200 to 150), with respect to
gossip, hence saving 25% of total required power.

VI. CONCLUSION

In this paper, we studied the products of i.i.d. sym-
metric, stochastic matrices . Under the assumption of almost
surely positive diagonals of the ’s and ,
we found the large deviation rate for

, i.e., the large deviation rate for the proba-
bility that the convergence of to is sub-exponen-
tial. We showed that the rate depends solely on the proba-
bilities of the graphs that underly the matrices . In general,
calculating the rate is a combinatorial problem. However, we
show that, for the two commonly used averaging models, gossip
and link failure, the rate is obtained by solving an instance
of the min-cut problem, and is hence easily computable. Fur-
ther, for certain simple structures, we compute the rate in
closed form: for gossip over a tree, , where
is the occurrence probability of the “weakest” link, i.e., the

smallest-probability link; for both gossip and link failure models
over a regular network, the rate , where is
the probability that a node is isolated from the rest of the net-
work at a time. Intuitively, our results show that the rate is
determined by the most likely way in which the network stays
disconnected over a long period of time. Finally, we illustrated
the usefulness of rate by allocating the sensors’ transmission
power for consensus+innovations distributed detection.
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