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Abstract—The squared distance function is one of the standard
functions on which an optimization algorithm is commonly run,
whether it is used directly or chained with other functions. Illus-
trative examples include center of mass computation, implemen-
tation of k-means algorithm and robot positioning. This function
can have a simple expression (as in the Euclidean case), or it might
not even have a closed form expression. Nonetheless, when used in
an optimization problem formulated on non-Euclidean manifolds,
the appropriate (intrinsic) version must be used and depending on
the algorithm, its gradient and/or Hessian must be computed. For
many commonly usedmanifolds a way to compute the intrinsic dis-
tance is available as well as its gradient, the Hessian however is
usually a much more involved process, rendering Newton methods
unusable on many standard manifolds. This article presents a way
of computing the Hessian on connected locally-symmetric spaces
on which standard Riemannian operations are known (exponential
map, logarithm map and curvature). Although not a requirement
for the result, describing the manifold as naturally reductive ho-
mogeneous spaces, a special class of manifolds, provides a way of
computing these functions. The main example focused in this ar-
ticle is centroid computation of a finite constellation of points on
connected locally symmetric manifolds since it is directly formu-
lated as an intrinsic squared distance optimization problem. Sim-
ulation results shown here confirm the quadratic convergence rate
of a Newton algorithm on commonly used manifolds such as the
sphere, special orthogonal group, special Euclidean group, sym-
metric positive definite matrices, Grassmann manifold and projec-
tive space.

Index Terms—Riemannian distance, Hessian computation, opti-
mization.

I. INTRODUCTION AND MOTIVATION

T HE motivation behind the computation of the Hessian of
the squared distance function is usually to use this im-

portant object in intrinsic Newton-like optimization methods.
The advantages of these methods when compared to gradient
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methods are well known, especially when high precision is re-
quired since its quadratic convergence rate is guaranteed to out-
perform any gradient-based algorithm when enough iterations
are run. Several authors have approached the problem of im-
plementing intrinsic Newton algorithms on smooth manifolds.
For example [1], [2] and [3] discuss several implementations of
Newton algorithms on manifolds and applications can be found
in robotics [4], signal processing [5], image processing [6], etc.
Several approaches to the optimization of cost functions in-

volving intrinsic squared distance exist, most of them relying on
gradient methods, although there are a few exceptions where a
Newton method is used. Hüper and Manton [7] have developed
a Newton method for this cost function on the special orthog-
onal group and in [8] a Newton method which operates on an
approximation of the intrinsic distance function on the Grass-
mann manifold. These manifolds, and others commonly used in
engineering, are a subset of naturally reductive homogeneous
spaces (NRHS) [9], [10]. This class of manifolds are interesting
since the required operations for implementing Newton-like al-
gorithms are easily obtained. Please note though that there is no
known general relation between connected locally symmetric
spaces (required for the results presented in this article) and nat-
urally reductive homogeneous spaces (a worthy example is the
Stiefel manifold which is NRHS but not locally symmetric). All
the examples presented in this article: the Grassmann manifold

, projective space , sphere , positive definite
matrices , the special orthogonal group
and the special Euclidean group belong to the intersec-
tion of locally symmetric and naturally reductive homogeneous
spaces.
The proposed application is to solve optimization problems

where the cost function depends on the squared distance func-
tion using a Newton method on manifolds. In particular we pro-
vide examples for the problems of computing the centroid of
a constellation of points, MAP estimation and clustering using
the k-means algorithm. This article does not focus on providing
state of the art implementations for these examples, but rather
demonstrate how the Hessian of the intrinsic squared distance
function might be used in the context of these applications.
Particularly in the context of centroid computation, several au-
thors have proposed suitable algorithms and applications, for
example Moakher [11] uses centroid computation on for
smoothing experimental observations obtained with a signifi-
cant amount of noise in the study of plate tectonics and se-

1932-4553/$31.00 © 2013 IEEE



FERREIRA et al.: NEWTON ALGORITHMS FOR RIEMANNIAN DISTANCE RELATED PROBLEMS 635

quence-dependent continuum modeling of DNA; Manton [12]
confirms the need of centroid computation algorithms on mani-
folds (particularly compact Lie groups); Pennec [13] uses posi-
tive definite symmetric matrices as covariance matrices for sta-
tistical characterization, also subject to smoothing; Fletcher [14]
uses the computation of centroids for analyzing shapes in med-
ical imaging. In [15] a detailed analysis of the centroid compu-
tation problem is presented as a special case of a more general
problem, along with a Newton algorithm to solve it.
This article follows from two conference papers [16] and [17]

where a method for computing the Hessian of the intrinsic Rie-
mannian squared distance function on a connected locally-sym-
metric manifold were presented without proof. The present ar-
ticle is entirely self-contained with respect to the previous and
consolidates them in both clarity and detail. It is important to
state that most of the results required in the proof are available
in the literature, and this article’s role is mostly to chain them in
a comprehensive way and provide a ready to use result requiring
minimal knowledge of the underlying details.

II. RIEMANNIAN MANIFOLDS AND NOTATION

For a given smooth dimensional manifold [10], [18],
[19], denote its tangent space at a point by . The
disjoint union of all these tangent spaces is called the tangent
bundle of and is denoted as . The set of real valued
functions on is . If and are smooth manifolds,
given a smooth map between them, its push-for-
ward is defined as the application such that for
any tangent vector and any function
the equality holds. If ,
exterior differentiation is denoted by (here is seen as a de-
gree 0 differential form).
Additionally, the manifold is equipped with a non-degen-

erate, positive and symmetric 2-tensor field , called a Rie-
mannian metric, providing the tangent space at each point
with an inner product . The notation

for will be used exten-
sively.
The Riemannian exponential map is defined on any Rie-

mannian manifold and sends a vector to a point on
the manifold. If is the unique unit speed geodesic such and that

and , then .
In general is only defined on a neighborhood of the origin
in . However, complete spaces, defined as those where the

map has domain are very interesting in view of man-
ifold optimization. On a sufficiently small open neighborhood
this map is a diffeomorphism and the image of a ball centered
at the origin contained within this neighborhood is known as
a geodesic ball (or normal ball). Its inverse function known as
the logarithm, when defined, returns such that,

, and . Although the computation
of these maps may be very involved, many manifolds used in
engineering have already been widely studied and these maps
are usually available in the literature (see Section III-A for a
simple way to compute them for the special class of naturally
reductive homogeneous spaces). The length of a smooth curve

is defined as . The

intrinsic distance between two points belonging to the same
connected component of is defined as the infimum of the
length of all smooth curves joining and .
On a Riemannian manifold there is a canonical way of identi-

fying nearby tangent spaces called the Levi-Civita connection,
here denoted by . Once a connection is established, the cur-
vature endomorphism is defined as

. Here are any vector fields ex-
tending and is the Lie bracket. The op-
erator is independent of the extension chosen.
The gradient vector is then defined as the

unique tangent vector that satisfies
for any . The Hessian is defined as the sym-
metric 2-form such that
for any . Note that once an orthonormal
basis for the tangent space is fixed, any tan-
gent vector has a canonical expansion with respect to this
basis and inner product given by , where

. These coefficients can be collected in a
column matrix , easily inputed to a
computer. The hat will denote a coordinate representation for
a given object on the manifold. Similarly the Hessian with
respect to this basis can be described as the matrix such that

for any with
coordinate representation in this basis .

III. NEWTON’S METHOD

A. Unconstrained Optimization

Gradient descent methods (familiarity with basic optimiza-
tion techniques is assumed, see for example [20] or [21] for
detailed reference) are undoubtedly among the easiest to im-
plement on smooth cost functions, as is the case of the squared
distance function on . Unfortunately their linear convergence
rate might be prohibitively expensive on applications where
precision is required. Newton’s method, when applicable,
trades a little in implementation simplicity to gain greatly in
convergence speed, guaranteeing quadratic convergence rate
when close enough to the optimum.
Suppose a function is to be minimized (assume
is convex for simplicity). One way of interpreting Newton’s

method is to describe it as a sequence of second order Taylor
expansions and minimizations. Let

where is a matrix representation of the Hessian func-
tion. In the gradient vector field is easily computed as

and the Hessian matrix has the
familiar form where . Here
is a second order polynomial in attaining a minimum when

. The idea is that will be closer to
the point which minimizes .

B. Manifold Optimization

When the constraint set is a known manifold though, the
previous description still applies with only slight re-interpreta-
tions (see [2], [3] and [22] for some generalizations). A search
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direction is generated as the solution of the system
. If a basis for the tangent space is chosen,

then the former is written as

(1)

where is a matrix representation of the Hessian of the cost
function (with respect to the chosen basis for the tangent space)
and is the representation of the gradient
also in the chosen basis. See Section II for a description of these
intrinsic objects and Section III-A for a way of computing them
in certain spaces.
As stated in the previous section, once a Newton direction has

been obtained, it should be checked if it’s a descent direction (its
dot product with the gradient vector should be negative). If this
is not verified, a fallback to the gradient descent direction should
be used. Once a direction has been obtained a step in that direc-
tion must be taken. Although on a manifold it is not possible to
add a vector to a point directly, a canonical way of doing it is
available through the Riemannian exponential map which sends
a vector to a point on the manifold as described
in Section II. So the update equation ,
can be used to obtain a better estimate. Here is again a step
size given by Armijo’s rule. The complete algorithm is now de-
scribed, with only slight modifications relative to the case:

Manifold Newton Algorithm

Input: function to be minimized.

Output: which minimizes within tolerances.

1: choose and tolerance . Set .

2: loop

3: .

4: if set and return.

5: compute Newton direction as the solution of (1).

6: if set .

7: .

8: . Please note that due to finite
precision limitations, after a few iterations the result should be
enforced to lie on the manifold.

9: and re-run the loop.

10: end loop

IV. HESSIAN OF THE RIEMANNIAN SQUARED
DISTANCE FUNCTION

In [16] the following theorem was introduced without proof,
and later updated in [17] still without proof. The proof is pre-
sented as an appendix to this article.
Theorem IV.1: Consider to be a connected locally-sym-

metric n-dimensional Riemannian manifold with curvature en-
domorphism . Let be a geodesic ball centered at
and the function returning the intrinsic

(geodesic) distance to . Let denote the
unit speed geodesic connecting to a point , where

, and let be its velocity vector at . Define
the function , and con-
sider any . Then

(2)

where is an orthonormal basis which diago-
nalizes the linear operator ,

with eigenvalues , this means .
Also,

Here the and signs denote parallel and orthogonal compo-
nents of the vector with respect to the velocity vector of , i.e.

, , and .
For practical applications though, presenting the Hessian in

matrix notation greatly improves its readability and comprehen-
sion. Hence in [17] a second theoremwas presented also without
proof which is included in the appendix as well.
Collorary IV.2: Under the same assumptions as above, con-

sider an orthonormal basis. If
is a vector, let the notation denote the column vector de-
scribing the decomposition of with respect to the basis

, i.e. , let be the matrix with entries
and consider the eigenvalue decompo-

sition . Here will be used to describe the i’th
diagonal element of . Then the Hessian matrix (a represen-
tation for the bilinear Hessian tensor on the finite dimensional
tangent space with respect to the fixed basis) is given by

where is diagonal with elements given by
. Hence .

In spaces of constant curvature (such as the sphere and
) with sectional curvature , computing the Hessian

has almost zero cost. Due to the symmetries of the curvature
tensor, whenever or are parallel to .
Hence, matrix , which is the matrix representation on the
given basis for the bilinear operator , has a null
eigenvalue with eigenvector . Since the sectional curvature
is by definition equal to and is constant, equal to
whenever is not parallel to , then

hence using the Rayleigh quotient, the eigenvalues of are
constant and equal to . So an eigenvalue decomposition is
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where is any orthonormal complement of . It follows then
from the last theorem that the Hessian is given by

This removes the need for the numerical computation of matrix
and its eigenvalue decomposition, significantly speeding the

computation of the Hessian matrix.

A. Algorithm

The complete algorithm is presented in both situations, when
the space is not known to be of constant curvature:

Hessian of Riemannian squared distance function

Input: an orthonormal base , and
the Riemannian curvature tensor.

Output: the Hessian matrix of the Riemannian squared
distance function .

1: Build matrix .

2: Compute its eigenvalue decomposition .

3: Assemble diagonal matrix with elements .

4: .

or when it is known to be of constant curvature:

Hessian of Riemannian squared distance function (spaces
of constant curvature)

Input: an orthonormal base , and
the Riemannian curvature tensor.

Output: the Hessian matrix of the Riemannian squared
distance function .

1: Represent in the given basis.

2: .

V. MANIFOLD APPLICATIONS

A. Centroid Computation

Let be a connected manifold and
a constellation of points. Let be the

function that returns the intrinsic distance of any two points on
the manifold and define a cost function as

(3)

The set of solutions to the optimization problem
is defined as the Fréchet mean set of the

constellation and each member will be called a centroid of
. Depending on the manifold , the centroid might not be

unique, for example if the sphere is considered with a constel-
lation consisting of two antipodal points, all the equator points
are centroids. The set of points at which the function (3) attains
a local minimum is called the Karcher mean set and is denoted
as . The objective is to find a centroid for the given
constellation (which in the applications of interest should be
unique), but the possibility of convergence to a local minimum

is not dealt with. Conditions for uniqueness of Karcher-Fréchet
means usually involves the concept of manifold injectivity
radius and the diameter of the constellation. Please see [12],
[15], [23], [24] for the explicit treatment of these points.
Using linearity of the gradient and the Hessian operators

(meaning in particular that if then
and ), the cost

function in (3) allows for the decomposition

(4)

where the fact that the gradient of the squared Riemannian dis-
tance function is the symmetric of the Riemannian map is
used (as stated in [25] as a corollary to Gauss’s lemma).
The algorithm for centroid computation is then

Centroid computation

Input: A constellation with points
sufficiently close (see text for details) and an initial estimate

Output: An element of the Karcher mean set of the
constellation

1: Apply Newton’s algorithm as described in Section III to
function where at each step the Hessian and gradient is
computed as follows:

2: for each point in the constellation do

3:

4: (as described in Section IV)

5: end for

6:

7:

B. K-Means Algorithm

The implementation of a K-means algorithm is straightfor-
ward once a working centroid computing algorithm is available.
The algorithm is as follows:

k-means algorithm

Input: An dimensional manifold where the centroid is
computable, a cloud of points and the number of desired
classes.

Output: centroids of each class.

1: Choose randomly as initial estimate for
the centroids.

2: for each point in do

3: Compute distance to each centroid: .

4: Label point as belonging to set , where .

5: end for

6: Recompute the centroids .

7: If the centroids did not change position (or a maximum
number of iterations reached), return.
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C. MAP Estimator

Consider a freely moving agent in whose position is rep-
resented as a point , seen as the rigid transformation that
transforms points in the world referential, taking them to the
local (agent) referential. Keeping the experiment simple, con-
sider that the it observes several known landmarks in the world

. Hence, in the local referential, the agent
observes the points . If the agent is considered to be at with
a certain uncertainty, it is possible to build a prior knowledge
probability density function as
where is a normalizing constant and describes an isotropic
level of uncertainty. Notice that all directions are treated equally
which is usually not the case. Please note that by the identity

a slightly more useful prior may be
built weighting differently translations from rotations. With
simplicity in mind, assume that this description is useful.
Assume also that the sensors are not perfect and the obser-
vations obey the following Gaussian probability distribution

where, again is a
normalizing constant and is a matrix encoding the uncertainty
of the sensor. If the observations are considered to be indepen-
dent, the MAP estimator of the position is given by

Using the usual trick of applying the logarithm and discarding
constants, the former problem is equivalent to

This is formulated as an optimization problem on . The
gradient of each term is readily available and the Hessian of the
first terms can be obtained using standard techniques (see the
chapter of Riemannian Embeddings on any Riemannian geom-
etry book, specifically the part about the second fundamental
form). The result presented in this paper allows for the Hes-
sian of the last term to be obtained as well, thus allowing for a
Newton algorithm to be implemented.

VI. RESULTS

This section holds experimental results for the main appli-
cation of centroid computation. Fig. 1 compares the results of
applying a Newton algorithm and a standard gradient algorithm
when computing the centroid of a constellation on 6 different
manifolds. The 20-point constellations were generated using a
radius of except for the Grassman where the radius used
was . The results presented in logarithmic scale clearly show
the quadratic convergence rate of Newton’s method and the
linear convergence rate of the gradient method. All examples
show a plateau at due to finite precision issues. Note that
the projective space manifold is a special case
of the Grassman, hence the previous expressions are applicable.
Fig. 2 shows the results obtained for an implementation of the

MAP estimator described in SectionV-C. As described, an agent

is navigating in a world with 5 randomly placed landmarks. In
this experiment and was used. The gradient
method is clearly outperformed by the 5 iterations taken by the
Newton method to attain the required precision.
As a final note concerning absolute time to convergence, none

of the results of the Newton method shown in Fig. 1 are compet-
itive with the gradient alternative. Although more iterations are
required, these are simpler and thus convergence to the required
precision is faster. This no longer holds for an implementation
of the MAP estimator where the gradient method shows ex-
tremely slow convergence whereas Newton’s method still con-
verges typically in less than 10 iterations and outperforms the
gradient implementation. The choice of method does not have
a simple answer in engineering applications and in the end the
actual cost function, manifold and desired precision play crucial
roles. Also, as mentioned in the discussion after the statement of
corollary IV.2 for certain manifolds, e.g. , computation of
the Hessian is almost trivial providing an additional advantage
to Newton’s method.

VII. CONCLUSIONS

This article describes a simple algorithm to obtain the Hes-
sian of the intrinsic squared distance function on connected lo-
cally-symmetric manifolds on which it is known how to com-
pute basic Riemannian differential operations. Results are pre-
sented for centroid computation on the commonly used mani-
folds , , , , , and . This is by
nomeans an exhaustive list, and the result is valid for other man-
ifolds fitting the requisites (for example the hyperbolic plane).
Besides the main application, simple examples of MAP esti-
mation and k-means clustering are also provided, extending the
range of applications besides centroid computation.

APPENDIX A
NATURALLY REDUCTIVE HOMOGENEOUS SPACES

Although this section is not critical for presenting the main
result in this article, it does show that the method presented is
viable by providing a recipe for obtaining the required data in
a vast class of manifolds used in engineering. Note that a basic
understanding of Lie group theory is assumed. Naturally Re-
ductive Homogeneous Spaces, henceforth denoted by NRHS,
(see for example [9] and [10]), are important since they can
lead to closed formula solutions for the Riemannian exponen-
tial maps, logarithm maps and curvature endomorphisms, ex-
actly what’s needed to implement the Hessian algorithm pre-
sented. A space with this property is defined as a coset manifold

, where is a Lie group (with Lie algebra ) and
a closed subgroup (with Lie sub-algebra ), furnished

with a -invariant metric such that there exists an in-
variant subspace that is complementary to . Note
that but is usually not a Lie sub-algebra since it
is usually not closed under the Lie bracket operation. Further-
more, the property

for

needs to hold. Here the subscript denotes projection on this
subspace. Henceforth, for spaces with this property, will be
called a Lie subspace for .
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Fig. 1. Simulation results for centroid computation. Except for the Grassman manifold, whose constellations were built with a radius of , all constellations
were built with a radius of .

A. NRHS Construction for a Particular Riemannian Manifold

When facedwith an optimization problem on a particular Rie-
mannian manifold , it is not usually known whether or not it
admits an NRHS structure. Since many useful manifolds in en-
gineering admit such structures, the process of identifying it will
be described here.
First it is necessary to describe as a coset manifold

were the symbol states that the two sides are diffeo-
morphic. Here, a proposition stated in [9] solves the problem,
stating that all that needs to be done is to find a Lie group
which acts transitively on :

Theorem A.1: Let be a transitive action and
let be its isotropy subgroup at a point . Then there is
a natural map which is a diffeomorphism. In
particular, the projection , is a submersion.
Furthermore, this action must be an isometry as stated in

the definition of an NRHS space, which means that for any
, and the property

, must hold, where denotes the push forward
of the translation by .
Examples:
1) acts on the unit sphere

(seen as a Riemannian subspace) as the restriction
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Fig. 2. MAP position estimate results using 5 observed landmarks with
and .

of the usual action of on . This action
is transitive. The isotropy subgroup of
consists of the subgroup

Hence, ignoring the natural diffeomorphism yields
. To verify that this action is G-invariant

let and . Then:

2) As a trivial example, acts transitively on itself
(seen as a Riemannian submanifold of with the
Euclidean inner product) through group multiplication.
The isotropy subgroup at any point is the trivial subgroup

(where is the group identity), hence trivially
. As before, to verify that this action

preserves the inner product let and
. Then:

3) Expanding the previous example, the Lie group product
acts transitively on the Special Euclidean

group (seen as a Riemannian submanifold of
) as

Once again the isotropy subgroup is trivial, hence

. If then for a

given element the push forward of the
action of is given by:

Hence the action preserves the inner product since:

4) (the set of invertible matrices with real en-
tries) acts transitively on (the set of pos-
itive definite symmetric matrices with the inner product
described below) by conjugation, that is .
The isotropy subgroup of the identity matrix seen as an el-
ement of is the set

. So, . Letting
and and assuming the inner

product is given by , then:

5) If (the set of real matrices) with
and is full rank, let the notation denote the subspace
generated by the column vectors of . The Grassman man-
ifold consists of the set of all such subspaces, i.e.

. Please note
that the elements of theGrassmanmanifold are equivalence
classes, where the columns of and the
columns of span the same subspace. Consider the transi-
tive action of on defined as

the isotropy subgroup of is the set

hence . The action
is G-invariant since once again if and

then:

Let be the Lie algebra of and be the Lie sub-algebra
of . The next step consists of finding a Lie subspace such
that and . This step must be done by
inspection but it is usually not hard to accomplish.
Examples:
1) Let denote the set of skew sym-
metric matrices with real entries. For the coset space

, and

. By inspection (due to

the requirement that ) a logical candidate for

is the set . Since

(5)

results that is indeed a Lie subspace.
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2) When and , and
(the trivial vector space). Hence, the obvious choice

is , which is obviously invariant under .
3) The same happens when considering and

. Hence, for ,
.

4) If and as is the case for
, the corresponding Lie algebras are

( real matrices) and . A natural candi-
date for the Lie subspace is the set of symmetric matrices

, and indeed if and
then hence it is
invariant.

5) For the case of the Grassmann, and
(as seen previously). The

corresponding Lie algebras are and

.

Then, by inspection, the obvious choice for the Lie sub-
space is

It is easily checked that this choice is invariant.
All that remains to be done is to verify if the construction

verifies the property

for

Since is identified with , the dot product is the pull-back
by of the dot product on . If the property is not satisfied,
another construction with another Lie group acting on
might be tried, or it is possible that does not admit an NRHS
structure.
Examples:
1) Continuing the previous examples consider the
sphere, where .

Let and

where . Then it results that

. Thus the

required result is trivially verified. If needed, the corre-
sponding dot product on can be found by noting that

. Hence

2) For , the tangent vectors in both man-
ifolds are canonically identified, hence if
the inner product on is given in the usual way:

So the required property is once again satisfied

3) When and , the inner
product on is found in the same manner as in the first
example. Thus if , ,

The Lie bracket on the product group is given by the
product of the Lie brackets. Hence

Then to check the required property:

(check the example for the case for details of the
last step).

4) In the case of the symmetric positive definite matrices
where the Lie bracket results in a skew
symmetric matrix, hence the projection back to results
in a null vector. Hence the requirement is trivially satisfied.

5) Noting that for the Grassmann manifold
then The

needed property is once again trivially verified.
Hence all five manifolds have been described as naturally re-

ductive homogeneous spaces.

B. Operations on NRHS Manifolds

This section details why the structure of these manifolds is
important to the Riemannian optimization process. A proposi-
tion in [9] states:
Theorem A.2: If is a naturally reductive ho-

mogeneous space, its geodesic starting at with tangent vector
are given by for all , where

is the one parameter subgroup of identified as an ele-
ment of .
Hence the Riemannian exponential map follows directly

from the Lie group’s exponential map which in our examples
is the standard matrix exponential (since is either
or ). Geodesics starting at any other point of can be
found by translation of since acts transitively as an isom-
etry. The Riemannian logarithm map follows from inversion.
On a manifold with NRHS structure, the curvature endomor-

phism is also computable as seen for example in [26]:

(6)
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Examples: To finish the examples, we provide a final sum-
mary of the functions needed for each of the considered mani-
folds. Note that these are simplified and concise versions of the
results obtained by the above theorem and expression 6.
1) The Sphere : This n-dimensional manifold is described

as the set whose tangent space
at a point is . Let

, and is the norm of . It can
be shown that for the ambient metric :
• .
• where

.
• .
2) Special Orthogonal Group : This di-

mensional manifold represents the set of rotations of and
is described as whose
tangent space at a point is

, where denotes the set of
skew-symmetric matrices. The metric comes naturally from the
Riemannian embedding as
• , where exp denotes the matrix
exponential function.

• where log denotes the matrix loga-
rithm function.

• .
3) Special Euclidean Group : The Euclidean

group, characterized as the product manifold ,
inherits these manifolds’ properties. Hence, at a point

, the tangent space
with dot product given by

.
• , where
exp denotes the matrix exponential function.

• , where log de-
notes the matrix logarithm function.

•
where

the brackets denote the Lie bracket only on
since is flat.

4) Symmetric Positive Definite Matrices :
This dimensional manifold is described
as the set

whose tangent space at
a point is ,
where denotes the set of symmetric matrices.
Let , . When
considering the metric the
following expressions hold
• .
• .
• , where

.
5) The Grassmann Manifold : The Grassmann is an

dimensional manifold of dimensional linear sub-
spaces in . It is naturally described as a quotient manifold
with the previously mentioned equivalence relation, and a point

is described by a representative which
is the set of the first columns of the elements in for

. The tangent space at a point is
.

Let , .
For the ambient metric (the simplified
expressions shown next are obtained from [2], [27] and the cur-
vature endomorphism follows directly from equation 6):
• , where is
the compact SVD of .

• , where is the
SVD decomposition of , are the diagonal elements
of and

.
• .

APPENDIX B
PROOF OF THE THEOREMS

This section proves theorem IV.1 and corollary IV.2, a
main contribution of this paper but delayed to an appendix
for readability. The proof is mostly a chain of known results
which can be found in texts such as [9], [28]. With the intent
of finding the Hessian of the function , recall that (see for
example [9])

(7)

where is any local extension of . Note that from the prop-
erties of a connection, its value depends only of at , but
for the expression to be formally correct the extension must
be considered. Knowing that the gradient operator is linear and
that for any two smooth functions defined on an
open set satisfies the point-wise multiplication property

, allows for the simplification
.

Defining as the unit normed radial vector field when
written in normal coordinates centered at , a corollary to
Gauss’s Lemma [25] states that . Hence the
former expression is written as . Gauss’s
Lemma also allows for the decomposition of any vector field

as , where is a vector field
parallel to and is orthogonal to it. These
statements, along with the properties of a connection, are used
to write

Noting that for any vector field ,
and since is parallel to

, there is a smooth function such that
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. Since is tangent to unit speed
geodesics emanating from , . Hence

(8)

Now let be a curve in the geodesic sphere
with

and . In normal coordinates centered at , consider
the geodesic variation for some , given by

. Here the hat notation denotes a coordinate
representation, hence if is the normal coordinate
function then , , and .
Defining and

, the corresponding Jacobi field
(see [25]) is given in coordinates by

. Note that is normal to the unit-speed geodesic
and that . Also, notice

that since is a geodesic. In
order to ease notation the coordinate representation for these
objects will be hidden, although not forgotten. Hence, at a
point ,
where the fact that is used (see [25] Lemma 6.3).
Substituting in (8), again at , results in

Substituting back into (7), yields the known expression for the
Hessian in terms of Jacobi fields [12], [23]

(9)

All that remains to do is to find an expression for the Jacobi field
and take its covariant derivative. This leads to a rather lengthy
discussion so it is stated here as a couple of lemmas:
Lemma B.1: The solution of the ODE , ,

is given by where

Proof: Picard’s existence theorem guarantees uniqueness
and direct substitution of the result in the differential equation
proves the result.
LemmaB.2: Let be a locally-symmetric Riemannianman-

ifold and be a geodesic ball centered at . If
is the intrinsic distance of a point to and

is the unit speed radial geodesic running
from to , given a tangent vector orthogonal to

, then the normal Jacobi field along
which satisfies and is given by

(10)

where is the parallel transport along of the
tangent space’s orthonormal basis which di-
agonalizes the linear operator defined as

, i.e., . Note that
denotes the curvature tensor of and is defined as in the

previous lemma.
Proof: As stated in [25] the Jacobi field specified by its

two endpoints and exists and is unique if
is not conjugate to along . Consider the Jacobi equation

(11)

Choosing an orthonormal basis for the tangent space
and creating the vector fields along by parallel

translation of , one can write with respect to this basis
(note that the set is a basis for ) as

, where . Hence the left
hand side of (11) can be written as

(12)

where the identity is used, which
follows from the fact that the vector fields are parallel.
The goal is now to solve this ordinary differential equation.
Start by defining the linear operator as

and note that due to the symme-
tries of the Riemannian curvature tensor, this operator is self-ad-
joint, i.e. . This guarantees that
there is an orthonormal basis such that

for some as described next. Write as a
linear combination as . Since
any two vector spaces with the same dimension are isomor-
phic there is an isomorphism, taking to

. In this vector space the operator may be written as
. Hence, writing in matrix notation by defining

and since is linear in a finite dimen-
sional vector field, can be described as a matrix. Hence,

...
...

. . .
...

The fact that the operator is self-adjoint makes a symmetric
matrix and as such, it admits an eigenvalue decomposition

where is a diagonal matrix
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such that are the eigenvalues of and is an orthogonal ma-
trix with the normalized eigenvectors of as its columns. Hence

hence, if are
the entries of the matrix, is the orthonormal
basis such that . Using the isomorphism once
again, this means that is the basis that di-
agonalizes the operator as . Define as
the parallel transport of along . Define as well the vector
fields which, since is locally
symmetric, are parallel along [9]. It follows then, using the
fact that parallel transport preserves inner products and
is an orthonormal basis

Writing (12) in terms of the new basis:

Hence, the Jacobi equation decouples into scalar equations
with the corresponding two-point boundary conditions:

and
and

...
and

Invoking lemma B.1, the solution of the th equation
is given by Hence

.
This expression for can be substituted in (9), by making

. Taking the covariant derivative of evaluated
at , considering that since is parallel
along the geodesic, results in

Hence, defining by pointwise division
,

Although (2) provides a way to compute the Hessian, it is
not very implementation-friendly. This section proves corollary
IV.2 which re-writes the equation in matrix form once a tangent
basis is fixed.
From the symmetries of the curvature tensor follows that any

vector parallel to (for example ) belongs to the kernel
of the operator . Without loss of generality assume that
is parallel to (hence , and

. Then, since , (2)
can be re-written:

where the matrices are defined in the theorem statement.
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