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Distributed Detection Over Noisy Networks:
Large Deviations Analysis

Dušan Jakovetić, Student Member, IEEE, José M. F. Moura, Fellow, IEEE, and João Xavier, Member, IEEE

Abstract—We study the large deviations performance of con-
sensus+innovations distributed detection over noisy networks,
where agents at a time step cooperate with their immediate
neighbors (consensus) and assimilate their new observations (in-
novation.) We show that, under noisy communication, all agents
can still achieve an exponential error rate, even when certain (or
most) agents cannot detect the event of interest in isolation. The
key to achieving this is the appropriate design of the time-varying
weight sequence by which agents weigh their
neighbors’ messages. We find a communication payoff threshold
on the communication noise power, i.e., the critical noise power
below which cooperation among neighbors improves detection
performance and above which the noise in the communication
among agents overwhelms the distributed detector performance.
Numerical examples illustrate several tradeoffs among network
parameters and between the time (or number of measurements)
needed for a reliable decision and the transmission power invested
by the agents.

Index Terms—Chernoff information, distributed detection,
large deviations, noisy communication.

I. INTRODUCTION

W E describe briefly the problem that the paper considers,
detailed in Section II. We study distributed simple bi-

nary hypothesis testing: agents cooperate, through a sparse,
connected communications graph ( is the set of
agents, the nodes of the graph and is the set of interagents
channels, the edges of ) to decide at each time
between two possible states of nature, and . This problem
arises in many applications, including classical surveillance, but
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now in a distributed setting like in netted, multisite, or MIMO
radars, e.g., [1], where a system of spatially separated networked
multistatic radar stations cooperate at every time
to detect the presence or absence of a target, or cognitive radio
networks where distributed agents detect a primary user, e.g.,
[2]. We adopt the following distributed sequential detector. At
each time agent executes three tasks: 1) makes an obser-
vation ; 2) updates its local detection statistic by a
distributed algorithm:

(1)

where and are weights; is
the local instantaneous log-likelihood ratio of agent at time
computed from its own ; and is the set of neighbors of
agent as determined by the edge set of the graph ; and 3)
makes a decision by thresholding its detection statistic:

(2)

Equation (1) updates the test statistic with a two-step struc-
ture: the first, given by the first two terms on the right-hand
side (RHS) of (1), is like consensus and reflects the coopera-
tion among agents—it averages the local statistic of with
the local statistics received from the neighbors ;
and the second, which we refer to as an innovations step, as-
similates themeasurement through the instantaneous local
log-likelihood . Hence, we refer to the local updating (1) at
each agent as a consensus+innovations distributed algorithm
and to the set of detectors (1) and (2), as
the consensus+innovations distributed detector, or distributed
detector for short. We are fundamentally concerned with how
‘good’ can we make the distributed detector, i.e., what perfor-
mance guarantees can we provide, when we carefully design
the weight sequences and in (1). To be more
specific, we benchmark the error detection performance of the
distributed detector with respect to the error performance of the
Neyman–Pearson centralized sequential detector, which, under
appropriate assumptions, is

(3)

where the centralized log-likelihood ratio is given by

(4)
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and is a renormalization of the local instantaneous log-
likelihood ratio computed by agent at time from its instan-
taneous observation . Our goal is to determine the condi-
tions under which and then show that, by carefully designing the
weights and in (1), we can similarly guarantee
exponential rate decay at every agent by a distributed detector
(1) and (2), i.e., the error probability of the distributed detector
at each and every agent decays asymptotically exponentially
fast.
We consider these design and performance guarantee ques-

tions under a fairly general setting that takes into consideration
limitations that may not necessarily arise in a centralized set-
ting but are natural in many distributed applications. Because of
limited power, not only are 1) the observations of agent
noisy, affected by sensing noise, but also 2) the communica-
tions among agent and its neighboring agents (when they coop-
erate) are noisy, impacted by communications noise. This paper
considers Gaussian sensing and communication noises and es-
tablishes exponential error rate of decay for distributed detec-
tion. Note that, with noisy communications, the updating of the
local statistic at agent does not follow (1) but is more com-
plex as we will see in Section II. We extend elsewhere these re-
sults to (non-Gaussian) quantized inter-agent communication,
and to Gaussian temporally correlated sensing and communica-
tion noises. In [3], we consider non-Gaussian sensing noises.
Brief Comment on the Literature: There is a vast literature

on decentralized and distributed inference. While we consider
a distributed architecture, i.e., with no fusion center, [4]–[8]
consider decentralized parallel fusion architectures, where all
agents communicate with a fusion center. References [9]–[13]
have a distributed architecture (no fusion center) but are of the
consensus type-each sensor makes a single observation and then
the sensors fuse their local decisions by the consensus algo-
rithm, or by belief propagation like in [9]. Reference [14] and
the algorithm in [15, Sec. IV] are essentially of the consensus
type, since they run consensus till convergence between each
round of measurements. The algorithm in [15, Sec. V] assumes
a complete architecture, or, if not, it uses a multihop protocol,
so that each sensor has access to the observations of all the
sensors at each and every time step. These references stand in
contrast with the class of algorithms we consider: We use a
consensus innovations algorithm, i.e., a distributed algorithm
(no fusion center) that interleaves consensus with innovations
(processing of the observations) at the same time step, rather
than running consensus to convergence in between successive
observations.
We now contrast our work with [16]–[18], [2], and [19]–[26]

that, like ours, are distributed, include communication among
neighbors, and process the new observations at every time step
as they are measured. We first comment that the main features
that distinguish our paper from these works are 1) we consider
single scale distributed detectors; 2) the communications among
agents is corrupted by additive noise; and 3) we are primarily
concernedwith showing exponential error rate (with appropriate
choice of the weights in (1)). References [2],
[17], and [18] look at distributed LMS and RLS adaptive algo-
rithms. They assume noiseless communications among agents
(no additive noise), and they do not study the decay rate of the

error probability.1 Reference [20] addresses the problem of dis-
tributed change detection (a tracking type of problem) allowing
for random averaging matrices and spatio-temporally correlated
data, but this work does not consider noise in the communication
among agents, nor is it concerned with establishing the expo-
nential error rate of the algorithm therein. References [21]–[23]
consider link failures but no additive noise in the intra-agents’
communication. Also, [21] considers the limiting behavior of
their distributed detector when the difference between themeans
under the two hypotheses goes to zero, a very different problem
from ours. Reference [24] considers deterministically time
varying networks and no communications noise. Reference [25]
is concerned with estimation and considers a very general model
that includes agent failures, link failures, and various degrees
of either quantized or noisy communications. Because this ref-
erence studies estimation and not detection, it is not concerned
with exponential decay rates of the error probability as we are
here; rather, it shows consistency, asymptotic efficiency, and
normality of the estimates through stochastic approximation and
Lyapounov function arguments and through bounding pathwise
behavior, rather than through large deviations arguments as we
apply here to our detection analysis. A nonlinear estimator in
[25] is mixed scale, while the class of detectors we study in this
paper is single scale. The corresponding mixed scale algorithms
for detection are presented and studied in [26], which, to the
best of our knowledge, and within the consensus+innovations
detection literature, is, like us, the only reference to consider
additive noise in the communications among agents (also, with
no link failures.) Our results contrast with [26], for the dis-
tributed sequential detector that we design, we establish that the
error probability at each agent decays exponentially fast; we
demonstrate this under broad conditions, including unequal local
agents’ sensing signal-to-noise ratios and when certain or most
agents are locally not detectable; in contrast, in these settings, the
algorithm in [26] does not achieve exponential decay rate. We
can show that the multiscale algorithm in [26] does not achieve
exponential error rate: the maximal probability of error across
agents is (see paragraph with Notation
heading for the meaning of the symbol ). Due to lack of space,
we omit the proof of this statement here.
Finally, we relate our paper with our prior work [22], [23].

These papers focus on how link failures impinge on detection
performance, while here we show that additive communication
noise in the links impacts in a qualitatively different way the
error performance; with link failures, more communication
among agents can only improve the error performance, since
when communication does happen agents receive their neigh-
bors detection statistics unencumbered by noise. With additive
communication noise, however, a clear tradeoff arises between
communication noise and amount of information flow (or
how often agents communicate); this leads to a phase change
behavior: Only when the communication noise power is below
a threshold does increased or more frequent cooperation im-
prove performance—in that the distributed error performance

1Coupling [2] with the results in [16] and [19], which considers diffusion es-
timators with additive communication noise, the probability of error of the LMS
detector in [2] does not go to zero as the number of observations grows to in-
finity, let alone achieve exponential decay rate, in contrast with the performance
of our distributed detector.
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of the worst (noisiest) agent is better than the isolated (no
cooperation) performance of the best agent. In [22] and [23],
we model certain averaging matrices as independent identically
distributed (i.i.d.) so that their distribution is time invariant;
here, because of time-decaying weights, the corresponding
weight matrices are time varying, forcing us to develop new
analysis to show asymptotic stability of certain time varying
systems. The methods presented here are of independent in-
terest and may find application in many other contexts.
Paper organization: Section II describes the problem model

and presents our distributed detector. Section III establishes the
asymptotic performance of our distributed detector. Section IV
interprets the results and presents simulations. Section V con-
cludes the paper. Appendices A and B prove all our results.
Notation: We adopt the following: lower and upper bold-

face letters represent vectors and matrices; or are the
th entry of a matrix or are the th entry of a

vector and are the transpose and inverse of
and are the identity matrix, the column vector with

unit entries, and the th column of is the
ideal averaging matrix; is the vector (respec-

tively, matrix) -norm; is the Euclidean (re-
spectively, spectral) norm; and are the th smallest
eigenvalue, and the trace of a matrix; the Kronecker product
of matrices; is the diagonal matrix with the diagonal
equal to the vector is the vector that stacks
columns of and the “inverse” operation is

is the cardinality of and
are the expected value, the variance, the covariance, and prob-
ability operators, (for zero mean random vectors and the
autocovariance is and the cross-covariance
is ); is the indicator function of the
event is the Kronecker symbol equal to 1 if
and zero otherwise; is the -function, i.e., the function
that calculates the right tail probability of the standard normal
distribution and given, with two bounds, by [27]

(5)

We also make use of the standard and notations:
stands for existence of a such that

for some for all ; and
means existence of such that for some

for all .

II. PROBLEM FORMULATION

We formulate the distributed detection simple binary hypoth-
esis testing problem that we study. We consider agents that
cooperate through a communication graph to de-
cide among two hypothesis or . Each agent keeps its
own local detection statistic . At time it performs four
tasks: 1) makes a measurement ; 2) communicates to the
neighbors its own detection statistic ; 3) updates ;
and 4) performs the decision (with zero threshold in (2))

(6)

We take in (6) the threshold to be zero because the best Bayes
exponential error rate is achieved with a Neyman–Pearson de-
tector with zero threshold [28, p. 93]. Henceforth, we consider
the three detectors, isolated, centralized, and distributed with
zero threshold.

A. Sensing and Communication Model

Communication Graph : The set assembles
the agents as nodes of the graph and the set collects their
communication channels as edges of the graph: if agents and
communicate, then . The neighborhood of agent

is the set of agents connected to by an edge in the graph
and the degree of is . The graph is sparse and can be
represented by its adjacency matrix where entry is zero
unless in which case . ( for all .)
We associate with the graph its Laplacian where
is the degree matrix, a diagonal matrix whose diagonal entries

. The Laplacian is positive semi-definite,
its eigenvalues are ordered from smallest to
largest, with . We make the following assumption.
Assumption 1 (Communication Graph): The graph is undi-

rected, simple, and connected, i.e., .
Sensing and Communication Noises: We now consider the

measurementsmade by the agents. Depending on the underlying
hypothesis, agent at time makes the observation

(7)

(8)

The prior probabilities are . Here is
a constant known signal and is the sensing noise. We
describe the interagent communications. If their
communication channel is the standard Shannon communica-
tion model of an ideal (low pass) filter plus additive noise. For
example, agent receives from agent

(9)

where is the communication noise. A similar equation
models the signal received by node from node at time
; note that . In the consensus+innovations up-
dating algorithm we analyze, we will see that the communi-
cation noise that affects the updating of the detection statistic

of agent at time is actually

(10)

For more compact statements, we introduce vector notation
and then state our noise assumptions. Let

(11)

(12)

Assumption 2 (Sensing Noise): The sensing noise is
a zero mean i.i.d. Gaussian sequence (possibly spatially corre-
lated) with with a positive def-
inite .
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Assumption 3 (Communication Noise): The communi-
cation noise in (9) is spatially and temporally
zero mean Gaussian i.i.d. with

; and and are mutually indepen-
dent over all .
It is for simplicity that we let ’s have the same variance

for all . Still, and
. For a regular network,

and where is the degree of every node
.

B. Detector: Single Agent, Centralized, and Distributed

Each agent performs the simple binary hypothesis test (6).We
detail how the distributed consensus+innovations sequential de-
tector updates the detection statistic at each agent at each time
when Assumptions 1–3 hold; but, first, we motivate briefly

its structure by considering how a single agent in isolation and
an agent with access to all the data (a fusion center) update their
detection statistics. Due to the Gauss noise assumptions, the test
statistics are linear in all three cases.
Single Agent: Isolated Detector: If agent decides in isola-

tion, i.e., without cooperation with other agents, its detection
statistic at time is

(13)

where the instantaneous log-likelihood ratio (under a diagonal
) is . Equation (13) provides a

sequentially (recursive) implementation of the test statistic or
detection statistic of agent .
Centralized Detector: For the distributed detection problem

we study, the centralized detector is not only motivational but
also serves to benchmark its performance. It is ideal because it
assumes that the observations of all agents are always available
(with no communication noise) at a fusion center. The central-
ized detection statistic is

(14)

(15)

where

(16)

To emphasize the structure in (14), we reverse the order of the
summations. When the noise is spatially uncorrelated,

and the normalized by sum in the time
index in (14) is the detection statistic given by (13).
We get

(17)

Fig. 1. System diagram and illustration of the operation of the consensus+in-
novations distributed detector in (19).

Equation (17) makes explicit that in the RHS of (15) is
equivalent to an average of local quantities.
Distributed Sequential Detector: Consensus Innovations:

We are guided by the structure of (15) or (17). Because the
graph is sparse, the (spatial) averages on the RHS of (17) (or

in the RHS of (15)) cannot be performed at each time
at since not all and are available at .

We propose replacing the spatial averaging in the first term of
the RHS in (17) (or in the RHS of (15)) by consensus,
and substituting the spatial averaging of the innovations over
all agents (second term in the RHS in (17) or in (15)) by the
instantaneous innovations of agent . With consensus,
each agent weight averages its state (detection statistic) with
the states received from its neighbors. We assume that every
agent uses at time the same weight —the so called equal
weights consensus. The updating for the distributed test statistic
at agent is then

'' ''

(18)

(19)

where for the correlated case the innovations given
by (16), are still computed from the local measurement available
to agent . Fig. 1 gives a system diagram and illustrates the op-
eration of the distributed detector (18). In (18), because of the
noisy communications among agents, the communication noise

appears explicitly inside the summation. Equation (19)
follows from (18) by recognizing the neighborhood of agent
and its degree . Equation (18), our approximation to the cen-
tralized update in (15), shows explicitly the “consensus” and the
“innovations” terms, occurring in the same time step .We refer
to the distributed sequential detector with this updating as the
consensus+innovations distributed sequential detector.
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We choose and analyze in this paper what we will call the
Dirichlet family of weights [29] (see also footnote 2)

(20)

The parameters and provide additional degrees of freedom
that we will use to optimize the performance of the distributed
detector. We will see that exponential error rate results when

.
Matrix Format: Before establishing the exponential error

rate for the distributed detector, we write the updating (19) more
compactly, in matrix form. We complete the vector notation
introduced in (11)–(12) by defining the decision vector
the innovations vector and the weight matrix :

(21)

where is the graph Laplacian matrix. From (16), the innova-
tions vector and its statistics are

(22)

(23)

(24)

Recall the communication noises and communication
noise vector in (10) and (12), respectively. Then, in vector
form, the distributed updating (19) is

(25)

Solution to (25): Define the matrices by
if and

. Then, after algebraic manipulations, the solution
to the distributed detector (25) is

(26)

The matrices are doubly stochastic for all with unit
norm. Hence, all the innovations are scaled
by the same weight order —as with the centralized de-
tector (14).

III. PERFORMANCE ANALYSIS OF THE DISTRIBUTED DETECTOR

A. Error Performance: Large Deviations

We are interested in the large deviations error performance
of the distributed detector (6) with updating (19), i.e., in the
exponential decay rate at each agent :

(27)

of the (average) error probability
. We are also inter-

ested in studying how the sensing noise, the communications
noise, and the connectivity of the network affect this large
deviations error performance.
Remark: If the limit above is zero, the error probability either

decays to zero slower than exponentially or remains non zero.
Under the Gauss Assumption 2, Chernoff Lemma, [28], gives

the exponential decay rate of the error probability of the isolated
and centralized detectors as

(28)

We refer to and as the isolated and centralized detectors
sensing signal-to-noise (SNR) ratios.
Global and Local Detectability: Equation (28) shows that

the error probability of the centralized detector decays exponen-
tially fast to zero if and only if . This requires that
which is a trivial observation since if then the statistics
under the two hypotheses were undistinguishable and the test
is degenerate. A similar comment holds for an individual iso-
lated agent where now the condition is that the corresponding

. For future reference, we formalize these comments.
Definition 1 (Global and Local Detectability): The hypoth-

esis testing problem (7)–(8) is globally detectable if the error
probability of the centralized detector decays exponentially fast,
i.e., . An agent is locally detectable if the probability
of error of its isolated detector decays exponentially fast, i.e.,

.
In the sequel, we will have occasion to consider spatially un-

correlated noises and identical agents.
Definition 2 (Identical Agents): The sensing noise is spatially

uncorrelated ( is diagonal) and for all .
Distributed Detector: It is not trivial to obtain the results sim-

ilar to (28) for the distributed detector or to conclude that its
error probability achieves exponential decay rate at all agents
because agents may be locally undetectable, the information
available at each agent is limited, and the communication among
agents is noisy.We find here a generic expression for this proba-
bility of error, while in the next Section III-B, we actually com-
pute this in terms of the noise and network parameters.
Because of the linearity of its updating and the Gauss

assumptions on the noises, the decision vector is
Gauss. Also, for the simple binary hypothesis test (7)–(8),
the distribution of under is the same as the dis-
tribution of under . So, the statistics of
under either hypothesis are found from the first and second
moments of the decision vector under, say, hypothesis
. We let and

. From these
comments and definitions, it follows that

. Letting and
be the mean and variance of it is straightforward

to get
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Taking the log, dividing by applying the inequalities for
in (5), and letting , we get

(29)

where and and are the th-entry
and the th-diagonal entry, respectively, of

(30)

Section III-B finds and , and then it finds the rate (29)
for the distributed detector (Theorem 3 and Corollary 4).

B. Exponential Decay of the Error Probability of the
Distributed Detector

Theorem 3 (Asymptotics on the Moments of ): Consider
the consensus+innovations distributed detector under Assump-
tions 1–3. Let in the weights in (20). Further, assume
that the test is globally detectable. Then, we have

(31)

(32)

(33)

(34)

Corollary 4 (Exponential Decay of the Error Probability):
Consider the consensus+innovations distributed detector under
Assumptions 1–3. Let in the weights in (20). Further
assume that the test is globally detectable. Then

(35)

where, as before, . Further, for any

and , the lower

bound in (35) is strictly positive, i.e., each agent achieves the
exponential decay rate.2 If, in addition, the agents are identical:

(36)

(37)

2The requirement is not crucial for the detector operation; it

only serves to assure that for all ; when we
allow for any the latter norm equality still holds eventually.

and hence for any and , each agent
achieves the exponential decay rate.
Remark: Under global detectability and connectedness,

Corollary 4 states that the error probability at every agent
decays exponentially to zero even if agent is (in isolation)
not detectable and even when the communication
links are very noisy (high ).
Remark. The agents need only to bound and to be

able to choose admissible and as we show now. We first
discuss . We devise an upper bound on that requires
less knowledge than what is required to compute . Lower
bounding the algebraic connectivity
where is the graph diameter, and recalling the norm
inequalities for a vector and a matrix :

we get

Hence, each agent needs to know only an upper bound on
the number of agents and an upper bound on the condition
number of . Once an admissible is set, agents can use the
inequality to set: .

C. Optimality of the Decay Rate of

We now show that the choice of in the weights
in (20) gives the tightest exponential error rate in the class of
weight sequences parameterized by . (The
proof is in Appendix B.)
Theorem 5: Let Assumptions 1–3 hold and assume the agents

are identical. Then for the weight sequence
where :

if

if

if
(38)

Remark: Note that, for a strong communication noise (large
), the bound in (38) for becomes smaller than

. The latter, according to (38), means that the noise is so
strong that no choice of improves the detector’s per-
formance over the isolated detector’s performance . In
other words, when the bound in (38) for is smaller than

it does not pay off for agents to communicate. Equation
(38) shows, however, that, as long as the communication noise
is small enough so that there exists a choice that allows
for an improvement over the isolated detector, then this choice
has to be . We adopt this choice in the paper.
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IV. INTERPRETATIONS OF THE RESULTS AND
SIMULATION STUDIES

We present simulations and insights into distributed detection
over noisy links. First, we demonstrate that distributed detec-
tion performance depends on the choice of the weights

—in particular, on the choice of . We find numeri-
cally the optimal and, for identical agents, we give a closed
form expression for a suboptimal . Second, we show that there
is a threshold on the communication noise power below which
it pays off for agents to communicate. This threshold occurs at
a high communication noise level, so, in many applications it
is advantageous to cooperate. Finally, we study how the total
transmission power invested by agents during the algorithm run
affects the time to decision—the time when the error probability
falls below a prescribed value . Section IV-A introduces met-
rics that help us assess distributed detection performance, and
Section IV-B presents results.

A. Metrics and Simulation Setup

We benchmark the distributed detector against the centralized
and isolated detectors. For intuitive comparisons, we introduce
the following metrics.
Gain of the Distributed Detector Over the Isolated Detector:

The gain of the distributed detector over the isolated
detector is the ratio of the performance of the worst agent with
communication and the best agent without communication:

(39)

The network achieves communication payoff if
.

Ratio of the Performance of the Distributed Detector and the
Centralized Detector: We define as the ratio of the expo-
nential decay rate of the worst agent and the exponential decay
rate of the centralized detector:

(40)

Communication Signal-to-Noise Ratio: To assess the quality
of the interagent communication channels, i.e., the relation be-
tween the amount of the communication noise power and the
transmission power that agents use, we define the communica-
tion signal to noise ratio at time by

CSNR

For large (as the variance vanishes);
hence, for simplicity, we consider

(41)

i.e., the “steady state” approximate for large . We
vary and investigate how this affects distributed detection
performance.

Remark. In practice, we may vary (cleaner channels) or
control transmission power. We illustrate this for example for
amplify and forward analog communication (see [30]), where
agent receives from agent at time :

Here is the amplify transmission coefficient, and
is the channel gain. Agent knows ; it esti-

mates it, e.g., with a pilot signal. The average transmis-
sion power spent by agent for transmission to agent
at time (assuming ) is

and hence (assuming equal gains over links)

.

Technically, we vary the parameter and let ; but this
is equivalent to keeping fixed and varying and hence
varying the transmission power.
Normalized Time to Decision Versus Total Communication

Signal-to-Noise Ratio: For a certain small target error proba-
bility say for a certain detector, distributed or central-
ized, we define the time to decision by:

i.e., is the smallest time step at which the worst agent’s
error probability falls below . We define similarly for
the centralized detector. We consider

(42)

the time to decision of the distributed detector normalized by the
time to decision of the centralized detector. We define the total
transmission signal to noise ratio for the distributed detector by

(43)

i.e., is the ratio of the total transmission power in-
vested over normalized by the total com-
munication noise power injected over . Our
goal is to vary the communication noise variance and estab-
lish the operation characteristic versus .
Simulation Setup: We consider a network with

agents.We consider two sets of experiments: 1) asymmetric net-
work: unequal agents and irregular graph; and 2) symmetric net-
work: equal agents and regular graph. With the asymmetric net-
work, we construct the sensing signal vector to be sparse, so
that certain agents are not locally detectable. We generate each
entry of the signal vector randomly; with probability 0.4,

and with probability 0.6, it is drawn from the uniform
distribution on . Once we generate all entries and get

we normalize to have norm .
For the particular realization of it turned out that has five
zero entries, so that five agents are not locally detectable. We
set the sensing covariance . With the symmetric net-
work, we set to have equal entries and we normalize so
that we set . With the asymmetric network,
the network is a geometric graph. We place the nodes uniformly
on a unit square and connect those pairs of nodes with interagent
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Fig. 2. Ratio in (40) of the performance of the distributed detector and
the centralized detector versus parameter . Top: asymmetric network; Bottom:
symmetric network. The bottom figure plots in dotted line the lower bound on

based on (37).

distance less than a given radius. The resulting network has 42
(undirected) links. With the symmetric network, we generate a
regular graph with degree 4. With all experiments, we set the
communication noise matrix and .

B. Results

Dependence of the Detection Performance on the Parameter
: Fig. 2(top) plots the ratio in (40) versus the param-

eter for the asymmetric network and 3.22 dB.
We can see that the choice of significantly affects the perfor-
mance of the distributed detector; hence, it is very important to
select appropriately .
The intuition behind the optimal choice of lies in the

tradeoff between the communication noise and the information
flow; it can be understood from the lower bound (35). Namely,
the terms

(44)

(45)

decrease the bound and so they quantify the decrease in perfor-
mance of the distributed detector; the decrease comes from two
effects: 1) communication noise and 2) insufficient information

flow. From (44)–(45), we can see how the parameter affects
in opposing ways these two effects: The terms (44) relate to the
information flow, while the term (45) is due to communication
noise. We see that the net effect of increasing is to increase
the effective algebraic connectivity ( multiplies ), de-
creasing (44); on the other hand, it increases the communication
noise term in (45). The optimal balances these two.
Fig. 2(bottom) plots the ratio in (40) versus the

parameter for the symmetric network; it also plots the
lower bound on based on (37). We have that
0 dB. We can see that, again, the choice of significantly
affects the performance; we have that the optimal
and the highest . We can find a suboptimal
value of in closed form by optimizing the bound in (37):

which, for this numerical ex-

ample, equals . Denote by .
The corresponding closed form expression for the lower bound
on is: .

Communication Gain and Payoff Versus CSNR: Fig. 3(top)
plots the gain in (39) versus CSNR in (41), and the lower
bound on based on (37), for the asymmetric network.We
numerically find a suboptimal parameter for each via
grid search over an interval. First, we can see that the network
achieves a communication payoff for 10.2 dB; and
the payoff threshold is 10.2 dB. Thus, cooperation
with our distributed detector enhances detection performance
even under a high communication noise. For this example, the
maximal possible value of is .
Clearly, when CSNR grows large, approaches 2.2, i.e.,
the distributed detector approaches the centralized detector. On
the other hand, when CSNR is very small, communication is
too noisy and hence does not pay off. Fig. 3(center) plots the
gain versus CSNR for the symmetric network and suboptimal

; the figure also plots the lower bounds (37) and (36)
and the upper bound (38). The communication payoff threshold
is 34 dB. Based on the bound (37), we can obtain
an analytic, conservative necessary condition for the communi-
cation payoff:

which, for this example, yields 15 dB. Note that,
as agents are identical, the maximal possible value of
equals .
Operation Characteristic: Normalized Time to Decision
Versus the Total Communication Signal-to-Noise Ratio

: Fig. 3(bottom) plots versus for the
symmetric network. First, we can see that, in order to have
smaller (distributed detector’s time almost as small as the
centralized detector’s time), we need to spend higher overall
transmission power during the detector operation (higher

.) Second, there is an interesting highly nonlinear,
knee-like behavior. If we invest too small amount of trans-
mission power, of order 20 dB, the decision
time increases fast. However, there is a sufficient transmission
power, 20 dB, at which we are reasonably
close to the decision time of the centralized detector. Further
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Fig. 3. Gain in (39) of the distributed detector over the isolated detector
versus the communication signal-to-noise ratio CSNR in (41).Top: asymmetric
network, the Figure also plots the lower bound in (35); Center: symmetric net-
work, the Figure also plots the lower bounds (37) and (36), and the upper bound
in (38). Bottom: Total communication signal-to-noise ratio in (43)
versus the relative time to decision in (42) for the symmetric network. For
the isolated detector, .

increase of the transmission power does not shorten signif-
icantly the time to decision, as we are already close to the
(minimal possible) time to decision of the centralized detector.
(Note the vertical asymptote.) The operation characteristic in

Fig. 3(bottom) is valuable for the agent network design: it says,
e.g., how much agents’ transmission power we should invest,
so that the decision time is less than, e.g., twice the centralized
detector’s time to decision ( .) Finally, we note that the
vertical asymptote is not at but rather at . That
is, even when the distributed detector does not reduce
its time to decision to be equal to the centralized detector’s time
to decision. This is the effect of finite time (i.e., before we reach
the asymptotics): the distributed detector with achieves
the asymptotic performance of the centralized detector, but it
does not achieve the finite time performance of the centralized
detector (although it is close), simply due to the limited network
connectivity.

V. CONCLUSION

We designed a consensus+innovations distributed detector
that achieves exponential error rate at all agents under noisy
communication links, even when certain (or most agents) in iso-
lation cannot perform successful detection. The key is the ap-
propriate design of the consensus time-varying weights. We pa-
rameterized in terms of several network parameters a threshold
on the communication noise power above which any agent that
successfully detects the event in isolation still improves its per-
formance through cooperation over noisy links, while below
which not even the best agent can improve its detection per-
formance by cooperation. Numerical examples demonstrate the
significance on detection performance of tuning the weight se-
quence, show communication payoff occurring already at a high
noise level—and, hence, it is typically worthwhile to cooperate,
and illustrate tradeoffs between the time to decision—time to
reduce the error probability below a prescribed value—and the
total transmission power.

APPENDIX

A. Proof of Theorem 3

We first prove (31), i.e., we evaluate the limit of
the mean under of the detection statistic vector:

. We summarize
our strategy for this proof. First, we construct the error vector

w.r.t. the assumed limit value :

Clearly, our goal is then to show . We perform
this proof in three steps. First, we derive a recursive equation
for . Next, we decompose into its consensus subspace
component and the component orthogonal to the consensus sub-
space:

Then, we show separately that each of these two components
converges to zero:

second step (46)

third step (47)

Finally, combining Steps 2 and 3 above, we conclude that
.
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Proof of Step 1: We now derive the recursive equation for
. By taking the expectation on the update equation for the

decision vector in (25), we get that evolves according
to the following:

(48)

Consider . Subtracting
from both sides of (48), adding and subtracting

to the RHS of (48), we get

(49)

where

Setting Up Steps 2 and 3: Consider the matrix
that represents, in a sense, the perturbation of

from its ideal value . For pursuing Steps 2 and 3, we need the
eigenvalue decompositions of and of . We start with

. Recall the graph Laplacian matrix and consider its
eigenvalue decomposition: with ’s being
the columns of (the orthonormal eigenvectors); and

and the eigenvector that cor-
responds to the zero eigenvalue is . Then, clearly,

so that we can read the eigen-
values of that correspond to eigenvectors
as: and . In
view of the condition on the step size namely
that: and the fact that we have that
we obtain, respectively,

(50)

(51)

(52)

We use equalities (50)–(52) further ahead to prove Steps 2 and 3.
We now consider and decompose it via the eigenvalue

decomposition:

From above, we can read the eigenvalues of ; simple cal-
culations show that the eigenvalue that corresponds to
the eigenvector is

if

otherwise.

From the discussion on the eigenvalue decomposition of
we have the following properties that we use when proving
Steps 2 and 3:

for some

(53)

When proving Step 3, we invoke the following deterministic
variant of a result due to Robbins and Siegmund [31, Lemma
11, Ch. 2.2].
Lemma 6 [31]: Let and be non-neg-

ative deterministic (scalar) sequences. Further, suppose that

Suppose that ; then, 1) and
2) exists.
Proof of Step 2: Consider the recursive equation for the error

vector . Multiplying (49) from the left by using (53),
and (doubly stochastic matrix), we get

which proves (46).
Proof of Step 3: Denote by . Multiplying (49)

from the left by and using (52) and (53), we get

Now, by the subadditivity and submultiplicative properties of
norms and (50) and (53):

(54)

which, invoking Lemma 6, proves (31): let
, , , get
; thus, ;

as exists, .
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Proof of (32): We now lower bound each entry of the
calculated limit vector . To this end, we
decompose into an “ideal” component and a “perturbation”
component. First, note

with .
Hence, where is the “ideal”
value of the limit of the mean, as if the network was fully con-
nected at any time i.e., as if for all ; and

is the “perturbation value.” We further calculate
this “ideal” value (we recall ):

Hence, the entry . To com-
plete the bound, we bound the modulus of the pertur-
bation value:

. Finally, the proof of (32) follows by

.
Proof of the Exact Covariance Limit (33): We now show

that the covariance matrix of the detection statistic vector

, where “unvecs” or recovers the matrix
from the vector and where . Interestingly,
we can prove the latter by essentially mimicking the proof of
the limit of the mean (31). In summary, we derive the recursive
equation for study properties of
show that the recursion for is essentially the same type
of equation as the one for the mean vector in (48) (with some
minor differences) construct the error vector w.r.t. the assumed
limit and prove it converges to zero. Note that, with this proof,
we work with vectors and matrices; we do
not make a specific mention of dimensions, e.g.,
identity matrix is simply denoted by .
Recursion for : From the update of the decision vector

(25), taking the covariance yields

Multiplying the above equation by and taking the :

where the matrix

.
Properties of the Matrix : Note that is a valid graph

Laplacian matrix of a certain connected graph on nodes: its
rows sum to 0, the off-diagonal entries are either zero or one,

and the diagonal entries are positive. Also, the eigenvalues of
equal and so the second

smallest eigenvalue . The matrix is
symmetric. It will be useful to define the averaging matrix on
our virtual graph of nodes: .
Identification of with : Simple algebraic manipu-

lations show

(55)

(56)

We note that (55) is very similar to the recursive equation for
in (48). The difference is in the terms (56). As we will

show, these do not affect the limit of as they are both
. For the first term, this is clear; for the second, it is true

because, from our independently proved upper bound (uniform
over ) on in (34), we can see
that for all and for sufficiently
large thus, the second term in (56) is also . Thus,
we make the following identification:

and we show that
. Like

with the proof of (31), we construct the error w.r.t. the assumed
limit,
split it into the consensus subspace error component and the or-
thogonal subspace error component, and prove that each com-
ponent converges to zero, which implies . The re-
cursion for is

where and equals

Consensus Subspace Error Component: It can be shown that
the update equation is

Taking the modulus and noting that

for some and so:
and so

applying Lemma 6.
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Orthogonal Subspace Error Component: Denote by
. The recursion is

Taking the norm:

and the proof proceeds by again applying
Lemma 6.
Proof of (34): We now show that the variance of agent ’s de-

tection statistic decays to zero as and
then we upper bound . We work directly
with the solution form of in (26). To calculate we
multiply by on the left to obtain

(57)

We view the first sum above as the “signal” part and the second
sum as the “noise” part. Indeed, the “signal” part involves the
innovations (log-likelihood ratios), while the “noise” part in-
volves only communication noise. We proceed as follows. In
Step 1, we calculate the variance of from (57). In Step 2,
we upper bound the “noise” part of the variance. In Step 3, we
upper bound the “signal” part of the variance. Finally, in Step 4,
we combine the two and finalize the bound.
Step 1. Calculation of the Variance of : Due to the

mutual independence of: 1) the innovations and for
; 2) the communication noises and for ;

and 3) and for all the variance of is the sum
of the variances of the individual summands in (57):

(58)

The first sum in (58) corresponds to the “signal” part, and the
second corresponds to the “noise” part.
Step 2. Variance of the “Noise” Part: We have from (58)

(59)

where we recall . The term

by the submultiplicative property of norms and because
(doubly stochastic matrix), and .

Thus, the “noise” part is bounded as

(60)

which completes the upper bound for the “noise” part.
Step 3. Variance of the “Signal” Part: We now upper bound

the “signal” part of the variance:

(61)

where we recall . If all matrices
were equal to (fully connected network), and con-
sequently, then (61) would equal (recall

)

(62)

This is the variance of the agent ’s detection statistic if the
network was fully connected at all times, i.e.,
for all . To further assess the “perturbation” of the non-ideal
variance (61) w.r.t. the ideal variance (62), we split the ma-
trix . Recall

. It is easy to show, by (51), that:
. Using the splitting and (62), the

“signal” part variance (61) becomes

(63)

We bound the “signal” part variance above by the submulti-
plicative property of norms and using and

by (50):

(64)
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Note that the second summand in (64) is the additional “pertur-
bation” when compared with the ideal fully connected network
case.
Step 4. Combining Bounds on the “Signal” Part and the

“Noise” Part: By (64) and (60), we get

(65)

We can see that because the perturbation
term: . To get a tighter
bound, however, we now find the exact limit

. To do this, we rewrite in a recursive
form:

(66)

By subtracting the assumed limit from both sides of
(66), algebraic manipulations show

After taking the modulus on both sides and using the submulti-
plicative property of modulus, we get

which parallels (54), for which we already showed that
. Thus, . We now revisit

(65) to show (34):

B. Proof of Theorem 5

We now prove the upper bound on the exponential decay rate
of the error probability for identical agents, when the weight

is replaced by . To find the upper
bound on the rate, due to the Gaussianity of under ei-
ther hypothesis, we only need to find an upper bound on the

(Step 1), and
a lower bound on the variance (Step 2). For
Step 2, we have to distinguish three cases:
and . Before proceeding with Steps 1 and 2, we note
that, to avoid cumbersome notation, we still use the same letter

for the averaging matrix, although the weight
changed; accordingly, we also use the symbols
and unchanged. We recall that, for identical agents, the
expressions for the mean and variance of the innovation vector

simplify to and .
Step 1. The Mean: Taking expectation in the solu-

tion equation (26) for the decision vector :
. Hence, the mean

remains time invariant under identical agents and equal to
irrespective of the choice of weights; clearly,

(67)

Step 2. The Variance: We first carry out the analysis for ar-
bitrary ; from a certain point on, we will need to distin-
guish between three cases: and . We start
with the exact expression for . We get the latter by com-
bining (59), (63), multiplying these by and noting that the
second summand in (63) is zero, because and so

by property (51). (Note that
the property holds even though we use (arbitrary ) and not

.) We have:

We next bound from above, using the fol-
lowing simple relations:

where the latter inequality holds
true because is a vector with nonnegative entries
that sum to one, and so at least one entry is greater than or
equal to . The upper bound on is as follows:

(68)

where we introduced

.
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Distinguishing Cases and : We now
distinguish the three cases to prove

if
if
if

if
if
if

(69)

The proofs for are trivial; we thus proceed with the proofs
for .
Case : We note that updates according to the

following recursion:

(70)

where . By (70), for sufficiently large and for
all we have that

for appropriately chosen . Now, applying [32, Lemma
4], we get that .
Case : By (70), and because

can be bounded from below as

(71)

for appropriately chosen and for all where
is sufficiently large. Now, consider

(72)

Clearly, for all . Subtracting 1 from
both sides in (72) and by Lemma 6, and so

; also, for all and, thus
(69) for .
Case : Consider (71); as we have

Now, define the recursion

Similarly to the proof of (31) in Corollary 4, it can be shown
that . Noting that .
yields (69) for . Having proved (78), taking the in
(68), and combining the obtained limit with (67), completes the
proof of Theorem 5.
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